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Gravity currents of miscible fluids in porous media are important to understand
because they occur in important engineering projects, such as enhanced oil recovery
and geologic CO2 sequestration. These flows are often modelled based on two
simplifying assumptions: vertical velocities are negligible compared with horizontal
velocities, and diffusion is negligible compared with advection. In many cases,
however, these assumptions limit the validity of the models to a finite, intermediate
time interval during the flow, making prediction of the flow at early and late times
difficult. Here, we consider the effects of vertical flow and diffusion to develop a set of
models for the entire evolution of a miscible gravity current. To gain physical insight,
we study a simple system: lock exchange of equal-viscosity fluids in a horizontal,
vertically confined layer of permeable rock. We show that the flow exhibits five
regimes: (i) an early diffusion regime, in which the fluids diffuse across the initially
sharp fluid–fluid interface; (ii) an S-slumping regime, in which the fluid–fluid interface
tilts in an S-shape; (iii) a straight-line slumping regime, in which the fluid–fluid
interface tilts as a straight line; (iv) a Taylor-slumping regime, in which Taylor
dispersion at the aquifer scale enhances mixing between the fluids and causes the
flow to continuously decelerate; and (v) a late diffusion regime, in which the flow
becomes so slow that mass transfer again occurs dominantly though diffusion.
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1. Introduction
Gravity currents involving miscible fluids in porous layers occur in important

engineering systems. For example, during the drilling of an oil well, miscible drilling
fluids penetrate into the reservoir as a gravity current (Dussan & Auzerais 1993). Later
in the life of some reservoirs, oil production is enhanced by injecting a miscible
fluid such as CO2 or a mixture of refined hydrocarbons, which migrates though the
reservoir as a gravity current (Lake 1989). Along the coastline, seawater can infiltrate
freshwater aquifers as a gravity current (Henry 1964). In deep saline aquifers, miscible
gravity currents can occur during CO2 sequestration when the CO2 dissolves into the
groundwater. Since groundwater with dissolved CO2 is more dense than the ambient
groundwater, it will migrate away from the free-phase CO2 as a gravity current.
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FIGURE 1. (Colour online) We study the lock exchange of two miscible, equal-viscosity
fluids in a horizontal porous layer. (a) The lock gate is initially located at x = 0. The fluid on
the left of the gate is more dense than the fluid on the right. (b) After the lock gate is removed,
the fluids undergo an exchange flow.

Many models of gravity currents in porous media have been derived under several
simplifying assumptions. One common assumption is that vertical flow velocities
are negligible compared with horizontal velocities (Bear 1972; Yortsos 1995). This
assumption is often called the Dupuit approximation or vertical-flow equilibrium.
While diffusion and dispersion in porous-media flows have been studied extensively,
gravity–current models commonly assume that these effects are negligible compared
with advection (Bear 1972). This assumption is often called the sharp-interface
approximation since neglecting diffusion and dispersion causes the fluids to always
be separated by a sharp boundary. Under these assumptions, several models of gravity
currents have been developed for two-dimensional rectilinear systems (Bear 1972; De
Josselin De Jong 1981; Huppert & Woods 1995; Hesse et al. 2007; de Loubens
& Ramakrishnan 2011; MacMinn, Szulczewski & Juanes 2011), two-dimensional
axisymmetric systems (Barenblatt 1952; Dussan & Auzerais 1993; Lyle et al. 2005;
Nordbotten & Celia 2006) and three-dimensional systems (Vella & Huppert 2006; de
Loubens & Ramakrishnan 2011).

Recent work on seawater intrusion into coastal freshwater aquifers has included the
effects of both vertical flow and diffusion or dispersion. Tartakovsky et al. (2004)
incorporate linear dispersion through a perturbation analysis, Dentz et al. (2006)
incorporate diffusion through a perturbation analysis and Paster & Dagan (2007)
incorporate velocity-dependent transverse dispersion though a boundary-layer analysis.
In these studies, the geologic setting makes the flow field steady state: the pressure-
driven flow of freshwater toward the sea resists the gravity-driven flow of seawater into
the aquifer, ultimately freezing the position of the seawater current. As a result, the
incorporation of vertical flow and diffusion/dispersion does not affect the dynamics of
the gravity–current propagation.

