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Immiscible fluid-fluid displacement in partial wetting continues to challenge our microscopic and
macroscopic descriptions. Here, we study the displacement of a viscous fluid by a less viscous fluid in a
circular capillary tube in the partial wetting regime. In contrast with the classic results for complete wetting,
we show that the presence of a moving contact line induces a wetting transition at a critical capillary
number that is contact angle dependent. At small displacement rates, the fluid-fluid interface deforms
slightly from its equilibrium state and moves downstream at a constant velocity, without changing its shape.
As the displacement rate increases, however, a wetting transition occurs: the interface becomes unstable
and forms a finger that advances along the axis of the tube, leaving the contact line behind, separated from
the meniscus by a macroscopic film of the viscous fluid on the tube wall. We describe the dewetting of the
entrained film, and show that it universally leads to bubble pinch-off, therefore demonstrating that the
hydrodynamics of contact line motion generate bubbles in microfluidic devices, even in the absence of
geometric constraints.
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The displacement of one fluid by another immiscible
fluid in small, confined geometries is an important process
in many natural and industrial settings, including water
infiltration into soil [1], enhanced oil recovery [2], ink-jet
printing [3], and microfluidics [4]. A particularly challeng-
ing aspect of describing fluid-fluid displacement in the
presence of a solid is the movement of the contact line
between the two fluid phases and the solid surface (i.e., the
three-phase contact line), which violates the no-slip boun-
dary condition commonly assumed in classical fluid
mechanics [5–10]. Recent experiments in quasi-2D geom-
etries [11,12] have demonstrated that the presence of
moving contact lines leads to a wealth of pattern formation
regimes. Because of the planar nature of these experiments,
however, the contact line could not be directly visualized.
A capillary tube provides an ideal experimental system

for studying fluid-fluid displacement, as it allows for
unobstructed visualization of the contact line dynamics.
While the displacement of a less viscous fluid by a more
viscous one has been extensively studied in the context of
capillary rise [13–16] and forced imbibition [17–19],
experiments on the displacement of a more viscous fluid
by a less viscous one have been relatively scarce. In his
seminal work, Taylor found that as the air invades into a
capillary tube initially filled with a perfectly wetting,
viscous fluid, it leaves a film of the defending fluid coating
the tube walls in its wake, whose thickness is controlled by
the finger velocity.
Here, we revisit the Taylor-Bretherton problem [20,21]

in the partial wetting regime by studying the invasion of air
into a capillary tube filled by a viscous fluid, and show that

contact line motion leads to novel flow behaviors. At low
displacement rates, the fluid-fluid interface moves down-
stream at a constant velocity, without changing its shape.
As the flow rate increases beyond a critical value, however,
a forced wetting transition occurs and a liquid film is
deposited on the tube wall. The deposited film is unstable
and dewets from the wall, leading to the formation of a
growing dewetting rim that ultimately causes bubble
pinch-off.
We conduct fluid-fluid displacement experiments in

precision-made borosilicate glass capillary tubes with inner
diameter d ¼ 750 μm. The capillary tube is open to the
atmosphere on one end and connected to a syringe pump on
the other. We fill the capillary tube with glycerol and then
withdraw the glycerol so that air displaces glycerol at
atmospheric pressure. Glycerol is partially wetting to the
capillary tubes, and has a static receding contact angle
θeq ¼ 25°� 5°. To alter the wettability of the capillary
tubes, we apply heat-assisted CVD of trichlorosilane in a
vacuum oven. Glycerol is less wetting to the silane-coated
capillary tubes, and it has a static receding contact angle
θeq ¼ 68°� 5°. We use each capillary tube only once to
ensure precise control over its wettability [22].
Figure 1 shows an experimental phase diagram of the

