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Two sides of a fault: Grain-scale analysis of pore pressure control on fault slip
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Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal
pressurization) and industrial operations involving subsurface fluid injection and extraction for the development
of energy and water resources. However, the effect of pore pressure change on the stability and slip motion of
a preexisting geologic fault remains poorly understood; yet, it is critical for the assessment of seismic hazard.
Here, we develop a micromechanical model to investigate the effect of pore pressure on fault slip behavior. The
model couples fluid flow on the network of pores with mechanical deformation of the skeleton of solid grains.
Pore fluid exerts pressure force onto the grains, the motion of which is solved using the discrete element method.
We conceptualize the fault zone as a gouge layer sandwiched between two blocks. We study fault stability in
the presence of a pressure discontinuity across the gouge layer and compare it with the case of continuous
(homogeneous) pore pressure. We focus on the onset of shear failure in the gouge layer and reproduce conditions
where the failure plane is parallel to the fault. We show that when the pressure is discontinuous across the fault,
the onset of slip occurs on the side with the higher pore pressure, and that this onset is controlled by the maximum
pressure on both sides of the fault. The results shed new light on the use of the effective stress principle and the
Coulomb failure criterion in evaluating the stability of a complex fault zone.
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I. INTRODUCTION

Geological faults form as a result of the failure of rock in
the Earth’s crust, and slip along an existing fault can generate
hazardous earthquakes. It has long been known that man-made
fluid pressure changes due to factors such as impoundment
of reservoirs, surface and underground mining, withdrawal
of fluids and gas from the subsurface, and injection of fluids
into underground formations are capable of reactivating pre-
existing faults and thus inducing earthquakes [1–5]. One of the
well-known early examples is the 1960s Denver Earthquake
series, which was induced by a deep waste fluid disposal well
at the Rocky Mountain Arsenal [1]. Not only can pore pressure
be affected by anthropogenic processes, it can also be altered in
natural geologic systems. For example, earthquake rupturing
along a highly localized shear zone can generate enough
heat to cause local temperature rise and the accompanying
pore pressure increase due to expansion of pore fluid. This
so-called thermal expansion process has been proposed as one
of the key mechanisms to explain dynamic fault weakening
[6–8]. Despite the important control pore pressure has on slip
and faulting behavior, the detailed dynamics and mechanisms
involved in fault reactivation remain poorly constrained [9,10].

Fault zones can have very complex internal structures,
including the continuity of the fault rocks, the distribution and
segmentation of slip surfaces, and the orientation, distribution,
and connectivity of subsidiary faults and fractures [11]. Flow
and transport properties of fault zones can vary significantly
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from site to site, depending on the internal structure. A fault
zone typically consists of two substructures: the fault core
and the damage zone. The primary characteristic of fault
cores is grain size reduction due to mechanical pulverization.
The hydraulic properties of the fault core (gouge materials)
can be very different from the fault damage zones and the
undamaged host rock. Fault gouge is usually composed of
fine particles and fragments. In many cases, the permeability
of fault cores can be several orders of magnitude lower than
that of a reservoir rock [12] and often acts as an impermeable
boundary for fluid flow. In addition, hydraulic connectivity
across the fault may be lost, for example, due to clay smearing
or juxtaposition of a relatively high permeability reservoir
rock with a low permeability rock from another formation
[13]. Juxtaposition of two different rock types can also lead
to difference in frictional strength on the two sides of a
fault.

Numerical modeling of coupled flow and geomechanics is
a valuable tool in assessing seismic hazard in large-scale reser-
voir systems. The effective stress principle together with the
Mohr–Coulomb failure criterion has been applied in numerical
modeling to explain fault reactivation due to fluid injection
and to predict fault stability [see, e.g., 14–19]. Reactivation of
faults may occur if the shear stress on the fault exceeds the
fault strength which is governed by the frictional properties
and the effective normal stress. It is unclear, however, how
conventional Mohr–Coulomb theory should be applied to the
case where there is a substantial pressure difference across the
fault zone due to fault cores that are considered impermeable
over the time scale of interest. In their coupled multiphase
flow and geomechanics model, Jha and Juanes [17] proposed
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to calculate the fault pressure in the failure criterion to be the
maximum of pressures on both sides of the fault, which is
represented by a 2D interface element in a 3D mesh. If the
fault pressure is taken as the arithmetic average across the fault
or is obtained from volume element based pressure, a coupled
modeling analysis may predict a higher fault strength at any
given time and result in a delayed onset of fault reactivation
(than that with the maximum pressure), which, consequently,
can lead to erroneous estimations of maximum fluid injection
rate and volume in practical situations. Therefore, it is critical
to carefully examine the role of pressure discontinuity in
controlling fault stability.