Here, we consider the effects of vertical flow and diffusion on gravity currents that
do not exhibit a steady state. We study a simple system to gain physical insight: the
lock exchange of equal-viscosity fluids in a horizontal, vertically confined layer of
permeable rock (figure 1). The layer is infinite in the horizontal direction; the top
and bottom of the layer are impermeable boundaries. Initially, the more dense fluid
occupies the left half of the layer, and is separated by the lock gate from the less
dense fluid on the right. When the gate is removed, the fluids undergo an exchange
flow, with the more dense fluid flowing to the right along the bottom of the layer and
the less dense fluid flowing to the left along the top.

Currently, the model for this system, which we call the straight-line slumping
model, is based on both the Dupuit and sharp-interface approximations (Bear 1972; De
Josselin De Jong 1981; Huppert & Woods 1995). While this model provides physical
insight and can accurately describe the flow when the approximations hold, it is valid
for only a finite, intermediate time interval during the flow. It is not valid at early
times after the lock gate is removed because vertical velocities are important in the
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FIGURE 2. The flow evolves through the five self-similar regimes shown here by simulation
results. The grey scale represents the concentration of the more dense fluid, c, normalized to
the saturated concentration, cs. The scalings of the transition times between the regimes are
shown in terms of the layer thickness, H, the diffusion coefficient, D, and the characteristic
velocity, V = 1ρgk/µφ. When HV/D . 1, the first and final transition times become equal,
the duration of the intermediate regimes becomes zero, and lateral diffusion becomes the
dominant mass transfer mechanism for all times.

early slumping. At late times, it is also not valid because diffusion and dispersion will
eventually smear the sharp interface between the fluids into a large transition zone.

We find that the lock exchange of miscible fluids exhibits four self-similar regimes
in addition to straight-line slumping (figure 2). For each regime, we simplify the
governing equations to develop an analytical model of the flow. We find that
neglecting vertical flow and diffusion is only valid at intermediate times during the
straight-line slumping regime. For all other times, at least one of these effects must be
included to capture the physics.

We validate the models of two of the regimes, S-slumping and straight-line
slumping, with experiments. The experiments are performed in acrylic Hele-Shaw
cells with a 3 mm gap that is packed with glass beads. The fluids are water and dyed
salt water. To prepare an experiment, we first turn the cell upright so that the long
dimension is vertical, fill it halfway with salt water, and then the rest of the way
with fresh water so that the fresh water–salt water interface is horizontal. To begin the
experiment, we turn the cell 90◦ and image the fluid interface with a DSLR camera.

We validate all of the models with numerical simulations of the full governing
equations. When comparing the models with simulation results, we consider the
vertically averaged concentration of the aquifer, c. When the interface between the
two fluids is sharp, this is directly proportional to the height of the more dense fluid:
c∼ H − h (figure 1). We also consider the mass flux across the original location of the
lock gate, which is a convenient parameter to characterize the system throughout its
entire evolution, regardless of whether the fluid–fluid interface remains sharp or a large
transition zone develops due to mixing.
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2. Governing equations
The density-driven flow of two miscible fluids in a horizontal porous medium is

described by a coupled system of equations. When the density difference between the
fluids is small relative to the density of the fluids, the Boussinesq approximation is
valid and the equations are (Landman & Schotting 2007):

∇ ·u= 0, (2.1)

u=− k

µφ
(∇p− ρ(c)gẑ), (2.2)

∂c

∂t
+ u ·∇c− D∇2c= 0. (2.3)

Equation (2.1) expresses conservation of mass for the entire fluid mixture, equation
(2.2) is Darcy’s law and equation (2.3) is the concentration equation. The
concentration, c, may be interpreted in two ways: if the two fluids are both solvents
and the more dense fluid contains the dissolved component, such as the case for a
water/salt water system, then c is the concentration of the dissolved component; if
the two fluids are pure fluids such as water and ethanol, c is the concentration of
the denser fluid. For convenience, we assume the former case in the remainder of
the text. The density, ρ, is assumed to be a linear function of the concentration:
ρ = ρ0 + 1ρ(c/cs), where 1ρ is the maximum density difference between the fluids
and cs is the saturated concentration (cs = 1 for a system of two pure fluids).
The remaining variables are as follows: u = (u, v) is the pore velocity, k is the
permeability, µ is the dynamic viscosity, φ is the porosity, p is the pressure, g is
the gravitational acceleration and D is the diffusion coefficient. For simplicity, we
assume that hydrodynamic dispersion is negligible; we address the implications of
this assumption in the conclusions. The initial conditions are that the velocity is zero
everywhere, and that the more dense fluid is confined to the left half of the domain:

u(x, z, t = 0)= 0, c(x, z, t = 0)=
{

cs x 6 0,
0 x> 0.