fluid-fluid interface profiles obtained under the two distinct
wettability conditions and a wide range of capillary
numbers Ca. We define Ca¼μU/γ, where μ¼1400mPas
is the viscosity of glycerol at 20 °C, U ¼ 4Q/ðπd2Þ is the
displacement velocity with Q being the imposed flow rate,
and γ ¼ 65� 2 mN/m is the glycerol-air interfacial
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tension. The left column shows the results corresponding to
the more wetting case (θeq ¼ 25°). At low Ca numbers, the
fluid-fluid interface deforms slightly from its equilibrium
state and travels downstream at a constant velocity, without
changing its shape [Figs. 1(a)–1(d)]. Deformation of the
fluid-fluid interface corresponds to a decrease in the
apparent contact angle, which reaches zero at a critical
capillary number Ca�. This value of Ca� marks the onset of
the wetting transition, beyond which the defending liquid is
forced to wet the tube walls as a thin film and the
air advances as a finger through the center of the tube
[Figs. 1(e)–1(j)]. We find that the onset of the wetting
transition is strongly dependent on the wettability of the
capillary tube: Ca� is over an order of magnitude larger in
the less wetting tube (Fig. 1, right column) compared to that
in the more wetting tube [Fig. 1(r) versus Fig. 1(e)].
The flow dynamics before the wetting transition

(Ca < Ca�) is governed by the two-way coupling between
the fluid-fluid interface shape and the flow field within each
fluid phase, as described by the Stokes equations. The
Laplace pressure jump across the fluid-fluid interface is
balanced by a normal viscous stress discontinuity. In the
framework of the generalized lubrication approximation
[23,24], we can use the local approximation of the Stokes
flow in a wedge, for which exact analytical solutions exist
[5], and greatly reduce the complexity of this problem to an

equation for the shape of the interface in the frame
comoving with the fluid-fluid interface [11]. While this
approximation is strictly valid for flow in a 2D setting, our
results show that it provides good estimates for flow in an
axisymmetric tube as well [22]. In this framework, we
arrive at the following differential equation describing the
interface shape:

d2θ
ds2

¼ 3Ca fðθ; RÞ
hðhþ 3λsÞ

; ð1Þ

where θ is the local interface slope, s is the arc length along
the interface, R ¼ μg/μl is the viscosity ratio between the
gas and liquid, and λs ¼ OðnmÞ is the slip length that
removes the moving contact line singularity [5]. In the limit
of a zero viscosity ratio (i.e., neglecting the air viscosity),
we have fðθ; 0Þ ¼ −ð2/3Þðsin θÞ3/ðθ − sin θ cos θÞ. We can
then describe the fluid-fluid interface shape deformation for
an arbitrary displacement rate by solving Eq. (1) using the
boundary conditions θjs¼0 ¼ θeq, hjs¼0 ¼ 0 at the contact
line, and θjs¼l ¼ π/2, hjs¼l ¼ d/2 at the tube center, where l
is the half-arc length of the interface. We find excellent
agreement between the experimental data and the theoreti-
cal predictions for the fluid-fluid interface shape before the
wetting transition (Fig. 2). The deformation of the interface

FIG. 1. Fluid-fluid interface of air (black) displacing glycerol (white) under increasing capillary numbers (top to bottom) in a wetting
capillary tube with θeq ¼ 25°� 5° (left column) and a weakly wetting capillary tube with θeq ¼ 68°� 5° (right column). The orange
arrows indicate the direction of interface displacement. At small Ca, the meniscus deforms slightly from its equilibrium shape, but
remains as a spherical cap. At large Ca, however, a wetting transition occurs and the invading air forms a single finger that advances
along the center of the tube, leaving a macroscopic trailing film of the viscous liquid on the tube walls. The critical capillary number
Ca� at which film formation occurs is controlled by the wettability [pane (r) versus pane (e)].
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from equilibrium is accompanied by a decrease in the
apparent contact angle θapp. At the point of the wetting
transition, θapp → 0, and the liquid becomes effectively
wetting to the walls, leaving an entrained liquid film
[Fig. 2(b)]. A similar behavior is also observed in the
forced wetting transition dynamics of receding contact lines
in unconfined systems when a fiber or plate is withdrawn
from a liquid bath. When the liquid is perfectly wetting to
the substrate, it immediately leaves a film behind, known as
the Landau-Levich film [25–27]. When the liquid is only
partially wetting, however, a critical plate velocity is
needed for the liquid to coat the substrate [9,28–30]. In
the reverse process of a forced wetting transition in
advancing contact lines, air is entrained, but at much
higher contact line velocities [31–38].
Below the wetting transition, the contact line moves with

the samevelocity as the interface tip. Above the critical point
(Ca > Ca�), however, the interface becomes unstable and a
finger is formed. In this regime, the contact line travels at a
constant, but smaller, velocity compared to that of the finger