Theoretical studies based on the continuum approach [see,
e.g., 20,21] have addressed the issue of pore pressure discon-
tinuity due to existence of material with different hydraulic
parameters across the fault. Considering a spontaneously
propagating rupture along an interface between dissimilar
poroelastic materials, these studies have provided important
insights on how pore pressure change induced by an imposed
fast slip between dissimilar poroelastic materials can influence
the stability of earthquake ruptures. In addressing the important
issue of fault dynamic weakening by flash heating and thermal
pressurization, Rice [7] ruled out the possibility that shear
deformation in the gouge is distributed across the gouge during
dynamic earthquake slip.

Fault gouge can be considered a dense granular material
whose deformation is controlled by the collective motion of the
constituent particles. Continuum models of deforming granular
material rely on constitutive laws in which the formulation of
continuum deformation requires a projection scheme to relate
the continuum deformation to the underlying motion of the
grains [22]. In contrast, models based on the discrete element
method (DEM) treat individual particles explicitly and have
effectively captured emergent phenomena, such as shearing
banding and stick-slip in deforming granular materials [see,
e.g., 22–30]. In this study, we adopt a DEM framework,
and instead of imposing slip, we simulate emergence of
slip around a fault gouge layer with two interfaces with the
bounding material. Numerical simulations—mostly based on
DEM [e.g., 25–27,29,31,32]—have been used to understand
the fundamental role gouge material plays in determining fault
frictional properties and strength. These previous numerical
studies on faulting or shearing, however, have not considered
the effect of pore fluid pressure coupling. We present evidence,
based on a grain-scale analysis, in support of the choice of using
the maximum fluid pressure across the fault for evaluation of
the failure criterion.

In short, accurate prediction of fault stability requires
detailed understanding of the role of pore pressure. In this
work, we develop a micromechanical model at the grain scale
and perform one-way coupled simulations to investigate the
effect of pore pressure on fault slip behavior. We consider
a block–gouge system where the block represents the fault
walls. We study fault stability in the presence of a pressure
discontinuity across the gouge layer, and compare it with cases
of homogeneous pore pressures. We focus on the onset of
shear failure along the block–gouge interfaces, and provide
new insights on the use of the effective stress principle and
the Coulomb failure criterion in evaluating the stability of a
complex fault zone.

II. METHODS

We develop a three-dimensional micromechanical model,
which is based on the discrete element method (DEM) coupled
with a pore network flow (PNF) model, illustrated in Fig. 1.
In the DEM, the solid phase is represented by spherical grains
and contact interaction among them. The spatial arrangement
of grains forms an interconnected void space, from which a
pore network, comprised of pore bodies and pore throats, is
extracted through tetrahedral (weighted Delaunay) tessellation
of grain centroids [see Figs. 1(a) and 1(b)]. The pore body
volumes and the pore throat conductances are calculated based
on the void space geometry. The fluid in the pore network inter-
acts with the solid grains, giving rise to hydro-geomechanical
coupling. On the one hand, the pore fluid exerts pressure forces
onto the grains, resulting in modified force balance and motion
of the grains as compared to that in the dry system. On the other
hand, deformation of the solid phase through rearrangement of
the grains can also change the pore pressure and the pore net-
work topology. Our model updates the tetrahedral tessellation,
and hence the pore network (including its pore volumes and
pore throat conductances), regularly during a simulation. The
frequency of this updating procedure can be preset according
to the time-step size or a certain threshold displacement of
the grains. The PNF model solves the pressure evolution
based on Darcian flow in the pore network and calculates the
pressure forces onto the solid particles. Compared with other
DEM-based poromechanical coupling approaches, including
microscale models where fluid pressure is resolved below
the pore scale [e.g., 33–35] and continuum-scale models in

FIG. 1. Schematic of the coupled hydromechanical model based
on the discrete element method (DEM) and a pore network flow (PNF)
model. (a) Pore network in a five-grain setup (transparent yellow
spheres); the pores are shown by purple spheres and the throat by a
green cylinder; the edges of the tetrahedral tessellation are shown with
red lines. Each pore is composed of the void space within a tetrahedron
whose four nodes are the centers of the surrounding grains. Each throat
is defined by the open area within a triangular face of a tetrahedron.
The pore volumes and throat conductances are calculated based on
local geometry. (b) Grain pack (cut in half and rendered in 50% opaque
yellow color) and accompanying pore network. (c) Schematic of the
couplings in the DEM–PNF model.
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which flow is solved on a coarse grid at the scale of multiple
grains [e.g., 36], the PNF approach [37–39] is advantageous
in that it avoids the high computational cost in the microscale
models and the inability to accurately describe the fluid–solid
interaction at the particle scale in the continuum-scale models.
Below, we describe the numerical model in detail.