(2.4)

The boundary conditions and conditions at infinity are

v(z= 0,H)= u(x→±∞)= ∂c

∂z

∣∣∣∣
z=0,H

= ∂c

∂x

∣∣∣∣
x→±∞

= 0. (2.5)

When the governing equations (2.1)–(2.3) are made dimensionless (see appendices A
and B), there is only one governing parameter: the Rayleigh number, Ra =
1ρgkH/µφD, which compares the strength of advection to diffusion.

We solve the governing equations using two methods. In the first method, we
simplify the equations using scaling analyses or perturbation theory and solve the
resulting equations analytically. In the second method, we solve the full, two-
dimensional system of equations numerically. We integrate in space using finite
volumes with linear reconstructions and the MC limiter (LeVeque 2002). We integrate
in time using Runge–Kutta methods (Lambert 1991). For short-time simulations,
we use an explicit, two-stage method; for longer simulations, we switch to an
implicit–explicit two-stage method to remove the time step restriction from the
diffusion term (Ascher, Ruuth & Spiteri 1997). The numerical scheme is second-order
accurate in both space and time. We have confirmed that the numerical results are
converged, grid-independent results.
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FIGURE 3. (Colour online) (a) The analytical solution for the vertically averaged
concentration (c̄/cs) (3.1) during the first regime, early diffusion, agrees well with the
numerical profile (numerical data from Ra = 500). (b) The analytical flux, F/csV , across
the original position of the lock gate (dashed, (3.2)) also agrees well with numerical results
(circles; Ra = 100, 200, 500, 700, 1200), but specifically in the limit that time, t, approaches
zero because the regime is an asymptotic. The simultaneous departure of all numerical
data from the analytical solution shows that the transition time to the next regime scales
as tss ∼ D/V2.

3. Flow regimes
3.1. Early diffusion (ed)

Immediately after the lock gate is removed, lateral diffusion across the vertical
fluid–fluid interface dominates the mass flux. Diffusion dominates initially because,
by Fick’s law, the diffusive flux is proportional to the concentration gradient and
therefore goes to infinity in the limit of an initially sharp interface. Since the dynamics
involve only diffusion and the geometry is simple, this regime may be modelled by a
similarity solution to a one-dimensional diffusion equation (Crank 1980):

c

cs
= 1

2

(
1− erf

(
x

2
√

Dt

))
, (3.1)

where the similarity variable is ξed = x/
√

Dt. This equation agrees with numerical
results for the vertically averaged concentration (figure 3a). The mass flux across the
initial position of the gate is

Fed = cs

2

(
D

πt

)1/2

, (3.2)

which also agrees well with numerical results (figure 3b). Both of these expressions
are valid in the limit Ra→ 0 or, for finite Rayleigh numbers, in the limit t→ 0, as
shown graphically in figure 3(b) and analytically in appendix A. Equating the flux
with the flux in the next regime, S-slumping, shows that the transition time to the next
regime is tss = 2.3D/V2, where V =1ρgk/µφ.

3.2. S-slumping (ss)
In the second regime, the fluid–fluid interface tilts in an S-shaped curve. While the
interface is diffuse for all finite Ra, we model the flow in the limit Ra→∞ for
which the interface is sharp. In this limit, the problem is simplified because diffusion
is negligible and the flow self similar in the variable ξss = x/Vt, as shown by numerical
results in figure 4(a).
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FIGURE 4. (Colour online) (a) The second regime, S-slumping, is self-similar in ξss = x/Vt:
when numerical solutions for the fluid–fluid interface at several times are plotted versus
ξss, they all collapse onto a single curve. (b) The approximate analytical solution for the
height of the sharp interface (dashed line, shown in red in the online version; (3.3)) agrees
well with numerical results for the problem with no diffusion (black; Ra = ∞). (c) The
approximate solution (shown in red in the online version) also agrees well with experiments
of salt water slumping in a Hele-Shaw cell packed with glass beads (1ρ = 50 kg m−3;
bead diameter 0.5 mm; t = 3 min). (d) The analytical solution is an asymptotic in the
limit Ra→∞: as Ra becomes larger, the mass flux calculated from numerics (circles;
Ra = 300, 1000, 2150, 4650, 10 000) converges to the value from the analytical solution
(dashed). The transition time to the next regime scales as tsls ∼ H/V , as shown by the
simultaneous departure of all numerical data from the dashed line.