tip, which gives rise to a macroscopic film of the viscous
defending fluid in the wake of the finger. It is remarkable
that, for Ca > Ca�, the contact line speed becomes inde-
pendent of Ca (Fig. 3). This indicates that the dynamics
downstream (near the finger tip) and upstream (close to the
contact line) become effectively decoupled. We further
observe that the contact line speed beyond the wetting
transition is strongly dependent on the wettability—the
contact line speed is more than an order of magnitude
higher in the less wetting tube compared to that in the more
wetting tube. These observations lead us to hypothesize that
the dynamics of the entrained filmnext to the contact line can
be analyzed independently of the finger tip dynamics.
The contact line behind the entrained film recedes from

the tube wall at a constant rate, leading to the formation of a
dewetting rim [see, e.g., Fig. 1(r)]. While the dynamics of
hole formation and the associated dewetting rims has been
extensively studied in the context of a thin film on flat
substrates [39–41], much less is known about the influence
of confinement on the dewetting dynamics. In particular, as
we show below, an important distinguishing factor in

(a)

(b)

FIG. 2. (a) Fluid-fluid interface profiles for Ca < Ca� in the less
wetting capillary tube (θeq ¼ 68°). As Ca increases, the fluid-
fluid interface deforms further from its equilibrium shape. The
symbols and dashed lines correspond to the experimental and
numerical results for Ca ¼ 0.003, 0.006, 0.012, respectively.
(b) Deformation of the fluid-fluid interface can be quantified by
the apparent contact angle θapp, which decreases asymptotically
towards zero as Ca approaches the critical capillary number Ca�.
This marks the onset of the wetting transition. The diamond and
circle symbols represent the experimental data and theoretical
predictions, respectively. The dashed lines above and below the
data points represent the experimental uncertainty.

FIG. 3. The contact line capillary number Cacl ¼ μUcl/γ as a
function of the macroscopic capillary number Ca ¼ μU/γ, where
Ucl and U are the contact line velocity and the displacement
velocity, respectively. The green and blue circles represent the
experimental measurements in the more wetting tube (θeq ¼ 25°)
and in the less wetting tube (θeq ¼ 68°), respectively. The
triangles show the corresponding theoretical predictions of
Eq. (2). The vertical dashed lines represent the critical capillary
numbers Ca� as predicted by Eq. (1). For Ca < Ca�, the fluid-
fluid interface deforms slightly while remaining a spherical cap,
and the contact line and the interface tip travel at the imposed
displacement velocity U ¼ 4Q/πd2 (gray dashed line). For
Ca > Ca�, the air forms a finger that advances along the center
of the tube, leaving behind a film of the more-viscous defending
liquid. The incomplete displacement of the defending liquid
results in an interface tip velocity that is larger than the imposed
displacement velocity. The contact line that trails behind travels
at a velocity that, remarkably, is independent of the imposed
flow rate. Instead, the contact line velocity is controlled by the
wettability of the capillary tube.

PHYSICAL REVIEW LETTERS 120, 084501 (2018)

084501-3



dewetting in confined geometries is that it leads to a pinch-
off instability in finite time.
Using the long-wave approximation, we derive a model

that describes the dynamics of the dewetting rim in an
axisymmetric capillary tube [22]:

∂h̃
∂ t̃ ¼

1

ð1 − h̃Þ
∂
∂z̃

�
Mðh̃Þ ∂

∂z̃ ½Πðh̃Þ − κ̃�
�
; ð2Þ

where h̃ is the film height measured from the tube wall,
Mðh̃Þ ¼ 1–4ð1− h̃Þ2 þ 3ð1− h̃Þ4 − 4ð1− h̃Þ4 ln ð1− h̃Þ is
the mobility, Πðh̃Þ ¼ 6ð1 − cos θeqÞðδ2/h̃3Þð1 − δ/h̃Þ is the
disjoining pressure with δ as the precursor film thickness,
and κ̃ ¼ 1/ð1 − h̃Þ þ h̃z̃ z̃ is the curvature. Here, all length
scales are nondimensionalized by the tube radius r, and the
dimensionless time is defined as t̃ ¼ ðγ/μÞt/ð8dÞ. In the
absence of the disjoining pressure, this model has similar-
ities to the class of models describing the evolution of films
coating cylindrical fibers or interior of tubes [26,42,43],
and in the thin-film limit simplifies to the models describ-
ing the Rayleigh-Plateau instability of thin liquid films in
cylindrical tubes [44,45]. It is interesting to note that, in this
limit, the model is equivalent to one describing the
Rayleigh-Taylor instability of a thin film on the underside
of a horizontal plate, where gravity plays the destabilizing
role of the azimuthal curvature in the tube [46].
The thickness of the entrained liquid film depends on the

