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a b s t r a c t 

The injection and storage of freshwater in saline aquifers for the purpose of managed aquifer recharge is 

an important technology that can help ensure sustainable water resources. As a result of the density dif- 

ference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to 

the spatial salinity distribution, and therefore experiences transient changes. The effect of variable density 

can be quantified by the mixed convection ratio, which is a ratio between the strength of two convection 

processes: free convection due to the density differences and forced convection due to hydraulic gra- 

dients. We combine a density-dependent flow and transport simulator with an ensemble Kalman filter 

(EnKF) to analyze the effects of freshwater injection rates on the value-of-information of transient pres- 

sure data for saline aquifer characterization. The EnKF is applied to sequentially estimate heterogeneous 

aquifer permeability fields using real-time pressure data. The performance of the permeability estimation 

is analyzed in terms of the accuracy and the uncertainty of the estimated permeability fields as well as 

the predictability of breakthrough curve arrival times in a realistic push-pull setting. This study demon- 

strates that injecting fluids at a rate that balances the two characteristic convections can maximize the 

value of pressure data for saline aquifer characterization. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Accurate estimates of hydrogeological parameters in subsur-

face flow and solute transport models are critical for making pre-

dictions and managing aquifer systems. The process of estimat-

ing model input parameters, such as permeability and porosity,

from observational data is often referred to as an inverse prob-

lem. Over the past few decades, various inversion methods have

been proposed for groundwater modeling, and current methods

are advanced enough to handle stochastic, nonlinear, and large-

dimensional problems ( Carrera et al., 2005; Fienen et al., 2008;

Hochstetler et al., 2016; McLaughlin and Townley, 1996; Oliver and

Chen, 2011; Yeh, 1986; Zhou et al., 2014 ). The ensemble Kalman

filter (EnKF) is one such method that has gained popularity for

aquifer characterization because it is easy to implement and can

efficiently incorporate real-time data from a monitoring system,

allowing for dynamic data assimilation ( Aanonsen et al., 2009;

Zhou et al., 2014 ). The first application of the EnKF to subsur-
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ace modeling problems was in petroleum engineering ( Geir et al.,

005; Gu and Oliver, 2005; Nævdal et al., 2002 ); it has since

een successfully extended to groundwater applications ( Chen and

hang, 2006 ). 

The first groundwater application of the EnKF was in us-

ng groundwater flow information, such as hydraulic head data,

o estimate permeability fields ( Chen and Zhang, 2006; Hen-

ricks Franssen and Kinzelbach, 2008; Tong et al., 2010 ). However,

n a constant density groundwater flow, pressure data alone are

ften not sufficient to accurately estimate permeability fields; ac-

urate estimation requires time-dependent pumping tests ( Cardiff

t al., 2013; 2012; Li et al., 2005 ) or additional data sets, such as

racer transport data ( Kang et al., 2016b; Lee and Kitanidis, 2014;

i et al., 2012a; Zhang et al., 2014 ). The EnKF has been success-

ully used to incorporate multiple data sets for permeability char-

cterization in constant density groundwater flow ( Li et al., 2012a;

iu et al., 2008; Schöniger et al., 2012; Xu and Gómez-Hernández,

016; Xu et al., 2013; Zhou et al., 2011 ). However, there are few

nverse modeling studies of heterogeneous permeability fields in a

cenario with variable-density groundwater flow and solute trans-

ort; this scenario is important for coastal aquifers experiencing

http://dx.doi.org/10.1016/j.advwatres.2017.08.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2017.08.019&domain=pdf
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eawater intrusion and for managed aquifer recharge (MAR) appli-

ations in saline aquifers ( Bastani et al., 2010; Kang et al., 2017b;

ool et al., 2015 ). 

As seawater intrusion and freshwater shortages intensify, MAR

s becoming an attractive technology for many coastal saline

quifers worldwide ( Simmons, 2005 ). The coupling between fluid

ressure and the spatial salinity distribution is significant in

ariable-density flow because the spatial salinity distribution de-

ermines the spatial fluid density distribution ( Massmann et al.,

0 06; Simmons, 20 05; Simmons et al., 2001; Ward et al., 2007;

erner et al., 2013; Zuurbier et al., 2014 ). This coupling between

he salinity-controlled, density-driven flow and the salinity evolu-

ion leads to a time-dependent pressure; consequently, transient

ressure data can be more informative for estimating aquifer per-

eability than in density-invariant cases ( Carrera et al., 2010 ). Al-

hough many studies have shown the density effects on groundwa-

er flow ( Beinhorn et al., 2005; LeBlanc et al., 1991; Müller et al.,

010; Shakas et al., 2017; Vereecken et al., 20 0 0 ), the variable-

ensity effect on the value of pressure data has not been system-

tically studied. The first attempt to exploit this property for saline

quifer characterization was made by Kang et al. (2017b ), who esti-

ated the heterogeneous permeability field of a saline aquifer us-

ng fluid pressure data from an observational network consisting

f multiple wells with pressure gauges at multiple depths. For a

xed freshwater injection rate, the authors showed that the qual-

ty of the inverse estimation does indeed improve as the density

ontrast between injected freshwater and the initial saline ground-

ater increases. 

Ward et al. (2007) showed that the significance of variable-

ensity effects during injection depends on the mixed convection

atio, which is a ratio between two characteristic types of convec-

ion: free convection due to density contrast, and forced convec-

ion due to a hydraulic gradient. For a given saline aquifer, typically

here is little control over free convection because the site-specific

mbient groundwater salinity determines the density contrast be-

ween injected freshwater and the ambient groundwater. However,

orced convection can be controlled by human operations such as

njection; thus the mixed convection ratio can be engineered by

hanging the freshwater injection rate. 