While there is no exact, analytical model for the flow in this regime, the expression
for the similarity variable provides physical insight into the flow. Rearranging the
expression for ξss to solve for x and differentiating with respect to time yields an
expression for the lateral velocity of the interface: u = ξssV , where ξss may now be
interpreted as a function of the scaled interface height, h/H. For example, at the
leading edge of the current where h/H = 1, figure 4(a) shows that ξss ≈ 1.5, so the
velocity of the leading edge is u ≈ 1.5V . This expression indicates that the interface
advances at a constant rate in time. It also indicates that the aquifer height, H, does
not affect the dynamics: in other words, the velocity field in two aquifers of different
heights is exactly the same when the vertical dimension is scaled by H.

To develop an approximate model of the flow, we integrate the velocity along the
interface at t = 0, found analytically by De Josselin De Jong (1981). The solution for
the height of the interface of the less dense fluid, h, is (see figure 1):

h

H
= 2
π

arccot(e−πx/Vt). (3.3)
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This solution agrees well with both numerical and experimental results (figure 4b,c).
From this equation, we find the mass flux as the time rate of change of the dissolved
species mass on the right-hand side of the lock gate:

Fss = 1
H

d
dt

(
cs

∫ ∞
0
(H − h) dx

)
= 0.186csV. (3.4)

We use the similarity variable to simplify the integral and then evaluate it numerically.
Since (3.3) and (3.4) were derived in the limit Ra→∞, they are asymptotics,
accurately describing the flow at large Rayleigh numbers but becoming increasingly
inaccurate for small Ra (figure 4d). In the limit Ra→∞, they are rigourously valid
for an infinitesimally small time after t = 0 since they are derived using only the
velocity field at t = 0, but they provide reasonable descriptions of the flow for longer
times (figure 4c,d). For finite Ra, they become valid at the onset of the S-slumping
regime at time tss = 2.3D/V2.

3.3. Straight-line slumping (sls)
In the third regime, the fluid–fluid interface tilts as a straight line. As in the previous
regime, the interface is diffuse, but we model the flow in the sharp-interface limit.
Since the lateral extent of the flow in this regime is typically large compared with the
aquifer thickness, we assume that vertical velocities are negligible compared with
horizontal velocities (Dupuit approximation is valid). Under these approximations,
Huppert & Woods (1995) showed that the flow is self-similar in the variable
ξsls = x/

√
VHt, and derived the following analytical solution for the interface height, h:

h

H
= 1

2

(
1+ x√

VHt

)
. (3.5)

This solution agrees well with both numerical and experimental results (figure 5a,b).
Perturbation analysis shows that this solution is accurate to first order in ε = H/L,
where L is the horizontal extent of the interface (Yortsos 1995).

As in the previous regime, the expression for the similarity variable, ξsls = x/
√

VHt,
provides physical insight into the flow. Interpreting VH as analogous to a diffusion
coefficient, we find that ξsls exhibits the same form as the similarity variable for
Fickian diffusion alone, ξed = x/

√
Dt. This comparison indicates that the fluid interface

in this regime spreads diffusively. Specifically, the lateral velocity of the interface, u,
decreases in time as u∼ t−1/2, just as the velocity of a concentration contour decreases
as t−1/2 as it propagates away from the initially vertical interface in the early diffusion
regime. The exact expression for the flow velocity can be determined from (3.5):
u = (h/H − 1/2) (VH/t)1/2. This diffusive spreading is different from the S-slumping
regime, in which the lateral velocities are constant in time. It is also different because
the aquifer thickness, H, now affects the dynamics through the effective diffusion
coefficient Dsls = VH. Since the spreading is diffusive, the mass flux across the initial
lock position is also diffusive:

Fsls = 1
H

d
dt

(
cs

∫ xn

0
(H − h) dx

)
= cs

8

(
VH

t

)1/2

, (3.6)

where xn =
√

VHt is the location of the rightmost edge of the dense current.
Since the equations for the flux (3.6), velocity and interface height (3.5) are based

on the sharp-interface approximation, they represent asymptotics of the full problem
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FIGURE 5. (Colour online) (a) The analytical model in the third regime, straight-line
slumping, for the height of the sharp interface (dashed line, show in red in the online version;
(3.5)) matches the numerical solution for the problem with no diffusion (black; Ra = ∞;
t/(H/V)= 2, 6, 12, 20, 40, 65, 99). Since the model is an intermediate asymptotic (Barenblatt
1996), the disagreement is largest at early times and decreases as t→∞. (b) The analytical
model (shown in red in the online version) also agrees well with experiments of salt water
slumping in a Hele-Shaw cell packed with glass beads (1ρ = 100 kg m−3; bead diameter
0.5 mm; t = 10 min). (c) Since the model is based on the sharp-interface approximation, the
mass flux, F, calculated from numerics (circles; Ra = 300, 700, 1000, 2150, 4650, 10 000)
approaches the flux from the model (dashed; (3.5)) as Ra→ ∞. The departure of all
numerical data from the dashed line shows that the transition time to the next regime scales as
tTs ∼ H2/D.

with diffusion, providing an increasingly accurate description of the flow as Ra→∞
(figure 5). They become invalid at time tTs ∼ H2/D, when the regime ends because
vertical diffusion creates a broad transition zone between the two fluids.

3.4. Taylor slumping (Ts)
In the fourth regime, the dynamics are controlled by the coupling between diffusion
and gravity-driven advection. Advection impacts diffusion because it increases the
interfacial area between the two fluids, which accelerates the diffusive mixing. This
process is Taylor dispersion at the aquifer scale, for which the regime is named (Taylor
1953). Diffusive mixing impacts advection because it reduces the lateral density
gradient that drives advection. The relationship between the gradient of vertically
averaged density, ρ, and the lateral velocity, u, is

u(z)= gkH

φµ

∂ρ

∂x

(
1
2
− z

H

)
+ O(ε2), (3.7)

where ε = H/L and L is the horizontal extent of the flow (B 6). This equation shows
that at long times when ε� 1, mixing retards the gravity-driven slumping in direct
proportion to the degree to which it reduces ∂ρ/∂x.

To model Taylor slumping, we derive an equation for the vertically averaged
concentration, c (see appendix B):

∂c

∂t
− D

∂2c

∂x2
− ∂

∂x

(
H4V2

120Dc2
s

[
∂c

∂x

]2
∂c

∂x

)
= 0. (3.8)

The middle term in this equation captures Fickian diffusion in the lateral direction.
The rightmost term captures Taylor slumping. This type of term involving the
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FIGURE 6. (Colour online) (a) The analytical model for the vertically averaged concentration
(c̄/cs) during the Taylor slumping regime (3.10) agrees well with the numerical profile
(Ra = 1000; t/(H/V) = 670, 1700, 4500). (b) The mass flux (F/(csD2/H2V)) obtained
from this model (dashed, (3.11)) also agrees well with numerical results (circles; Ra =
300, 700, 1000, 2150, 4650, 10 000). Here we only show data after the onset of Taylor
slumping for clarity. The transition time to the next regime is tld ∼ H4V2/D3, as shown by
the simultaneous departure of all data from the dashed line.

concentration gradient cubed occurs in a variety of models describing the coupling
between buoyancy and shear dispersion, including models of pipe flow (Erdogan &
Chatwin 1967) and open-channel flow (Smith 1976).