A. Discrete element method

Our three-dimensional (3D) micromechanical model cou-
ples the DEM and a pore network fluid flow model. The
modeling concept is based on the idea of two interacting,
overlapping networks: one for the solid matrix and the other
for the pore fluid [37,38]. In DEM, spherical grains are
numerically generated and the mechanics of the grain motions
are solved. The translational motion of each grain in the system
is governed by Newton’s second law:

mi ẍi =
∑

j

Fc
j +

∑
k

Fp
k, (1)

where mi is the mass of ith grain whose position vector is xi ,
Fc

j is the force applied on contact j of the grain, and Fp
k is the

pressure force applied by kth pore surrounding the grain. The
pressure force on ith grain by kth pore is calculated by

Fp
k =

∫
∂�i

k

pkn ds, (2)

where ∂�i
k is the fluid–solid interface for ith grain and kth

pore (with pore pressure pk), and n is the unit vector pointing
from the centroid of the pore to the centroid of the grain. The
rotational motion of each grain is described by

Ii θ̈ i =
∑

j

Mc
j , (3)

where Ii is the tensor of moments of inertia of grain i with the
vector of rotation angles θ i around its centroid, and Mc

j is the
moment acting on grain i through contact j . The pressure force
points from the centroid of a pore to the centroid of a grain; it
does not induce moments on grains. We use the PFC3D code
[40] to solve the equations of motion simultaneously for all
grains in the system and to integrate these equation in time.

While fluid pressure influences grain motions through the
application of pressure forces, the movement of grains deforms
the individual pores, thus altering the pore pressure distribu-
tion. At the same time, the pore pressure evolution is subject to
Darcian flow under the prevailing hydrodynamic conditions.
To solve the fluid pressure with the above interactions taken
into account, we develop a 3D numerical model for pore
network flow (illustrated with Figs. 1 and 2), which is coupled
to PFC3D. This model is described in detail below.

B. Pore network flow model

As a discretization of the pore space, a pore network is
extracted from each numerically generated granular pack (see
Fig. 1). We perform a 3D weighted Delaunay triangulation
in which each vertex is the centroid of a grain and each
tetrahedron contains a pore (Fig. 2).

Using basic geometry, we calculate the volume of each pore
Vi by subtracting the volume of the solid part V s

i from the

FIG. 2. Illustration of triangulation, pore network, and pore
throat. (a) pore network in a five-grain setup; the pores are shown
by purple spheres and the throat by a green cylinder; the edges of the
tetrahedral tessellation are shown in red. Each pore is composed of the
void space within a tetrahedron whose four nodes are the centers of
the surrounding grains. The two pores have volumes Vi and Vj , and
pressures pi and pj . Each pore throat having conductance Cij and
length lij is defined as the connection between two neighboring pores
(Vi and Vj ) through the void space. (b) The pore throat conductance
Cij is calculated based on the minimum cross-sectional area A

pt
ij on

a triangular face between tetrahedron i and j (the shaded area), and
the perimeter P

pt
ij associated with A

pt
ij .

volume of a tetrahedron V tet
i :

Vi = V tet
i − V s

i . (4)

The volume of the solid part V s
i is calculated as

V s
i =

4∑
j=1

V sc
j −

6∑
k=1

V so
k , (5)

where V sc
j is the volume of the spherical cone of each grain

j (j = 1,2,3,4) inside the tetrahedron, and
∑6

k=1 V so
k is the

total solid overlap volume of the six possible grain–grain
contacts. Note that we do not consider the overlap volume
shared by more than two spheres because this overlap scenario
does not occur in our simulations owing to the fact that only
very small overlap distances are induced by realistic external
forces. The pore throat length lij is taken as the distance
between the centroids of tetrahedron i and tetrahedron j .
The pore throat conductance Cij is calculated based on the
minimum cross-sectional area A

pt
ij on a triangular face between

tetrahedron i and j , the perimeter P
pt
ij associated with A

pt
ij , and

the fluid viscosity η as [38,41]

Cij = 3A
pt
ij

3

5ηP
pt
ij

2 . (6)

The pore volumes, throat conductances, and throat lengths
are all functions of the grain positions and radii, and are thus
subject to change when the solid phase deforms. In our model,
we update these parameters on a regular basis at a selected time
interval.

When local accumulated grain displacement becomes large,
i.e., comparable to the grain radius, the initial triangulation
may no longer faithfully represent the pore space constrained
by the new grain positions. For example, this occurs when
one grain slips past another. Using the initial triangulation for
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pressure solution and force calculations may bring a source
of error. To minimize the potential error from the deteriorated
representation of the pore space by the pore network due to
large local deformation, we update the triangulation regularly
during a simulation.

Fluid mass balance over an pore Vi gives the following
equation:

δVi

δt
+ V w

i βf

δpi

δt
= −

∑
j

qij , (7)

where δVi and δpi are the pore volume change (due to matrix
deformation) and the pore pressure change after a time step δt ,
respectively, V w

i is the volume of fluid in pore i (V w
i = δVi in

the case of pore network), βw is the compressibility of the fluid,
and qij is the flux out of the pore domain to pore j through
pore throat (i,j ). The flux qij is calculated as

qij = Cij

pi − pj

lij
. (8)

In Eq. (7), the two terms on the left-hand side are analogous
to the storage term in the diffusion equation of compressible
flow in porous media. The pore pressure solution of Eq. (7) with
Eq. (8) plugged in can be obtained by using two approaches.
The first is an explicit scheme [38] with the fluxes calculated
using pressure gradients from the last time step, giving the
following equation to update fluid pressure in each pore:

δpi = 1

βwVi

⎛
⎝−δVi −

∑
j

qij δt

⎞
⎠. (9)

Note that numerical stability of the explicit pressure solution
[Eq. (9)] imposes a time-step limit, and thus the time step
should be carefully chosen in a numerical simulation.