The goal of this study is to systematically investigate how the

reshwater injection rate impacts the usefulness of transient pres-

ure data for saline aquifer characterization. To simulate a saline

quifer system where flow occurs due to the density difference be-

ween the ambient saline groundwater and injected freshwater, we

eveloped a 2D density-dependent flow and transport model. An

nKF with covariance localization and inflation was then employed

o sequentially estimate heterogeneous aquifer permeability fields

sing real-time pressure data. The performance of the permeabil-

ty estimation was analyzed in terms of the accuracy and the un-

ertainty of the estimated permeability fields, and in terms of the

bility of the model to predict breakthrough curve arrival times in

 push-pull flow configuration not used during the estimation. The

ain contribution of this study is in elucidating the density effects

n the value-of-information in pressure data over wide range of

ixed convection regimes. To the best of knowledge, this is also

he first study applying EnKF to a saline coastal aquifer system. Al-

hough this analysis was conducted for a coastal saline aquifer do-

ain, the results are widely applicable to aquifer management and

ther subsurface applications in which density-driven flow is im-

ortant, such as CO 2 storage and sequestration, seawater intrusion,

nd MAR in brackish/saline aquifers. 

In Section 2 we describe the theoretical framework of mixed

onvection analysis for variable-density aquifer problems. In

ection 3 we present the numerical model for simulating variable-

ensity flow and transport, followed by a description of the

nsemble-based data assimilation algorithm of the EnKF with co-
ariance localization and inflation. In Section 4 we present three

ynthetic case studies with different types of permeability fields

nd monitoring networks under various mixed convection regimes.

inally, we summarize our conclusions and guidelines for future

ork in Section 5 . 

. Mixed convection analysis 

We examine a standard aquifer domain known as Henry’s prob-

em ( Henry, 1964 ), which has been used to develop analytical

nd numerical approaches for considering variable-density effects

 Abarca et al., 2007; Abd-Elhamid and Javadi, 2011; Frind, 1982;

uyakorn et al., 1987; Lee and Cheng, 1974; Pool and Carrera, 2011;

astogi et al., 2004; Segol et al., 1975 ). Fig. 1 shows a schematic il-

ustration of the aquifer domain and boundary conditions. 

The aquifer is initially fully saturated with saline groundwater.

reshwater is injected from the domain’s left boundary, while a hy-

rostatic pressure distribution is imposed on the right boundary. In

he aquifer, fluid flow is initiated by the hydraulic gradient caused

y the freshwater injection; this flow is the forced convection. For

orced convection, a characteristic velocity can be defined as 

 forced = 

Q 

Bφ
, (1) 

here φ is the porosity, B is the aquifer depth in the z direction,

nd Q is the freshwater injection rate into a cross section of height

 and unit thickness. The density difference between the injected

reshwater and the ambient saline groundwater also contributes to

he fluid flow; this flow is the free convection. For free convection,

 characteristic velocity can also be defined as 

 free = 

k �ρg 

μφ
, (2) 

here k is the mean permeability, �ρ is the density difference

etween the injected freshwater and initial groundwater, g is the

ravitational constant, and μ is the dynamic viscosity of the fluid. 

Ward et al. (2007) found that the importance of density effects

epends on the interplay between forced and free convection. They

ntroduced the mixed convection ratio, M , a dimensionless number

efined as the ratio of the characteristic velocity of free convec-

ion due to density contrast to the characteristic velocity of forced

onvection due to freshwater injection: 

 = 

v free 

v forced 

= 

k �ρgB 

μQ 

. (3) 

Mixed convective regimes can be characterized according to

he mixed convection ratio. When M ∼ 1, free and forced convec-

ion are balanced and the two characteristic velocities are approx-

mately equal. Forced convection dominates the flow in the sys-

em when M � 1, and free convection dominates when M � 1. The

ilt of the freshwater-saltwater interface increases with increases

n the mixed convection ratio. Note that when there is no density

ifference between the injected and ambient fluids, M = 0 . 

For a given saline aquifer, we do not have control over free con-

ection which is determined by the site-specific ambient ground-

ater salinity. Therefore, the freshwater injection rate determines

ow important the effects of density variations are, as represented

y the mixed convection ratio. In order to systematically inves-

igate how the freshwater injection rate impacts the usefulness

f transient pressure data for heterogeneous permeability estima-

ion, we use pressure data to estimate heterogeneous permeability

elds in different mixed convective regimes. In the next section,

e describe a forward numerical model for simulating variable-

ensity flow and transport, and we develop a data assimilation

odel based on the EnKF to sequentially estimate heterogeneous

ermeability fields. 
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Fig. 1. Schematic illustration of the confined saline aquifer domain with boundary and initial conditions; this represents a typical coastal aquifer system. Freshwater is 

injected at the left boundary, where we impose a constant-flux boundary condition; a seawater hydrostatic boundary condition is imposed at the right boundary. 

Table 1 

Model input parameters. 

Parameter Symbol Value Unit 

Aquifer length L 200 [m] 

Aquifer thickness B 50 [m] 

Grid size �x, �y, �z 1, 1, 1 [m] 

Mean permeability E [ln k ] −23 [ln (m 

2 )] 

Variance or ln k σ 2 
ln k 

0.25, 0.5, 1, 2, 3 [ln 2 (m 

2 )] 

Spatial correlation model (variogram) Gaussian a , spherical b 

Effective porosity φ 0.3 [-] 

Longitudinal dispersivity βL 1 [m] 

Transverse dispersivity βT βL / 10 = 0 . 1 [m] 

Fluid dynamic viscosity μ 10 −3 [kg/m/s] 

Freshwater density ρ0 10 0 0 [kg/m 

3 ] 

Molecular diffusivity D 0 10 −9 [m 

2 / s ] 

Fresh water concentration c 0 0 [kg/kg] 

Ambient saline water concentration c 1 0.035 [kg/kg] 

Number of ensembles N e 300 [-] 

Covariance inflation factor ω 1.01 [-] 

a Gaussian variogram: γ = 1 − exp 
( −3 h 2 

a 2 

)
, where h and a denote lag distance and range, re- 

spectively. 

b Spherical variogram: γ = 

{[
1 . 5( h 

a 
) − 0 . 5 h 

a 

3 ]
, for h ≤ a 

1 , otherwise 
. The range a is 30m directed 20 °

from the x-axis and 15 m directed 110 ° from the x-axis. 
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3. Methods 