To emphasize the physical meaning of the Taylor slumping term, we compare it
with the classical Taylor dispersion term for Poiseuille flow between parallel plates. In
this system, the equation for the vertically averaged concentration is

∂c

∂t
+ u

∂c

∂x
− D

∂2c

∂x2
− ∂

∂x

(
b2u2

210D

∂c

∂x

)
= 0 (3.9)

where u is the average velocity and b is the distance between the plates (Nguyen
2011). The rightmost term in this equation captures classical Taylor dispersion. It is
a linear diffusion term with an effective diffusion coefficient DTd = b2u2/210D. The
Taylor slumping term in (3.8) can also be interpreted as a diffusion term, but it is
nonlinear with an effective diffusion coefficient DTs = (H4V2/120Dc2

s ) (∂c/∂x)2. The
nonlinearity arises due to the coupling between diffusive mixing and the gravity-driven
flow: diffusive mixing reduces the flow velocity (3.7), which in turn reduces the
diffusive mixing by lowering the rate at which the interfacial area between the two
fluids grows. This coupling does not occur in classical Taylor dispersion because the
velocity is constant during Poiseuille flow.

In (3.8), the Taylor slumping term dominates the Fickian diffusion term at early
times when the aspect ratio of the flow is small relative to the Rayleigh number:
L/H � Ra/

√
120. This result comes from scaling x by the lateral extent of the flow,

L, and taking the ratio of the coefficients of the Taylor slumping term and Fickian
diffusion term. When the Taylor slumping term dominates, the Fickian diffusion term
may be neglected and the equation admits an exact, analytical similarity solution in the
variable ξTs = x/ (H4V2t/120D)1/4:

c

cs
= 1

2
− 1

2
√

12

[
ξTs

(
α2 − ξ 2

Ts

)1/2 + α2 arcsin
(
ξTs

α

)]
, (3.10)
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where α = (48/π2)
1/4

. This solution agrees well with numerical results (figure 6a).
In Taylor slumping, the lateral velocities decrease subdiffusively in time, scaling

as u ∼ t−3/4. Based on the similarity variable, the expression for the lateral velocity
is u = ξTs (H4V2/480Dt3)

1/4, where ξTs can now be interpreted as a function of
the average concentration. For example, at the leading edge of the current where
the average concentration is zero, ξTs = α and u = α (H4V2/480Dt3)

1/4. The velocity
decreases faster than in the previous regime, in which velocity decreases diffusively in
time, due to the reduction in velocity caused by diffusive mixing (3.7).

Since the velocities are subdiffusive, the mass flux during Taylor slumping is also
subdiffusive:

FTs = 1
H

d
dt

(
H
∫ ∞

0
c dx

)
= cs(

3240π6
)1/4

(
H4V2

Dt3

)1/4

. (3.11)

This expression agrees well with numerical results (figure 6b), helping to validate the
Taylor slumping model.

3.5. Late diffusion (ld)

At times much later than tld = 2H4V2/405π4D3, the Taylor slumping term in (3.8)
becomes negligible compared with the Fickian diffusion term. This can been seen
by comparing the fluxes due to Taylor slumping (3.11) and Fickian diffusion (3.2).
At these late times, the vertically averaged density gradient, which drives the flow,
becomes very small and causes the horizontal flow to become very slow (3.7). When
the horizontal flow becomes slow, the vertical mass transfer due to diffusion dominates
the horizontal mass transfer due to the flow, and the concentration becomes nearly
uniform in the vertical direction. The relationship between the vertical concentration
gradient and the horizontal velocity can be found explicitly from a perturbation
analysis (B 7): ∂c/∂z = (1/D)(∂c/∂x)

∫ z
0 u dz + O(ε2). As a result of the slow flow

and nearly complete vertical mixing, mass transfer occurs dominantly via Fickian
diffusion in the lateral direction. This regime is the same as the first regime, early
diffusion, and may be modelled by (3.1).

For some conditions, the late diffusion regime occurs immediately after the
early diffusion regime and there is no distinction between them. Subtracting the
end time of the early diffusion regime from the onset time of the late diffusion
regime yields an expression for the duration of the intermediate regimes: tld − tss =
2D/405π4V2(Ra4 − 2.3). When Ra . 1, the duration is zero and the two diffusion
regimes occur consecutively.