In this study, we propose the second approach, which
employs an implicit finite-volume scheme:

δVi

δt
+ Viβw

pn+1
i − pn

i

δt
= −

∑
j

Cij

pn+1
i − pn+1

j

lij
, (10)

where the superscripts n and n + 1 represent the current time
step and the time step to be advanced, respectively. The
implicit scheme enjoys unconditional stability in terms of
time-stepping. Writing Eq. (10) for all pores results in a system
of linear equations for pore pressure in matrix form:

�pn+1 = b, (11)

with entries λi,j in � and bi in b calculated, respectively, by

λi,j =

⎧⎪⎨
⎪⎩

Viβw

δt
+ ∑4

k=1
Cik

lik
if i = j

−Cij

lij
if i �= j

(12)

and

bi = −δVi

δt
+ Viβwpn

i

δt
. (13)

Pressure solutions obtained using the explicit and the
implicit schemes take into account both the pressure diffusion
and the effect of deformation of the solid matrix obtained from
DEM. Thus, this fluid flow formulation coupled with the DEM

framework captures the two-way hydromechanical coupling
under single-phase flow.

C. Contact behavior

Two rheological models for contact behavior are used in
this study. The first is a linear elastic–frictional contact law
described in more detail in Cundall and Strack [42]; this contact
model is used for contacts on gouge particles. In this contact
model, the contact force is produced by linear springs with
constant normal and shear stiffnesses, kn

c and ks
c. The linear

springs cannot sustain tension—the contact law is deactivated
when the surface gap gs > 0, and slip is accommodated by
imposing a Coulomb limit on the tangential force using a
constant friction coefficient μ. The second, which is used for
contacts between the block particles, is the linear contact bond
model described in more detail in Potyondy and Cundall [43].
This contact rheology provides the behavior of a linear elastic
and either bonded or frictional interface that carries a force. The
interface does not resist relative rotation and is either bonded
or unbonded. If bonded, the behavior is linear elastic until
the strength limit is exceeded and the bond breaks, making
the interface unbonded. If unbonded, the behavior is linear
elastic-frictional—equivalent to the first contact model.

D. Block–gouge system

Gouge materials play an important role in earthquake
nucleation. They have been extensively studied experimentally
[e.g., 10,44–49], often with the primary interest of examining
their frictional properties and slip instability characterized by
the rate and state friction laws [50,51]. A recent experimental
study [49] reported that increasing pore-fluid pressure leads to a
decrease in the internal friction coefficient of carbonate gouge
sample, but the mechanisms behind this observation remain
unexplained. Geller et al. [52] developed a 2D experimental
setup of a plate-granular rods system under dry condition and
analyzed the stick-slip dynamics of the granular layer undergo-
ing shear using digital image analysis. Despite recent advances
in 3D experimental techniques in measuring forces at the
grain scale [53,54], real-time imaging of grain displacement
and forces remains challenging for granular packs in dynamic
deformation.

Here, we apply the coupled DEM–PNF model described
above to a representation of a fault zone consisting of a gouge
layer sandwiched between two blocks; the block material is
represented by a group of contact-bonded particles and the
gouge is composed of unbonded particles (Fig. 3). Note that we
invoke the one-way coupled assumption here (see Discussion
section). (A similar scenario is also considered where the fault
normal is aligned with the principal stress axis of σxx and
where a periodic boundary condition is used in the z direction;
see Supplementary Material [55].) For the gouge particles, the
contact behavior between particles follows an elastic–frictional
contact law [42]. For the blocks, contact bonds are assigned
to the particles. Once the tensile and shear strengths of a
bond are exceeded, the bond breaks and the contact between
the originally bonded pair of particles is described by the
elastic–frictional contact law. To generate the block–gouge
assembly, we first generate an isotropic initial packing under
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static equilibrium, following a widely adopted procedure [43].
Contact bonds are then included and boundary walls are used
to apply an initial stress to the pack.

E. Boundary conditions and system parameters

The boundary conditions are shown in Fig. 3. To initiate
macroscopic fault slip, we apply load in the horizontal (x)
direction using the left and right rigid walls with a constant
strain rate (ε̇h = �x

Lx�t
= 7.8 × 10−3s−1). We keep track of

the horizontal stress σh at the left and right wall boundaries.
A zero displacement boundary is imposed for faces in the
out-of-plane (y) direction (uy = 0). On the top and bottom
faces of the blocks, we use a servo-controlled vertical stress
σv of 1.0 × 107 Pa. We are interested in reproducing relative
slip between the two blocks that minimizes finite-size effects,
that is, slip along a plane that is parallel to the fault. To this
end, we impose zero-displacement boundary conditions in the
vertical (z) direction at the gouge layer (ug

z = 0). To investigate
the effect of pore pressure, we consider five different cases
of pore-pressure distribution (Fig. 3). We slowly increase the
pore pressure from zero to a predetermined final pressure
(pt = 2.5 × 107 Pa for Case 1 and 0.5pt = 1.25 × 107 for
Case 4). Cases 2 and 3 are designed such that at all times