3.1. Numerical model of variable-density groundwater flow and 

transport 

Fig. 1 shows a schematic for the synthetic field, and model in-

put parameters are given in Table 1 . We inject freshwater into a

saline aquifer from the left boundary, simulating a fully screened

well. The domain size is 200 m × 50 m, and we assign no-flow

boundary conditions at the top and bottom boundaries to simulate

a confined aquifer. When the ratio of the Rayleigh number ( Ra ),

which compares buoyancy and dispersive forces, to the density

difference ratio, α = 

ρmax −ρ0 
ρ0 

, is much greater than one ( Ra 
α � 1 ),

the variable density groundwater flow and transport can be de-

scribed using the Boussinesq approximation ( Landman and Schot-

ting, 2007 ); this approximation is valid for realistic scenarios in

confined saline MAR sites. The governing equations for variable-

density groundwater flow and transport with the Boussinesq ap-

proximation are ( Elenius et al., 2012; Hidalgo and Carrera, 2009;

Hidalgo et al., 2012; Kang et al., 2017b; Landman and Schotting,

2007; Riaz et al., 2006; Szulczewski and Juanes, 2013 ): 

∇ · u = 0 (4a)

u = − k 

μ
(∇p − ρ(c) gz ) (4b)

φ
∂c 

∂t 
+ ∇ · (u c − φD eff∇c) = 0 . (4c)

These governing equations consist of the continuity equation,

Darcy’s law, and the advection–dispersion equation, where k is the
ermeability field, ρ is the fluid density, and D eff is the effective

ispersion tensor. The Scheidegger–Bear dispersion model is used

o obtain the dispersion tensor: φD 

i j 
eff

= (φD 0 + βT | u | ) δi j + (βL −
T ) 

u i u j 
| u | , where D 0 is the molecular diffusivity, | u | is the magni-

ude of the Darcy velocity, βL is the longitudinal dispersivity, and

T is the transverse dispersivity. Density is a linear function of con-

entration, ρ = ρ0 + 

∂ρ
∂c 

(c − c 0 ) where ∂ρ
∂c 

= 700 [kg / m 

3 ] and ρ0 is

he density of freshwater ( Voss and Souza, 1987 ). c is the con-

entration of solute as a mass fraction of dissolved salt in water

mass of dissolved salt per unit mass of fluid), and c 0 = 0 [kg/kg]

or injected freshwater and c 1 = 0 . 035 [kg/kg] for ambient saline

roundwater. The aquifer is initially fully saturated with saline

roundwater, and we start to inject freshwater at t = 0 . 

The boundary conditions are given by: 

 · n (x = 0 , z, t) = v forced (5a)

 · n (x, z = 0 or B, t) = 0 (5b)

p(x = L, z, t) = ρsea gz (5c)

here n is the outward unit normal to the boundary. We inject

reshwater at a constant flow rate from the left boundary and as-

ign a seawater hydrostatic pressure boundary condition at the

ight boundary ( Voss and Souza, 1987 ). For all simulations, the

odel domain is discretized into a grid of 200 × 50 cells; each

ell is a square element with dimensions �x = �z = 1 m . We solve

or the pressure field using a finite volume method with a two-

oint flux approximation (TPFA), then solve for the concentration

eld using a finite volume method with an upwind scheme; we
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Table 2 

Mixed convection ratio M and corresponding injection rates Q . 

M [-] Q [m 

2 /d] Duration [day] 

0 38125.7 0.06 

0.001 38125.7 0.06 

0.01 3812.6 0.6 

0.1 381.3 6 

1 38.1 60 

5 7.6 300 

10 3.8 600 
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hen integrate in time using an explicit forward Euler scheme

 LeVeque, 2002 ). The detailed model input parameters are given

n Table 1 . 

We varied the mixed convection ratio, M = 0 − 10 , by varying

he freshwater injection rate ( Table 2 ) to investigate its impact on

he inversion results. M = 0 corresponds to a case with no density

ontrast between the injected water and the groundwater, which

esults in steady-state groundwater flow. To confirm the generality

f our inversion results, we study log-normal permeability fields

ith different levels of heterogeneity and two different variogram

odels (Gaussian and spherical). 

.2. Inverse estimation with ensemble Kalman filter 

We apply an ensemble Kalman filter (EnKF) to estimate the het-

rogeneous permeability fields by assimilating real-time pressure

ata from a spatially sparse monitoring system. The EnKF is based

n the Kalman filter, which is an optimal solution to a recursive

ayesian update problem for a linear, stochastic state–space sys-

em with additive Gaussian errors ( Kalman, 1960 ). When a system

s linear, an exact propagation of the state covariance matrix in

ime is possible, so the optimal solution provides analytical formu-

as for updating the mean and covariance of the system state vec-

or. However, most Bayesian update problems, including subsurface

ow and transport modeling, are nonlinear; thus the covariance

atrix cannot be analytically updated. The ensemble Kalman filter

EnKF) is a Monte-Carlo implementation of the Kalman filter. The

nKF circumvents the nonlinearity problem by replacing the state

ovariance with a sample covariance; this is commonly called an

nsemble covariance and is computed from ensemble realizations

f the state vector ( Evensen, 1994; 20 03; 20 09 ). 

The EnKF has been successfully applied to groundwater prob-

ems. Nowak (2009) provided a theoretical basis, derived from the

rinciples of unbiasedness and minimum error variance, for using

he EnKF to estimate geostatistical model parameters that are con-

itional on transient model state variables. Li et al. (2012a ) applied

he EnKF assimilating concentration and piezometric head data to

stimate not only model parameters such as hydraulic conductiv-

ty and porosity but also state variables such as pressure and con-

entration. This allows for assessing the predictability of flow and

ransport behavior during the analysis. The application of the EnKF

as also been successfully extended to more general cases such as

on-Gaussian systems ( Li et al., 2012b; Schöniger et al., 2012; Xu

nd Gómez-Hernández, 2016; Xu et al., 2013; Zhou et al., 2011 ). 