4. Conclusion
The gravity-driven flow of two miscible fluids in a horizontal porous layer evolves

through five regimes. When the fluids are initially separated by a sharp interface, the
first regime is diffusion. In the next two regimes, the gravity-driven flow dominates.
At the beginning of the flow, when the lateral extent of the current is less than the
aquifer thickness, the fluid–fluid interface tilts in an S-shaped curve. In this regime,
the leading edge of the interface propagates at a constant velocity. When the extent of
the current exceeds the aquifer thickness, the fluid interface changes from an S-shaped
curve to a straight line. In this regime, the leading edge continually decelerates,
exhibiting a diffusive scaling in time. In the following regime, Taylor slumping, the
flow becomes coupled to diffusive mixing. The flow affects diffusive mixing via Taylor
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FIGURE 7. (Colour online) The entire evolution of the miscible lock-exchange problem in
a horizontal porous layer may be described by combining analytical solutions for five flow
regimes.

dispersion at the aquifer scale, in which the non-uniform flow velocities elongate
the fluid–fluid interface over which diffusion acts to mix the fluids. Diffusive mixing
affects the flow by reducing the lateral density gradient that drives the flow. This
coupling causes the flow to decelerate subdiffusively. Eventually, the velocity becomes
so low that diffusion causes the fluids to be nearly completely mixed in the vertical
direction. In this regime, lateral diffusion through the aquifer again becomes the
dominant mass transfer process. All of these regimes can be described by analytical
models, which when combined in series, provide a complete picture of the entire
evolution of the flow, as shown in figure 7.

The evolution of the flux is indicative, for example, of the rate of dissolution that
can be expected from CO2 injected and stored in geological traps. In geological CO2

sequestration, relevant values of Ra exhibit a large range due to the large ranges of
aquifer thickness and permeability (Ennis-King & Paterson 2005; Riaz et al. 2006).
Assuming 1ρ = 5 kg m−3, k = 10–1000 mD, µ = 1 m Pas, φ = 0.2, H = 25–500 m,
D= 1× 10−9 m2 s−, Ra ranges from ∼500 to over 1 million (Szulczewski et al. 2012):
a range for which it is likely that all five regimes will play a role (figure 7).

While the models have been derived under the assumption of negligible
hydrodynamic dispersion, four of the five models remain valid even in systems with
strong dispersivity. Dispersion will not affect the first and final regimes in which
lateral Fickian diffusion dominates, because the flow velocities are negligibly small in
these regimes, which in turn makes hydrodynamic dispersion negligibly small. It will
also not affect the models of S-slumping or straight-line slumping, since these models
are based on the assumption of negligible fluid mixing. These models will still be
valid at early times for which advection dominates diffusion and dispersion, although
the timespan over which they are valid will likely be reduced since dispersion would
cause the fluids to mix more rapidly.

While hydrodynamic dispersion will not affect most of the regimes, it will affect
Taylor slumping since this regime describes the interplay between fluid mixing and
gravity-driven advection. As a result, the model for Taylor slumping will be accurate
in very slow flows for which dispersion is negligible. If dispersion is not negligible,
the physical mechanism captured by the Taylor slumping model will likely still be
valid: mixing will lead to a reduced lateral density gradient, which will decrease the
horizontal velocity until lateral diffusion dominates the mass transfer. Hydrodynamic
dispersion, however, will likely accelerate this process by enhancing the mixing.
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Appendix A. Early diffusion
To derive the model for the early diffusion regime, we scale the variables as follows:

z= Hζ, x= Lη, t = (H2/D)τ, p= Pp′ + ρ0gHζ,
c= csc

′, v = Vv′, u= Vu′,

}
(A 1)

where P =1ρgH is the characteristic pressure and V =1ρgk/µφ is the characteristic
velocity. We define a similarity variable, ξed = η/√τ . The scaled concentration
equation (2.3) is then

−ξed

2
∂c′

∂ξed
+ τ 1/2Ra

∂

∂ξed
(u′c′)+ τRa

∂

∂ζ
(w′c′)− ∂

2c′

∂ξ 2
ed

− τ ∂
2c′

∂ζ 2
= 0. (A 2)

In the limit τ → 0, it reduces to

ξed

2
dc′

dξed
+ d2c′

dξ 2
ed

= 0. (A 3)

This equation is also obtained in the limit Ra→ 0 since the initial condition and
boundary conditions make ∂2c′/∂ζ 2 = 0 for all times. The equation is the self-similar
form of a one-dimensional diffusion equation in a laterally infinite domain. The
solution is given in (3.1).