finger tip velocity and has been determined using a
matched-asymptotic analysis by Bretherton [21], who
found that hf ∼ Ca2/3f as Ca → 0 with Caf ¼ μUf/γ rep-
resenting the finger capillary number. This scaling was
later empirically extended to higher capillary numbers:

hf/r ¼ 1.34Ca2/3f /ð1þ 1.34 × 2.5Ca2/3f Þ [47,48]. This rela-
tionship in combination with conservation of mass Q ¼
πðr − hfÞ2Uf determine both the entrained film thickness
and the finger velocity. We use this thickness as the
downstream boundary condition for Eq. (2).
The growth of the dewetting rim is well-captured by our

theoretical predictions [Fig. 4(a)]. At early times, the
growth of the dewetting rim is linear in time due to the
constant-speed retraction of the contact line (Fig. 3). At late
times, however, this mechanism is overtaken by the surface
tension driven Rayleigh-Plateau instability caused by the
azimuthal curvature, leading to an accelerated growth and
bubble pinch-off [Fig. 4(b)]. The continual movement of
the contact line repeats the process of ridge growth and
pinch-off, leading to the formation of a train of mono-
dispersed bubbles.
The pinch-off time depends on both the capillary number

and the wettability of the capillary tube [Fig. 4(b), inset].
For a given wettability, higher Ca leads to a faster pinch-off
due to the thicker film deposited on the tube wall
(hf ∼ Ca2/3f ). For a given Ca, a higher θeq leads to a faster
pinch-off due to the higher contact line velocity (Fig. 3) as
the contact line velocity of the dewetting rim scales as θ3eq
[40,41]. The large difference in contact line velocity, in
turn, leads to a pinch-off time that is over an order of
magnitude larger in the more wetting tube (θeq ¼ 25°)
compared to that in the less wetting tube (θeq ¼ 68°).
The dependence of the pinch-off time on the wettability

leads to a dependence of the generated bubble length Lb on
the contact angle: for a given flow rate, a higher contact
angle leads to faster pinch-off and therefore a smaller
bubble [Fig. 4(c)]. The impact of the flow rate on the bubble

(a) (b) (c)

FIG. 4. (a) Top: experimental images of the fluid-fluid interface profile just before and after pinch-off. Bottom: the dewetting rim
profile in the frame comoving with the receding contact line for Ca ¼ 0.096 and θeq ¼ 68°. The dashed and solid lines correspond to the
numerical and experimental data, respectively. (b) The maximum height of the rim h̃max grows linearly at early times and nonlinearly
accelerates close to the pinch-off time τ. The color-coded circles represent different experimental realizations of rim growth that led to
pinch-off, while the dashed line represents the theoretical prediction of Eq. (2). The inset shows the pinch-off time as a function of the
capillary number and the wettability condition, where the green and blue symbols correspond to θeq ¼ 25° and 68°, respectively. The
theoretical predictions (diamonds) match closely to the experimental data (circles) for θeq ¼ 68°. Given the limited experimental
window, we did not directly observe pinch-off in the more wetting tube since its τ is predicted to be over an order of magnitude larger
than that in the less wetting tube. (c) The bubble length Lb as a function of the capillary number and the wettability condition, where the
green and blue symbols correspond to θeq ¼ 25° and 68°, respectively. The theoretical predictions (diamonds) agree well with the
experimental data (circles) for θeq ¼ 68°. See the video [22].
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size is less straightforward. Higher Ca leads to a faster
travelling finger, which tends to increase the length of the
bubble, but also to a thicker entrained film, which reduces
the pinch-off time. The competition between these two
effects lead to a weak dependence of the bubble length on
the flow rate, leaving the wettability as the dominant factor
controlling the bubble size.
Pinch-off induced bubble formation has a wide range of

applications in microfluidic devices [4,49]. Most existing
microfluidic bubble generators rely on flow channels with
geometric constrictions [50–53] or an external cross flow
[54–57] to initiate bubble pinch-off [58–60]. Recently, it
has been shown that “superconfinement” can trigger a jet
instability from a moving interface in the absence of
geometric features, but through a mechanism that relies
on thermal fluctuations in systems with ultralow surface
tension [37]. Our experiments demonstrate that pinch-off
will occur in smooth, uniform capillaries as a result of
wettability-mediated contact line motion. We have shown
that wettability and flow rate control the pinch-off time, and
therefore can be used to tune the size of monodispersed
bubbles.
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Materials and Methods