The EnKF algorithm starts from an initial ensemble of aquifer

odels generated from a priori geostatistical assumptions. Each

quifer model is represented by a state vector Y , comprising the

odel parameters and the state variables. Because pressure data

re used to update the modeled permeability, the state vector in

ur study is composed of the permeability, pressure, and salinity

t each grid cell, Y = [ ln k 

T , p 

T , c T ] T . The ensemble of all state vec-

ors is collected in a matrix as 

 = 

[
Y 1 , Y 2 , . . . , Y N e 

]
, (6)
here N e denotes the total number of ensemble members. The

nKF begins the assimilation procedure when the first set of ob-

ervation data becomes available. The EnKF then updates the en-

emble matrix Y to match the measurements at every assimilation

tep by using the Kalman formula to correct the ensemble matrix.

his update for each ensemble member is given by 

 

u 
j = Y f 

j 
+ C 

f 
Y 

H 

T 
(

HC 

f 
Y 

H 

T + C d 

)−1 (
d obs + ε j − H Y f 

j 

)
. (7)

Here j = [0 , . . . , N e ] is the index of the individual ensemble

ember, the superscript u indicates the updated value, and the su-

erscript f indicates a forecasted value. The observation available at

he current assimilation step is d obs , C d is the covariance matrix of

he measurement noise, and ε j is an observation error with zero

ean and covariance C d . H is a matrix operator that selects pre-

icted variables from the state vector, C Y H 

T is the cross-covariance

etween all the state variables and the predicted observations, and

C Y H 

T is the auto-covariance of the predicted observations. The

ovariance of the state vector is approximated using the standard

tatistical formula 

 

f 
Y 

= 

1 

N e − 1 

∑ 

(
Y f 

j 
− Ȳ f 

)(
Y f 

j 
− Ȳ f 

)T 

, (8) 

here Ȳ f denotes the mean of the state vectors. The update step

n Eq. (7) can yield unphysical parameter values, such as salt con-

entrations outside the range 0–1. When that happens, the unphys-

cal concentration values are reset to the closest bound, 0 or 1. The

tate vectors updated by Eq. (7) are simulated forward in time to

he next data assimilation point; this is the forecast step. Then, the

redicted ensemble matrix is again updated using the data through

q. (7) . This recursive procedure continues until all the measure-

ents have been assimilated. Fig. 2 shows a flow chart of this se-

uential data assimilation via the EnKF. 

For large-scale inverse problems, the covariance in Eq. (8) can

e repeatedly underestimated over a sequence of updates if

he ensemble size is small ( Furrer and Bengtsson, 2007; Hen-

ricks Franssen and Kinzelbach, 2008 ). This problem can be allevi-

ted by covariance inflation which is implemented by multiplying

he deviation of the state vector from the ensemble mean by an

mount, ω, larger than one ( Anderson, 2007; Hamill et al., 2001 ):

 

f, infl
j 

= ω ×
(

Y f 
j 

− Y 
f 
)

+ Y f 
j 
. (9)

In this study, we applied one percent inflation ( ω = 1 . 01 ), as in

amill et al. (2001) . 

Small ensemble sizes also often result in spurious correlations

etween state components that are physically far apart. To avoid

his problem, localization schemes have been proposed ( Chang

t al., 2010; Houtekamer and Mitchell, 2001; Sun et al., 2009; Tong

t al., 2012; Xu et al., 2013 ). The key idea is to taper the covari-

nce matrix according to the distance between grid points. Many

unctions to reduce the sample covariance between spatially dis-

ant components have been proposed ( Bergemann and Reich, 2010;

ampbell et al., 2010; Chen and Oliver, 2010; Constantinescu et al.,

007; Devegowda et al., 2010; Gaspari and Cohn, 1999; Greybush

t al., 2011; Houtekamer and Mitchell, 2001; Nan and Wu, 2011 ).

e use the fifth-order function of Gaspari and Cohn (1999) , which

eplaces the ensemble Kalman filter update in Eq. (7) with the fol-

owing localized ensemble Kalman filter (LEnKF) update: 

 

u 
j = Y f 

j 
+ 

[ (
τ (d) ◦ C 

f 
Y 

)
H 

T 
] [ 

H 

(
τ (d) ◦ C 

f 
Y 

)
H 

T + C d 

] −1 

×
(

d obs + ε j − H Y f 
j 

)
, (10) 
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Fig. 2. Flow chart showing data assimilation via the ensemble Kalman filter. 

Fig. 3. Flow and transport simulation results for different values of the mixed convection ratio M . The 16 upper panels show the evolution of the injected freshwater plume 

for different pore volumes injected of freshwater (PVI); the colormap indicates the salinity of the water. The lower four panels show the normalized pressure measurements 

as a function of PVI (which is a proxy for time) at three different observation locations; these locations are indicated on the upper panels. The pressure values are normalized 

by the initial pressure value, and the variation of the normalized pressure value is largest at M = 1 . The bottom panels also include, as insets, the breakthrough curves 

(concentration as a function of PVI) at each of the three wells. 
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where ◦ is the Schur product. The tapering function τ ( d ) is defined

as 

τ (d) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

− 1 
4 
( d 

r 
) 5 + 

1 
2 
( d 

r 
) 4 + 

5 
8 
( d 

r 
) 3 − 5 

3 
( d 

r 
) 2 + 1 , 0 ≤ d ≤ r, 

1 
12 

( d 
r 
) 5 − 1 

2 
( d 

r 
) 4 + 

5 
8 
( d 

r 
) 3 + 

5 
3 
( d 

r 
) 2 

−5( d 
r 
) + 4 − 2 

3 
( d 

r 
) −1 , r ≤ d ≤ 2 r, 

0 , 2 r ≤ d , 

(11)

where d is the distance between two points and 2 r is the range

beyond which the tapering function yields zero correlation. In this

study, we apply the LEnKF with covariance inflation to estimate

heterogeneous permeability fields. 