FIG. 3. (a) 3D block–gouge system composed of 7878 particles.
The light green particles are unbonded, representing the gouge,
while the blue particles are bonded, representing the blocks (fault
walls). The origin of axes is placed at the center of the gouge layer.
Rigid frictionless walls (not shown) are used to provide mechanical
boundary conditions. Loading in the x direction with constant velocity
drives the system to slip failure. The front and back walls are assigned
zero displacement condition (uy = 0). To reproduce relative motion
with respect to the gouge layer, we impose zero vertical displacement
at the top and bottom of the gouge layer (ug

z = 0). (b) Pore pressure
cases. Cases 1, 4, and 5 represent continuous pressure across the fault,
with Case 4 having a pressure half of that in Case 1, and Case 5 having
zero pore pressure (dry system). Cases 2 and 3 represent discontinuous
pressure across the fault, with a strong pressure gradient within the
gouge layer.

TABLE I. Simulation parameters.

Parameters Value

Average grain diameter d̄ 0.002 m
min. and max. grain diameter dmin, dmax 0.0018, 0.0022 m
Grain-grain friction coefficient μg-g 0.5
Packing porosity φ 0.35
Contact normal stiffness kc

n 5.0 × 1010 N/m
Contact shear stiffness kc

s 2.5 × 1010 N/m
Contact bond tensile strength T (mean ± std) (1.0 ± 0.2) × 109 Pa
Contact bond shear strength S (mean ± std) (1.0 ± 0.2) × 109 Pa
Gouge layer width w 0.012 m
Gouge layer dip angle α 45◦

Maximum pore pressure (pt ) 2.5 × 107 Pa
Domain size Lx , Ly , Lz 0.08, 0.02, 0.05 m

they have the same maximum pore pressure in the gouge as in
Case 1 and have the same average pore pressure as in Case 4.

Case 1 The pore pressure increases uniformly (from 0 at
zero horizontal strain) on both sides of the gouge layer to the
final value (pL = pR = pt ) at horizontal strain of 3.1 × 10−3,
where pL and pR are the pore pressures on the left and right
blocks, respectively.

Case 2 The pore pressure increases (from 0 at zero horizon-
tal strain) on the left side of the gouge layer until pL = pt at
horizontal strain of 3.1 × 10−3, while the pressure on the right
side is held constant at zero value, pR = 0. A linear gradient
across the fault is maintained.

Case 3 Reverse of Case 2, with pL = 0 and pR increases
to pt .

Case 4 Homogeneous pressure evolution, but only up to
half the value of Case 1, pL = pR = 0.5pt .

Case 5 Homogeneous pressure corresponding to the dry
system with zero pore pressure, pL = pR = 0.

The simulation parameters are listed in Table I.
Even though our grain-scale coupled model captures the

two-way coupling between flow and mechanical deformation,
it is beneficial, from a standpoint of computational efficiency,
to consider the assumption of one-way fluid to solid coupling
in a given situation. Two-way coupling requires that pore
geometry and throat conductance are updated at each time step,
which is computationally intensive. Comparison of simulation
results between the one-way and two-way coupling models
justifies the simplifying assumption of one-way coupling (see
discussions in Sec. IV). Thus, in the rest of our simulations
we invoke this simplifying assumption and prescribe the pore
pressure without solving for its evolution.

III. RESULTS

In this section, we present numerical results for the five
cases of pore pressure distribution. Our model setup resembles
a triaxial configuration of a gouge layer friction experiment
with pore pressure control. The gouge layer failure is driven
by mechanical loading on the blocks. In the model, the grain
rearrangement by rotation and intergranular slip is responsible
for deformation of the gouge layer. Our focus is on the onset
of shear failure under different pressure controls with special
attention to cases where a discontinuity in pressure across the
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gouge layer exists, pL �= pR . The fault normal stress σn is
calculated as σn = 1

2 (σh + σv) + 1
2 (σh − σv) cos 2α, where α

is the angle of the gouge layer with respect to the horizontal and
σh and σv . For a more intuitive interpretation of the results, we
follow the convention that compressive stresses are positive.