We conduct fluid-fluid displacement experiments in precision-made borosilicate glass capillary tubes with inner diameter
d = 750 µm (Hilgenberg GmbH, Germany). We wash the capillary tubes with methanol and isopropyl alcohol, followed by
ultrasonic cleaning in a de-ionized water bath for 10 minutes. Following cleaning, we dry the capillary tubes in a convection
oven at 70 ◦C for 10 hours. The capillary tubes are wetting to glycerol after the washing process, having a static receding contact
angle θeq = 25 ± 5◦. To alter the wettability of the capillary tubes, we apply heat-assisted chemical vapor deposition (CVD)
of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma-Aldrich, USA) in a vacuum oven. The silane-coated capillary tubes are
less wetting to glycerol, having a static receding contact angle θeq = 68 ± 5◦. We use each capillary tube only once to ensure
precise control over its wettability.

The capillary tube is open to the atmosphere on one end and connected to a glycerol-filled glass syringe (1710-LT-SYR,
Hamilton Robotics, USA) on the other end. The glass syringe is secured to a programmable syringe pump (PHD 2000, Har-
vard Apparatus, USA). To achieve viscously unfavorable displacement, we withdraw glycerol from the capillary tube so that
air displaces glycerol. By withdrawing the incompressible glycerol instead of injecting the compressible air, we eliminate com-
pressibilty from our experimental system. The circular capillary tube is housed in a slightly larger square capillary tube filled
with glycerol, which has the same refractive index as borosilicate glass. The capillary tubes are illuminated with a collimated
fiber optic light (ACE1, SCHOTT, USA) and imaged with a CCD camera (acA3800, Basler, USA). We identify three distinct
regions in the experimental images: (i) bright sections of the image represent areas of the tube that are fully saturated with
glycerol—the incoming light passes through the capillary tubes without any refraction; (ii) sections with a bright line in the
middle represent areas of the tube that are fully saturated with air—the incoming light is refracted towards the center of the tube
due to its circular geometry; (iii) completely dark sections of the images represent areas of the tube that are partially saturated
with glycerol—the incoming light is refracted away by the fluid-fluid interface.
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FIG. 1. We study fluid-fluid displacement in circular capillary tubes. (a) The capillary tube is open to the atmosphere on one end and
connected to a syringe pump on the other. To achieve viscously unfavorable displacement, we withdraw glycerol from the capillary tube
so that air displaces glycerol. (b) We use precision-made borosilicate glass capillary tubes with inner diameter d = 750 µm. The circular
capillary tube is housed in a slightly larger square capillary tube filled with glycerol, which has the same refractive index as borosilicate glass.
The combination of a collimated light source and a glycerol-filled square borosilicate glass housing eliminates light refraction through the
capillary tube, which enables clear, undistorted visualization of the fluid-fluid interface via a CCD camera. We identify three distinct regions
in the experimental images: (i) bright sections of the image represent areas of the tube that are fully saturated with glycerol; (ii) sections with
a bright line in the middle represent areas of the tube that are fully saturated with air; (iii) completely dark sections of the images represent
areas of the tube that are partially saturated with glycerol.
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2D approximation in wetting transition