4. Results and discussion 

4.1. Impact of variable-density flow on pressure data 

We first consider the effect of variable density on the dynam-

ics of the injected freshwater. Fig. 3 shows the results of forward-

model simulations in a heterogeneous permeability field. Concen-

tration maps at different values of the pore volume injected (PVI)

are shown for different values of the mixed convection ratio, M .
he mixed convection ratio is varied by changing the freshwater

njection rate ( Table 2 ). As Fig. 3 shows, the mixed convection ra-

io has a significant impact on both plume spreading and the time

volution of the fluid pressure data. For cases dominated by free

onvection ( M > 1), the interface between the injected freshwater

nd the ambient saline water tilts significantly; freshwater cannot

weep the entire domain because free convection dominates the

uid flow. At M = 1 , density effects are still evident, but the in-

ection rate is high enough that the freshwater sweeps the whole

omain. In cases where forced convection dominates, the effect of

ensity differences diminishes, and injected freshwater effectively

weeps the entire domain. 

We find that the transient fluid pressure behavior is very sensi-

ive to variable-density effects; this implies that the freshwater in-

ection rate might control how informative pressure measurements

re. When there is no density contrast between the injected and

efending fluids, the pressure field is insensitive to the salt concen-

ration field; it stays constant in time. For M > 0, we clearly observe

hanges in pressure over time due to the density-driven flow. Note

hat the relative pressure change for M = 1 is significantly larger

han for M = 0 . 01 . This is because the free convection component

hat causes the pressure change becomes dominant as the mixed

onvection ratio increases. However, the relative pressure change

ecomes smaller at M = 10 compared to the M = 1 case because
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Fig. 4. The reference (true) log -permeability field (top panel) and locations of pressure measurements in the low heterogeneity case study (bottom panel). The log - 

permeability field is assumed to be multi-Gaussian with a log-permeability mean E 
[

ln k 
]

= −23 and a log-permeability variance σ 2 
ln k 

= 0 . 25 . The field is defined on a 

200 × 50 grid with cells of size 1 m × 1 m. There are 24 measurement points, whose log -permeability values are assumed to be known and equal to the mean value 

E 
[

ln k 
]

= −23 . The spatial correlation structure is modeled by a Gaussian variogram.. 

Fig. 5. Conceptual model for transport predictability tests showing initial and boundary conditions. The case study is constructed to simulate a seawater intrusion scenario. 

We impose a seawater hydrostatic pressure boundary condition at the right boundary, and freshwater is produced at a constant rate at the left boundary. 
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f the poor sweeping efficiency at high M . Qualitative observations

f the forward simulation results indicate that the pressure field is

ost sensitive at M ≈ 1. 

The coupling between the pressure field and the spatial salinity

istribution causes nontrivial pressure changes; these changes oc-

ur before the injected fluid reaches the pressure sampling point.

his shows that changes in the freshwater–saline groundwater in-

erface influence the pressure distribution globally as well as lo-

ally. The degree of pressure change is larger when the freshwater

weeps through the observation point. Having established that the

ransient pressure field is affected by variable-density flow and the

reshwater injection rate, the key question is whether this pres-

ure field can provide information about subsurface permeability

tructures and, if so, how the value of the pressure data can be

ptimized. 

.2. Inversion results 

To investigate how variable-density flow affects the use of tran-

ient pressure data, we compare the permeability fields estimated

ia EnKF for different freshwater injection rates to the known

eference fields. Fig. 4 shows an example of the reference log -

ermeability field along with the locations of pressure observa-

ions points in a sparse monitoring system. There are eight obser-

ation wells with multilevel groundwater monitoring system that

ive pressure data at three discrete levels ( Einarson and Cherry,
002; Pickens et al., 1978 ). We use measured pressure values at

hese 24 data sampling points during a freshwater injection exper-

ment to estimate the heterogeneous permeability field. 

The quality of the permeability estimation is rigorously ana-

yzed using four different metrics. The first inverse estimation error

easurement is based on Euclidean distance ( l 2 -norm), 

 = 

∥∥ln k 

true − ln k 

∥∥, (12) 

here k 

true is a vector of the true permeability values at every grid

ell and k is a vector of the mean values of the updated ensemble

f permeability fields. 

Second, the inverse estimation is assessed by mapping accuracy,

hich is the fraction of correctly estimated grid cells with regard

o the true permeability field ( Yoon and McKenna, 2012 ). To define

he criteria for the correct estimation, we first calculate the dif-

erence between maximum and minimum values of the true log -

ermeability as δln k true = max ( ln k 

true ) − min ( ln k 

true ) . Then, a log -

ermeability estimate of a grid cell is counted as correct when the

ifference between the true and estimated log -permeability values

s less than a certain threshold, which (for example) can be 10 per-

ent of the difference δln k true , as 0 . 1 δln k true . Note that the mapping

ccuracy evaluates the fraction of accurately estimated grid cells

ithin an estimated permeability field, while the aforementioned

easure based on Euclidean distance assesses the overall similar-

ty between permeability fields. 
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Fig. 6. Panel (a): the true permeability field in the low heterogeneity case study. Panels (b-d): mean of the estimated permeability fields after the final update for the cases 

with β = 1 and M = 0 . 01 (b), M = 1 (c), and M = 10 (d). Panel (e): standard deviation of the initial ensemble of permeability fields. Panels (f–h): standard deviation of the 

estimated permeability fields after the final update for the cases with β = 1 and M = 0 . 01 (f), M = 1 (g), and M = 10 (h). 

Fig. 7. The reduced error as a function of the mixed convection ratio M for three 

different values of β in the low heterogeneity case study. The reduced error is de- 

fined as e initial −e 
e initial , where e initial is the error of the initial permeability ensemble. This 

measure represents the accuracy of the estimated permeability field, which is max- 

imized at the balanced mixed convection ratio of one. 
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Third, we analyze the uncertainty of the inverse estima-

tion. The posterior covariance of the log-permeability field ob-

tained after the pressure data d obs, t at time t is assimilated via

Eq. (10) can be approximated as Cov ( ln k | d obs ,t ) = 

1 
N e −1 

∑ 

( ln k 

u 
j 
−

ln k 

u )( ln k 

u 
j 
− ln k 

u ) T , where ln k 

u is the mean of the updated en-

semble of log-permeability fields. The uncertainty of the inverse

estimation can then be quantified as 

�t = tr [ Cov ( ln k | d obs ,t )] , (13)
here the trace provides a scalar measure of the posterior variance

f the updated log-permeability ( Neuman et al., 2012 ). Note that

he value of additional measurements d obs, t in reducing the un-

ertainty can be quantified as �t − �t−1 , where �t−1 is the trace

f the updated covariance matrix in the previous time window

 Dai et al., 2016 ). 