A. Grain displacement and contact forces

Snapshots of grain displacement during the fault failure are
presented in Fig. 4. These snapshots are taken at the same time
point corresponding to a horizontal strain of εh = 3.1 × 10−3.
It is evident from these snapshots that the spatial distribution
of pore pressure strongly influences the deformation. For
example, when the pore pressure is continuous across the
fault [Case 1, Fig. 4(a)], the displacement pattern is largely
symmetric, with the foot wall moving down and the hanging
wall moving up as a result of the imposed reverse faulting
conditions. The slip of blocks initiates along the two gouge–
block interfaces. At late times, strain localization is evident
as the slip surfaces gradually shift toward the center of the
gouge layer [55]. The faulting behavior is markedly different
when the pressure is discontinuous across the fault [Cases
2 and 3, Figs. 4(c) and 4(e)], accommodated with a strong
pressure gradient within the gouge layer. For example, when
pR > pL, the displacement of the hanging wall is significantly
larger than that of the foot wall [Case 3, Fig. 4(e)]. Moreover,

FIG. 4. Slip behavior for the block–gouge system. Particle dis-
placement in the z direction (left column) and contact force network
with both color and link size representing force magnitude (right
column) at horizontal strain εh = 3.1 × 10−3. (a, b) Pore pressure
Case 1; (c, d) Case 2; (e, f) Case 3; (g, h) Case 4; (i, j) Case 5.

slip is localized at the hanging-wall gouge–block interface,
which is associated with the higher pore pressure. In Case 4
where the pore pressure is half of that in Case 1, we observe
a significant decrease of the magnitude of grain displacement
in the z direction. The simulation with dry condition [Case 5,
Fig. 4(i)] produces the smallest relative vertical movement of
the two blocks.

Contact force networks corresponding to the grain dis-
placement snapshots discussed above are shown in the right
column of Fig. 4. Pore fluid exerts pressure forces on the
particles, which reduces the contact forces, with a macroscopic
consequence of effective stress. The contact forces in the
blocks are strongly influenced by the pore pressure distribution.
When the pore pressure is uniform in the block–gouge–block
system [Figs. 4(b), 4(h) and 4(j)], the results show that the
contact force network exhibits no overall difference between
the left and right blocks. In contrast, for the inhomogeneous
pore pressure cases [Figs. 4(d) and 4(f)], the difference in
the contact force network between the left and right blocks
is apparent.

The horizontal loading initially compacts the gouge layer,
which causes a rapid increase in the magnitude of contact
forces [55]. The fabric of the contact force network evolves and
chains of strong contact forces develop across the gouge layer
as a result of loading. The contact force chains in the gouge
layer are oriented roughly parallel to the loading direction
and are distributed more or less evenly along the gouge layer
(Fig. 4), indicating that the results are not strongly affected
by finite-size effects. The number of contacts in the gouge
layer drops by about 20%, and the maximum contact force
magnitude increases by about an order of magnitude with only
small differences between pore pressure cases (Fig. 5).

B. Evaluation of equivalent fault pressure p f

The transition from gouge layer compaction to slip is
characterized by a sharp increase in vertical strain rate ε̇v in
all pore pressure cases [Fig. 6(a)]. Here, ε̇v is defined as the
difference in vertical velocity between the top of the hanging
wall block and the bottom of the foot wall block, divided by
Lz. Before slipping, the horizontal stress builds up rapidly,
and the blocks dilate vertically, which characterizes the initial
vertical strain rate as the gouge layer compacts. Comparison
of cases 1, 4, and 5 [Fig. 6(a)] reveals that, when the pore
pressure is lower, the onset of slip occurs at a later time
and, hence, at a larger normal stress due to larger loading
strain accumulated. In our scenario, the delayed onset of slip
causes additional compaction of the gouge layer (as a result of
horizontal loading), which strengthens the material.

One of our main interests is to see how the fault pressure
should be evaluated in the block–gouge–block system with a
pore pressure contrast between the two blocks. From Fig. 4 we
observe that when there is a pore pressure difference across the
fault, the onset of slip appears to be controlled by the maximum
of pore pressure on either side of the gouge layer, max(pL,pR).
Indeed, Fig. 6 also shows that the strain rate–stress curves for
Cases 1, 2, and 3 turn sharply around the same normal stress and
effective normal stress values, while Case 4 exhibits a much
delayed turning point. Note that max(pL,pR) is identical for
Cases 1, 2, and 3, while (pL + pR)/2 is the same for Cases 2,
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FIG. 5. Histogram of normal component of contact forces in the gouge layer for the scenario considered in the main text. (a) Pore pressure
case 1; (b) pore pressure case 3.

3, and 4. Our result suggests that the onset of failure for Cases
2 and 3 behaves similarly to that for Case 1 rather than Case 4.
This result indicates that in the effective stress principle σ eff

n =
σn − pf , the fault pressure pf should be evaluated using the
maximum of pore pressure on both sides instead of using the
average.

In an additional scenario [55], where the fault normal is
aligned with the direction of the principal stress σxx , the results
confirm that the slip favors the side of the fault with a higher
pore pressure when there is a substantial difference in pore
pressure (Cases 2 and 3) between the two sides [55]. More
importantly, by evaluating whether the system fails by slip or
not, we can clearly distinguish Cases 2 and 3 from Case 4. Note
that the arithmetic average of pore pressure in the fault gouge
layer in Cases 2 and 3 equals to that in Case 4. This result further
demonstrates the point that by assigning the arithmetic average
of pressure to the situation where there is a strong pressure
change across the fault one can make incorrect predictions of
fault stability.