In an axisymmetric flow, the out-of-plane velocity component as well as gradients are zero. In this setting, therefore, one
can locally approximate the problem as flow in a 2D liquid wedge. The curvature across the interface, however, involves two
components in a capillary tube κ = h′′/(1 + h′2)3/2 + 1/((r − h)(1 + h′2)1/2), where the first term represents the in-plane
curvature and the second represents the out-of-plane component, which is neglected in Equation 1 of the manuscript (primes
represent derivatives with respect to z, i.e. h′ = dh/dz). The slope close to the contact line follows the Cox–Voinov scaling,
h′3 = θ3eq + 9Ca lnx/λs, such that the in-plane curvature close to the contact line scales as h′′ ∼ 3Ca/(θ2eqx). The out-of-plane
curvature scales as the inverse of the tube radius, 1/r. For the in-plane curvature to be the dominant term, we need to have
Ca� (θ2eqx)/(3r). Taking x ≈ λs = O(nm) and r ≈ 100µm, we get an estimate of Ca� 10−6 for the less wetting capillary
tube (θeq = 68◦). This is consistent with the range of capillary numbers we have explored, indicating that the out-of-plane
curvature is negligible compared to the in-plane component. Quantitatively, we compare the two curvature components at the
critical capillary number corresponding to the Figure 2 of the manuscript (Fig. 2a). The in-plane curvature is the dominant term
of the total curvature in the vicinity of the contact line. Figure 2b further shows the calculations of the apparent contact angle
and its insensitivity to the presence or absence of the out-of-plane curvature in Equation 1 of the manuscript. These observations
therefore support using the 2D approximation for this problem.
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FIG. 2. (a) The in-plane (solid line), and out-of-plane (dashed line) curvature components corresponding to the critical capillary number in
the less wetting tube as shown in Figure 2 of the manuscript (θeq = 68◦). (b) The apparent contact angle calculated with (red squares) and
without (blue circles) considering the out-of-plane curvature term in Equation 1 of the manuscript.

Modeling the dewetting rim using the long-wave approximation in a cylindrical geometry

Consider a liquid film of height h coating the walls of a cylindrical capillary tube of radius r. The fluid flow inside the
film is governed by the axisymmetric Navier-Stokes equations in a cylindrical domain, ρDu

Dt = −∇P + µ∇2u, where ρ is the
liquid density, D/Dt = ∂/∂t + u · ∇ is the material derivative, u = (u,w) are the fluid velocity components in the radial
and axial directions, respectively; P represents the liquid pressure, and µ is the liquid viscosity. We consider the liquid to be
incompressible, such that∇·u = 0. These governing equations of motion are subject to the no slip and no penetration boundary
conditions on the walls, zero shear stress at the liquid-air interface, and normal stress jump across the interface due to the Laplace
pressure.

We non-dimensionalize the governing equations by the following scalings: ỹ = y/r, z̃ = z/r with y and z as the coordinates
normal and tangential to the walls of the tube, ũ = u/U0, w̃ = w/W0, t̃ = (γ/µ)t/(16r), P̃ = εPr/µW0, where W0 =
Q/π(r2 − (r − h)2), U0 = εW0, ε = r/L, with L as a characteristic length scale, and Q as a characteristic flow rate. We can
then simplify the non-dimensional governing equations using the long-wave approximation, i.e. assuming ε � 1 and εR � 1,
where R = ρW0r/µ is the Reynolds number. In the simplified form of the Navier-Stokes equations, the liquid pressure turns
out to be constant across the liquid film and only a function of the axial direction z (see Refs. 41 and 45). Using this observation,
we can integrate the z component of the momentum to find w̃ = (1− ỹ)2P̃z̃/4 + c1 ln (1− ỹ) + c2, where the constants c1 and
c2 can be determined using the no-slip boundary condition on the wall and zero shear stress on the liquid-air interface.

The liquid pressure is set by the Laplace pressure jump across the interface, and is augmented by the disjoining pressure in
the vicinity of the contact line, where the film height becomes nanometric (see Refs. 9, 10, 41 and 45):

P̃z̃ =
∂

∂z̃

(
Π(h̃)− κ̃

)
, (1)

with Π(h̃) as the disjoining pressure, and κ̃ = 1/(1− h̃) + h̃z̃z̃ as the curvature.
We can then integrate the axial component of the liquid velocity across the film thickness to obtain the liquid flux through the

film, q̃(z̃, t̃) = 2π
∫ h̃

0
w̃(1− ỹ)dỹ, which after replacing the velocity simplifies to q̃ = −M(h̃)P̃z̃ with the mobility:

M(h̃) = 1− 4(1− h̃)2 + 3(1− h̃)4 − 4(1− h̃)4 ln (1− h̃) (2)
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Using conservation of mass, we then have:

∂

∂t̃

[
π(1− (1− h̃)2)

]
+
∂q̃

∂z̃
= 0, (3)

Replacing the liquid flux in this equation, we then arrive at

(1− h̃)
∂h̃

∂t̃
− ∂

∂z̃

(
M(h̃)P̃z̃

)
= 0, (4)

which is the Eq. 2 of the manuscript.