Finally, we analyze what in practice is the most important qual-

ty of an estimated permeability field: its ability to faithfully pre-

ict flow and transport under different flow scenarios. The esti-

ated permeability fields are used to simulate a seawater intru-

ion scenario; the aquifer domain is initially filled with freshwater

nd then invaded with seawater from the right boundary ( Fig. 5 ).

he salinity arrival times at the pumping well on the left boundary

re measured and compared with the true arrival times obtained

rom the known permeability field. 

We now present three synthetic case studies with different

ypes of permeability fields (different levels of heterogeneity and

wo different variogram models) and monitoring networks. 

.2.1. Case 1: low heterogeneity 

The first case study assumes a log -permeability field follow-

ng a Gaussian variogram with mean E 
[

ln k 
]

= −23 ; this corre-

ponds to approximately k = 10 5 millidarcy. The variance of the

og-permeability is (σ 2 
ln k 

= 0 . 25) , which is similar to those of

ow-heterogeneity natural geological formations such as Borden,

ntario (σ 2 
ln k 

= 0 . 29) and Cape Cod, Massachusetts (σ 2 
ln k 

= 0 . 24)

 Garabedian et al., 1991; Hess et al., 1992; Mackay et al., 1986 ).

ote that we assume that the ln k is multi-Gaussian with pre-

nown spatial statistics such as the mean and covariance. There

re 24 measurement points, whose log -permeability values are as-

umed to be known and fixed to the mean value of E 
[

ln k 
]

= −23 .

he assumption of the known values of the log-permeability at

he measurement points is applied by enforcing the initial en-

emble state vectors to have the known value at the correspond-

ng well points. The enforcement is carried out by the condi-

ional sequential Gaussian simulation ( Remy et al., 2009 ). Such a
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Fig. 8. The mapping accuracy of the finally updated ensemble mean of log -permeability fields in the low heterogeneity case study as a function of the mixed convection 

ratio M for three different criteria (10%, 15%, 20%). The mapping accuracy is the fraction of correctly estimated grid cells with regard to the true permeability field. A 

log -permeability estimate of a grid cell is counted correct when the difference between the true and estimated log -permeability values is less than a certain threshold. 

Fig. 9. The time evolution of the normalized uncertainty measure, �t 

�0 
, for M = [0 , 0 . 01 , 1 , 10] and β = [0 . 2 , 1 , 5] as a function of pore volume injected (PVI) for the low 

heterogeneity case study. Ten data assimilation steps are conducted for each case, and the largest uncertainty reduction is for the balanced mixed convection ratio of one. 

c  

m  

m  

1  

s  

w  

1  

u  

t  

fi

 

[  

L  

m  

a  

p  

i  

a  

i  

t  

F

 

i  

s  

c  

K  

s  

p  

i  

i  

n  

t

 

t  

i  

e  

t  
onstruction of the permeability fields with conditional data at

easurement points is used assuming laboratory or in-situ per-

eability measurements are available ( Kitanidis and Vomvoris,

983; Xu and Gómez-Hernández, 2015; Zhou et al., 2011 ). The

patial correlation structure is modeled by a Gaussian variogram

ith a range of 30 m in the direction 20 ° from the x-axis and

5 m in the direction 110 ° from x-axis. The same statistics are

sed to generate 300 initial permeability ensemble members. Note

hat the initial ensemble does not contain the true permeability

eld. 

For various values of the mixed convection ratio, M =
0 , 0 . 001 , 0 . 01 , 0 . 1 , 1 , 5 , 10] , and dispersivity, β = [0 . 2 , 1 , 5] , the

EnKF is applied to assimilate the measured pressure data and esti-

ate the permeability field. The total amount of injected water for

ll cases is fixed to be 2287 m 

3 , which represents 76 % of the total

ore volume of the domain. The injection rate for each value of M

s summarized in Table 2 . There are ten updates for each scenario,

nd each update occurs when 10 % of the total freshwater has been

njected since the previous update. At the time of each update,
 F  
he pressure measurements from the monitoring points shown in

ig. 4 are assimilated. 

The mean and standard deviation of the estimated permeabil-

ty fields after the last update for M = [0 . 01 , 1 , 10] and β = 1 are

hown in Fig. 6 . Qualitatively, the M = 1 case shows the most ac-

urately estimated permeability field with the lowest uncertainty.

ang et al. (2017b ) reported that inversion estimates performed

ignificantly better when variable-density effects are present com-

ared to constant density cases. This is because the pressure field

s steady in the case of constant density, thereby providing lim-

ted information for permeability estimation. However, they did

ot report the decreased estimation accuracy at M = 10 compared

o M = 1 that is apparent in Fig. 6 . 

We rigorously assess the performance of permeability estima-

ion using the four measures discussed in Section 4.2 . We normal-

ze the error estimates, e , in Eq. (12) : e initial −e 
e initial 

, where e initial is the

rror of the initial permeability ensemble. The normalized error es-

imates can be interpreted to be the reduced error, as shown in

ig. 7 . The performance of the inversion improves as the mixed
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Fig. 10. The results of the transport predictability tests for three different values of β in the low heterogeneity case study. The arrival time mismatch, 
| t true −t predict | 

t true 
, is minimized 

at a balanced mixed convection ratio of one. The results are consistent for arrival times of four different concentration values: 2.5%, 5%, 10%, and 20% of the seawater 

concentration. 

Fig. 11. The reference (true) log -permeability field and locations of pressure measurements in the high heterogeneity case study. The log -permeability field is assumed to 

be multi-Gaussian with a log-permeability mean E 
[

ln k 
]

= −23 and a log-permeability variance σ 2 
ln k 

= 1 . The field is defined on a 200 × 50 grid with cells of size 1 m × 1 m. 