IV. DISCUSSION

In the simulations shown above, for computational effi-
ciency we have made the simplification of assuming one-way
fluid to solid coupling. The one-way coupling scheme here

implies that the influence of solid matrix deformation on pore
pressure is neglected, i.e., the first term on the left-hand side of
Eq. (7) is dropped. To test the validity of the assumption in our
case of slip along a block–gouge interface, we have simulated
fault slip using both the one-way and the two-way coupling
methods (see Fig. 7). In both cases, a homogeneous initial
pore pressure p0 = 0 is assigned in the pack. The pore pressure
evolution is traced in the two-way coupling case. The results
show that the difference in grain displacement between the two
simulations are indeed negligible [Figs. 7(b) and 7(c)]. The slip
between the block and the gouge reduces pore pressure along
the shearing zone due to dilation [Fig. 7(d)], but the maximum
pressure change due to mechanical shear (induced by loading
on top of the block) is less than 1 kPa, almost four orders of
magnitude smaller than the horizontal stress component.

To further substantiate that a one-way coupled approach
is a good approximation in our problem setup, we compare
two time scales in the system, the fluid pressure relaxation
time scale tp, and the pore deformation time scale td . The time
scale tp can be calculated as (Lx/2)2/Dh, where Lx is the
domain size in the horizontal direction and Dh is the hydraulic
diffusivity k0/(βwη) with k0 being the mean permeability
(which can be estimated by running a Darcy flow simulation
with prescribed pressure gradient), and βw and η the compress-
ibility and viscosity of water, respectively. The time scale td

FIG. 6. (a) Vertical strain rate [s−1] as a function of normal stress in the fault gouge. (b) Vertical strain rate [s−1] as a function of effective
normal stress σ eff

n = σn − pf with fault pressure pf = max(pL,pR).
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FIG. 7. Comparison of slip along a block–gouge interface between the fully coupled model and the simplified one-way coupled model. (a)
The slip is simulated by providing a constant velocity to the block (as shown in blue); The left side and the right side of the system are given
servocontrolled stress boundary The top and bottom boundaries of the gouge are given zero displacement condition; (b) Grain displacement (z
component) at t = 4 ms simulated by the simplified model with one-way coupling; (c) Grain displacement (z component) at t = 4 ms simulated
by the fully coupled model. (d) Pore pressure change (normalized by the horizontal stress) due to slip simulated by the fully coupled model;
two cross sections (y = 0 and z = 0) are shown.

is approximated as dp/v, where dp is a representative pore
diameter (which is taken as 0.1d) and v is a loading velocity.
Substituting parameter values considered in this study, Lx/2 =
2.0 × 10−2 m, k0 = 1.0 × 10−9 m2, βw = 4.5 × 10−10 Pa−1,
η = 1.0 × 10−3 Pa s, and v = 1.0 × 10−2 m/s, we obtain tp
on the order of 10−8 s, and td on the order of 10−2 s. The
separation of time scales in this system means that pore
pressure will not change significantly due to fast dissipation
through the pore space. This calculation justifies the one-way
coupling assumption.

It should be pointed out that grain fragmentation, which
can occur in a physical experiment involving pulverization,
is not taken into account due to computational constraints.
Grain size reduction during shear of fault gouge has been
numerically studied using DEM under dry conditions, i.e.,
when the hydraulic coupling is not considered [32,56]. The
effect of fluid pressure on evolution of shearing fault gouge
remains to be investigated in future studies.

V. CONCLUSIONS

In summary, we have developed a 3D micromechanical
model that couples a PNF model to a DEM. The model couples
fluid flow on the network of pores with mechanical deformation
of the skeleton of solid grains. Pore fluid exerts pressure force
onto the grains, the motion of which is solved using DEM. We

have investigated the role of pore fluid pressure on slip failure
of a block–gouge system. The fault zone is conceptualized as a
gouge layer sandwiched between two blocks. Motivated by the
problem of representing the fault pressure in the case of low
across-fault permeability, we have studied the fault stability in
the presence of a pressure discontinuity across the gouge layer,
and compared it with the case of continuous (homogeneous)
pore pressure.

Our micromechanical modeling results demonstrate the role
of pore pressure in reducing the effective normal stress and
causing earlier slip failure driven by mechanical loading. They
show that, for the case of a pressure discontinuity across the
fault, the onset of slip occurs earlier for the side with higher
pore pressure, and that this onset appears to be controlled by
the maximum pressure of both sides of the fault. Therefore,
our results indicate that the fault pressure should be taken as
the maximum pressure within the fault zone in a macroscopic
hydromechanical coupling analysis where the effective stress
on the fault is evaluated.