Appendix B. Taylor slumping
To derive the model for Taylor slumping, we vertically average the concentration

equation (2.3)

∂c

∂t
+ ∂

∂x
uc− D

∂2c

∂x2
= 0, (B 1)

where overbars denote vertical averages (e.g. c = 1/H
∫ H

0 c dz). We then obtain an
expression for the average advective flux, uc, via a perturbation analysis of both the
averaged and unaveraged governing equations. We begin the perturbation analysis by
scaling the variables as follows:

z= Hζ, x= Lξ, p= Pp′ + ρ0gHζ, c= csc
′,

v = Vv′, u= Uu′, t = Tτ,

}
(B 2)

where V = 1ρgk/µφ, U = εV , P = 1ρgH and T = L/U. Here ε = H/L, where L
is the lateral extent of the flow, which is unknown a priori but assumed to be
large relative to the layer thickness, H, so that ε � 1. We expand the variables



94 M. L. Szulczewski and R. Juanes

in ε: c′ = c′0 + ε2c′2 + O(ε4), u′ = u′0 + ε2u′2 + O(ε4), v′ = v′0 + ε2v′2 + O(ε4), and
p′ = p′0 + ε2p′2 + O(ε4). The scaled, vertically averaged concentration equation (B 1)
to O(ε2) is

Ra

[
∂

∂τ
(c′0 + ε2c′2)+

∂

∂ξ
(u′0c′0 + ε2u′0c′2 + ε2u′2c′0)

]
− ∂2

∂ξ 2
(c′0 + ε2c′2)= 0. (B 3)

We obtain c′0, c′2 and u′0 from the unaveraged concentration equation (2.3):

O(ε0) : Ra∂(v
′
0c′0)
∂ζ

− ∂
2c′0
∂ζ 2
= 0, (B 4a)

O(ε2) : Ra
[
∂c′0
∂τ
+ ∂(u

′
0c′0)
∂ξ

]
+ Ra

∂(v′0c′2)
∂ζ

+ Ra
∂(v′2c′0)
∂ζ

− ∂
2c′0
∂ξ 2
− ∂

2c′2
∂ζ 2
= 0, (B 4b)

and mass conservation equation (2.1):

O(ε0) : ∂v
′
0

∂ζ
= 0, (B 5a)

O(ε2) : ∂u′0
∂ξ
+ ∂v

′
2

∂ζ
= 0. (B 5b)

To obtain u′0, we first solve (B 5) at O(ε0) using the boundary condition v′0(ζ = 0, 1)=
0 to find v′0 = 0. This indicates that the pressure at O(ε0) is hydrostatic, and enables us
to find u′0 using Darcy’s law:

u′0 =
∂c′0
∂ξ

(
1
2
− ζ
)
. (B 6)

To obtain c′0, we solve (B 4) at O(ε0) to find c′0 = f (ξ, τ ); in other words, c′0 is not a
function of ζ . This result makes use of the no-flux boundary conditions at ζ = 0, 1. To
obtain c′2, we solve (B 4) at O(ε2), using (B 5) at O(ε2) to simplify the advective part
and (B 3) at O(ε) to remove the time derivative. Requiring c′2 = 0, we find

c′2 =
Ra

2

(
∂c′0
∂ξ

)2(
− 1

12
+ ζ

2

2
− ζ

3

3

)
. (B 7)

We now evaluate the average advective fluxes in (B 3): u′0c′0 = u′0c′0 = 0 and
u′2c′0 = u′2c′0 = 0 since the average lateral velocity is always zero. This can be seen
by averaging the mass conservation equation (2.1) and using the boundary conditions
u′(ξ →±∞)= 0 to find u′ = 0. The remaining advective flux is

u′0c′2 =−
Ra

120

(
∂c′0
∂ξ

)3

. (B 8)

We now substitute this expression into (B 3) and replace c0 using c0 = c+ O(ε4):

Ra

[
∂c′

∂τ
− ε2 Ra

120
∂

∂ξ

([
∂c′

∂ξ

]2
∂c′

∂ξ

)]
− ∂2c

∂ξ 2
+ O(ε4)= 0. (B 9)

This is the scaled version of the equation for Taylor slumping (3.8).
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