There are 24 measurement points whose log -permeability values are assumed to be known and equal to the mean value E 
[

ln k 
]

= −23 . The spatial correlation structure is 

modeled using a spherical variogram. 
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convection ratio increases because the variable-density effects in-

crease the value of the pressure data. When density variations are

important, the pressure field is coupled with the spatial salinity

distribution via Eq. (4b) ; this implies that the transient pressure

measurements also contain salt transport information ( Kang et al.,

2017b ). However, the error reduction begins to decrease when the

mixed convection ratio increases above one; this corresponds to

cases where the free convection is larger than the forced con-

vection, and the interface between the injected freshwater and

the initial saline water tilts significantly due to the density con-

trast between the fluids (see Fig. 3 ). The tilting prevents the in-

jected freshwater from sweeping the whole aquifer domain, and

density-driven flow occurs only in the upper areas that the fresh-

water plume passes through. Consequently, pressure change orig-

inating from the displacement of saltwater by freshwater occurs

only in a restricted area. This diagnosis is also confirmed by the

estimated mapping accuracy shown in Fig. 8 . The mapping ac-

curacy increases as the variable-density effects increase, and de-
reases after reaching the maximum at the balanced mixed con-

ection regime ( M = 1 ). 

The values of the uncertainty measure, �t , computed from

q. (12) at every assimilation time point for each value of M and

, are normalized by the uncertainty of the initial ensemble, �0 .

ig. 9 shows the evolution of the normalized uncertainty mea-

ures as a function of PVI. For all combinations of M and β , the

rst update gives the largest reduction in uncertainty. For density-

nvariant cases ( M = 0 ), the uncertainty decreases and the curves

lateau earlier than the cases where significant variable-density ef-

ects exist. The largest and continued uncertainty reduction is ob-

erved for the balanced mixed convection regime ( M = 1 ), imply-

ng that transient pressure data continuously provides useful in-

ormation for uncertainty reduction. When we further increase the

ixed convection ratio, the trend reverses and the uncertainty re-

uction is not as large. 

We also evaluated the practical performance of the inversion

n terms of transport predictions. For this purpose, we designed
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Fig. 12. Panel (a): the true permeability field in the high heterogeneity case ( σ 2 
ln k 

= 1 ) study. Panels (b-d): mean of the estimated permeability fields after the final update 

for the cases with β = 1 and M = 0 . 01 (b), M = 1 (c), and M = 10 (d). Panel (e): standard deviation of the initial ensemble of permeability fields. Panels (f-h): standard 

deviation of the estimated permeability fields after the final update for the cases with β = 1 and M = 0 . 01 (f), M = 1 (g), and M = 10 (h). 
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Fig. 13. The reduced error as a function of the mixed convection ratio M for three 

different values of β in the high heterogeneity case ( σ 2 
ln k 

= 1 ) study. The reduced 

error is defined as e initial −e 
e initial , where e initial is the error of the initial permeability en- 

semble. This represents the accuracy of the estimated permeability field, which is 

maximized at a balanced mixed convection ratio of one. 
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h  

t  
 saltwater intrusion experiment; the aquifer domain is initially

ully saturated with freshwater and a saltwater intrusion is sim-

lated by producing freshwater from the well on the left boundary

t a constant rate of 38 m 

3 /day ( Fig. 5 ). The pumping allows for

6% of the total pore volume of the domain to be withdrawn in

0 days, and the breakthrough curves of salinity at the pumping

ell are measured. We measure breakthrough curves for all cases

 M = [0 , 0 . 001 , 0 . 01 , 0 . 1 , 1 , 5 , 10] and β = [0 . 2 , 1 , 5] ). The difference

etween the true arrival time t true and the predicted time t predict is

ormalized by the true arrival time as 
| t true −t predict | 

t true 
, and the results

re shown in Fig. 10 . The predictability of arrival times is maxi-

ized at M = 1 for all cases, which is consistent with the accuracy

nd uncertainty reduction analysis shown above. 

.2.2. Case 2: high heterogeneity 

We conduct the same analysis for permeability fields with

igher degrees of heterogeneity ( σ 2 
ln k 

up to 3) to determine

hether our identification of an optimum mixed convection

egime for permeability estimation can be generalized. As a rep-

esentative case, we first present the σ 2 
ln k 

= 1 case. The spatial cor-

elation structure is modeled using a spherical variogram, which

enerates fields that are less smooth than with a Gaussian vari-

gram model. Fig. 11 shows the true log -permeability field along

ith the monitoring system. 

The mean and standard deviation of the estimated permeability

elds for M = [0 . 01 , 1 , 10] and β = 1 are shown in Fig. 12 . Qualita-

ively, the M = 1 case again has the most accurately estimated per-

eability field with the least uncertainty. We confirmed with the

our measures that the value of the pressure data is maximized

t the balanced mixed convection regime also for σ 2 
ln k 

= 1 with

he spherical variogram case. We present, for brevity, only the er-

or reduction and the time evolution of the normalized uncertainty

easure. The estimated error reductions for different values of the

ixed convection ratio and dispersivity are shown in Fig. 13 . Sim-

lar to the low-heterogeneity case, the error reduction of the in-

erse estimation initially improves as the mixed convection ratio
ncreases to M = 1 ; then it decreases as the mixed convection ratio

ecomes larger than one. Fig. 14 shows the evolution of the nor-

alized uncertainty measure introduced in Eq. (13) . For all values

f M , the first update gives the biggest reduction in uncertainty. As

een in the low heterogeneity case, the largest and most contin-

ed uncertainty reduction occurs for the balanced mixed convec-

ion regime ( M = 1 ). 

We also performed the inverse modeling for higher values of

eterogeneity ( σ 2 
ln k 

up to 3) and found that the inverse estima-

ion is always optimum around M ≈ 1. In Fig. 15 , we show the
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Fig. 14. The time evolution of the normalized uncertainty measure, �t 

�0 
, for M = [0 , 0 . 01 , 1 , 10] and β = [0 . 2 , 1 , 5] as a function of pore volume injected (PVI) for the high 

heterogeneity case ( σ 2 
ln k 

= 1 ) study. Ten data assimilation steps are conducted for each case, and the largest uncertainty reduction is for the balanced mixed convection ratio 

of one. 