Natural fault zones are usually more complex than the
simple system considered here. In a mature fault zone, multiple
strands of fault gouge cores can develop (see Ref. [57] and
references therein), indicating there may be multiple surfaces
along which slip failure can occur. Multiple gouge cores also
present a significant barrier for fluid flow across the fault zone.
Our modeling results suggest that such a fault zone would fail

022906-8



TWO SIDES OF A FAULT: GRAIN-SCALE ANALYSIS OF … PHYSICAL REVIEW E 97, 022906 (2018)

first on the surface where the pore pressure is highest if the
friction properties for the slip surfaces are similar. The results
shed new light on the use of the effective stress principle and the
Coulomb failure criterion in fault stability evaluation and thus
have important implications for seismic hazard assessment of
subsurface fluid injection sites.
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I. PORE PRESSURE DISTRIBUTION FOR CASES 1-413

Here we plot pore pressure distribution for Cases 1-4 from the simulations.14

15

FIG. S1. (a–d) pore pressure distribution for Cases 1-4, respectively, at the same time step as in16

the grain displacement results shown in Fig. 4 of the main text.17
18

19

II. MOVIES S1, S2, S320

Movie Case1.avi. Results from the coupled micromechanical simulation for pore pres-21

sure Case 1. Top: evolution of displacement in the z direction for individual grains with red22

and blue colors showing upward and downward displacement, respectively. Bottom: evolu-23

tion of the contact force network in the system with both color and thickness representing24

the magnitude of the contact forces.25

Movie Case2.avi. Same as in Movie Case1.avi but for pore pressure Case 2.26

Movie Case3.avi. Same as in Movie Case1.avi but for pore pressure Case 3.27
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III. SIMULATION RESULTS FOR AN ADDITIONAL SCENARIO28

Fault orientation aligned with the principal stress directions29

A slip scenario where the fault normal is aligned with the direction of the principal stress30

(σxx) is also considered, as shown in Fig. S2. Because the fault orientation is aligned with31

the principal axes, we can use a periodic boundary condition in the z direction. In the y32

direction, zero displacement condition is imposed. This fault scenario is characterized by33

the servo-controlled normal stress σn (= σxx = 5MPa) and an applied shear force with the34

magnitude fs = ξσxxax, where ξ is the shear-to-normal stress ratio (ξ = 0.35 in our scenario35

here), and ax is the boundary face area in the x direction. The shear force is applied36

suddenly onto the boundary faces at x = −Lx/2 and x = Lx/2. Five pore pressure cases37

are considered (see Fig. 2 in the main text). Here, the maximum pore pressure is equal to38

0.5σxx. The simplifying assumption of one-way coupling is employed.39

Grain velocity distribution shown in Fig. S3 reveals that the location of the principal slip40

surface is controlled by the pressure distribution. The slip favors the side of the fault with a41

higher pore pressure when there is a substantial difference in pore pressure between the two42

sides (Fig. S3(b)–(c)). A clear distinction can also be made based on the maximum pore43

pressure. When the maximum pore pressure is 0.25σxx, no principal slip surface is established44

(Fig. S3d) due to the insufficient shear force to overcome the frictional resistance. Note that45

the velocity distribution of the case with zero pore pressure is similar to that in Fig. S3d,46

and thus is not shown here.47

The vertical strain and strain rate for the five simulations are shown in Fig. S4. The48

strain and strain rate increase initially due to the sudden application of the shear force. We49

can distinguish the first three cases from the last two cases by the strain rate at late times50

(Fig. S4b). When the maximum pore pressure is 0.5σxx (regardless of whether the maximum51

is on one side or on both sides), the slip is sustained, leading to increasingly higher shear52

velocities of the blocks. When the maximum pore pressure is 0.25σxx or lower, the initial53

slip is eventually arrested by the frictional resistance.54

The simulations in this scenario demonstrate the role of the maximum pressure in the55

fault gouge layer in controlling the slip behavior.56
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57

FIG. S2. (a) Slip scenario of a block–gouge system with the fault normal aligned the principal58

stress direction (σxx). A periodic boundary condition is used for the z direction. Rigid frictionless59

walls (not shown) are used to provided servo-controlled stress (5 MPa) for σxx. In the y direction,60

zero displacement condition is imposed. Shear stress (σxz) is applied by distributing the total force,61

whose magnitude corresponds to ξσxxax, to the grains on the boundary faces in the x direction.62

Here, ξ is the ratio of the fault shear stress σxz to the normal stress σn = σxx, and ax is the area63

of the boundary faces in the x direction. (b) Tetrahedral tessellation of the particle system with64

periodic condition in the z direction.65
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FIG. S3. Grain velocities in the z direction at the end of the simulation. (a) Homogeneous pore

pressure 0.5σxx. (b) Pore pressure decreases gradually from 0.5σxx to zero across the gouge layer

from left to right. (c) Pore pressure increases gradually from zero to 0.5σxx across the gouge layer

from left to right. (d) Homogeneous pore pressure 0.25σxx.
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FIG. S4. Vertical strain and strain rate for the scenario where the fault normal is aligned with

the principal stress axis of σxx (see Fig. S2). (a) Vertical strain as defined by the normalized (by

Lz = 0.03 m) relative displacement between the left and the right block. (b) Vertical strain rate.
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