Fig. 15. Differences, or im provements, of the error reduction and the estimation uncertainty between the optimum mixed convection regime (M = 1) and the density- 

invariant case (M = 0) as a function of σ 2 
ln k 

. (a-b) the improvements when the Gaussian variogram is used. (c-d) the improvements when the spherical variogram is used. 

The estimation improvement decreases as heterogeneity increases. 
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differences (or improvements) of the error reduction and the

estimation uncertainty between the optimum mixed convection

regime (M = 1) and the density-invariant case (M = 0) for differ-

ent levels of heterogeneity. We clearly observe that the estimation

improvement decreases as heterogeneity increases for both Gaus-

sian and spherical variogram cases. This might be explained by the

fact that the heterogeneity causes preferential flow that dominates

flow behavior ( Fiori and Jankovic, 2012; Kang et al., 2016a; 2017a;

a  
ung, 1990 ). This implies that the variable-density effect on flow

ehavior will decrease as heterogeneity increases. 

.2.3. Case 3: other settings 

We provide an additional case study to demonstrate that our

ndings are also valid for different settings of the observation net-

ork. We test a moderately heterogeneous case with σ 2 
ln k 

= 0 . 5

nd E 
[

ln k 
]

= −23 , as shown in Fig. 16 . There are 16 measurement
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Fig. 16. The reference (true) log -permeability field and locations of pressure measurements. The log -permeability field is assumed to be multi-Gaussian with a log- 

permeability mean E 
[

ln k 
]

= −23 and a log-permeability variance σ 2 
ln k 

= 0 . 5 . The field is defined on a 200 × 50 grid with cells of size 1 m × 1 m. There are 16 measurement 

points (a third less than the previous cases). The log -permeability values at these points are assumed unknown . The spatial correlation structure is modeled using a spherical 

variogram. 

Fig. 17. Panel (a): the true permeability field in the moderate heterogeneity case study. Panels (b-d): mean of the estimated permeability fields after the final update for the 

cases with β = 1 and M = 0 . 01 (b), M = 1 (c), and M = 10 (d). Panel (e): standard deviation of the initial ensemble of permeability fields. Panels (f-h): standard deviation of 

the estimated permeability fields after the final update for the cases with β = 1 and M = 0 . 01 (f), M = 1 (g), and M = 10 (h). 
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oints, a third less than in the previous case studies. Unlike the

revious case studies, the log -permeability values at the measure-

ent points are assumed unknown . The spatial correlation struc-

ure is modeled using a spherical variogram. 

Fig. 17 shows the mean and standard deviation of the esti-

ated permeability fields. Qualitatively, the M = 1 case again has

he most accurately estimated permeability field with the least un-

ertainty. The optimality of the balanced mixed convection regime

or maximizing the value of the pressure data is also confirmed by

he four performance measures, and we present the error reduc-

ion in Fig. 18 . This confirms that the optimality of the balanced

ixed convection regime is valid for the case with fewer monitor-

ng points. 
We also performed a sensitivity analysis to assess the effects of

he covariance inflation and localization. Three scenarios of the co-

ariance treatments are considered: 1. No covariance treatments; 2.

ith inflation ( ω = 1 . 01 ) but no localization; 3. With localization

 r = 50 m ) but no inflation. The estimated error reductions for the

hree different scenarios are shown in Fig. 18 . The covariance lo-

alization improves the estimation accuracy, whereas the improve-

ents by the covariance inflation are insignificant. This implies

hat the ensemble size of 300 is large enough to avoid the ensem-

le collapse, while circumventing spurious correlations between

istant points by the covariance localization improves the estima-

ion accuracy. The results confirm that the estimation accuracy is



26 S. Yoon et al. / Advances in Water Resources 109 (2017) 14–28 

Fig. 18. The reduced error as a function of the mixed convection ratio M for three 

different scenarios of covariance treatments: 1. No covariance treatments; 2. With 

covariance inflation ( ω = 1 . 01 ); 3. With covariance localization ( r = 50 m ). The re- 

duced error represents the accuracy of the estimated permeability field. The result 

shows that the accuracy is maximized at a balanced mixed convection ratio regard- 

less of the covariance treatments. 
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maximized at the balanced mixed convection regime ( M = 1 ) re-

gardless of the covariance treatments. 

5. Conclusions 

We have demonstrated that freshwater injection rates in saline

aquifers significantly influence the value of pressure data for

aquifer characterization. The fact that the pressure distribution is

coupled with the density gradient means pressure measurements

are more informative in variable density cases than in constant

density. However, when density-driven free convection overrides

forced convection, pressure data become less useful for aquifer

characterization because the interface between injected freshwa-

ter and ambient saline water tilts significantly. This tilt prevents

the injected freshwater from sweeping the entire aquifer domain,

and variable-density flow occurs only in a limited area, making the

pressure data less informative. An important finding is that the

value of pressure data can be maximized when the two types of

convection are balanced, corresponding to a mixed convection ratio

of one. This finding is rigorously shown for different types of per-

meability fields and monitoring networks using four different mea-

sures: error reduction, mapping accuracy, estimation uncertainty,

and transport predictability. 

This study shows that mixed convection regimes should be con-

sidered in saline aquifer characterization. More specifically, this

work suggests the possibility of improving aquifer characterization

by enforcing a balanced mixed convection regime in the aquifer

system via human operations such as managing the freshwater in-

jection rate. In real field applications, the mixed convection regime

can be modified by varying the density of the injection fluid

( Shakas et al., 2017 ) or by varying the injection rate. Although our

analysis was conducted for the coastal aquifer domain, the impli-

cations of this work might have wide applicability for aquifer man-

agement, CO 2 storage and sequestration, seawater intrusion, and

MAR in coastal areas. 

In this study, we only investigated the impact of variable-

density effects on the use of pressure data. However, other types

of measurements, such as concentration measurements or produc-

tion rates from wells, can also be considered. An evaluation of the
se of different types of data in saline aquifer characterization will

e the subject of future work. This line of research will allow us to

etermine the ideal combination of data and effective monitoring

rotocols for aquifers with density-dependent flow. 
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