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1 Deployment locations

The data presented in this paper were collected from 2 nearby locations in the deepwater
central basin of UML. Their relative locations and deployment periods in 2012 are mapped
in Fig. S1.

Figure S1: Map showing the relative locations and orientations of the 2 deployment locations
where the data presented here were collected.

2 Flux estimation methods

2.1 Backscatter measurement using the Imagenex 837B

The Imagenex 837B Delta T multibeam profiling sonar does not measure backscatter cross-
section directly, so we present here the method used to calibrate it for that purpose.

The pressure wave amplitude of the sound received by a sonar unit is that of the source,
diminished by spherical spreading and attenuation, and increased by the magnitude of the
target causing the reflection. The received amplitude Prec after travel to and from targets
with backscatter cross-section σbs at distance R, with spherical spreading, is:(
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where Psrc(θ) is the directionally-dependent amplitude of the source signal, P0 and R0 are
reference pressure and length values, and α is a coefficient of acoustic attenuation in the
water. The use of reference values facilitates handling the sonar equation in logarithmic
form, though for the sake of clarity we will use SI units.
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The Imagenex DeltaT reports an amplitude that is proportional to the received pressure
in each pixel (beam for direction and sample for distance from the sonar head):
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where ka is an unknown proportionality constant and G is the user-defined gain on the
signal. The user-defined gain G depends on 2 parameters, the hardware “StartGain” (Gs)
and the software “DisplayGain” (Gd) that scales the data into the 8-bit dynamic range.
The power of 2 in R/R0 compensates for part of the geometric spreading and is applied
as a time-varying gain (TVG) to the incoming signal. It is appropriate for quantifying the
reflectivity of surface targets that extend past the incident area of the sonar pulse (which is
proportional to R2), as is the case for the sediment surface in a bathymetric survey. Since ka
is Imagenex proprietary information, we define arec = kaPrec/P0 and asrc(θ) = kaPsrc(θ)/P0.
This way, Equations (S1) and (S2) can each be solved for arec:
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Setting these two equal and solving for σbs yields:

σbs =

(
a∆TR

asrc(θ)G

)2

. (S6)

For the data reported here, Gs = 20 dB and Gd = 3 so that G = 0.3. The source amplitude
asrc(θ) has two components: a base magnitude a0 and directional dependence, or horizontal
beam pattern, Bh(θ):

asrc(θ) = a0Bh(θ). (S7)

The horizontal beam pattern was estimated in a two-step process described below. The
base magnitude a0 was then estimated using a standard 38.1 mm diameter tungsten-carbide
calibration sphere in situ (σbs = 1.19 × 10−4 m2 for f = 260 kHz). The sphere was raised
and lowered through the sonar fan in a variety of locations (θ and R) to get a record of
the maximum a∆T . Equations (S6) and (S7) were then combined to solve for a0, yielding
estimates of a0 = (3.2± 0.7)× 105 for the unit used in this study.

2.2 Backscatter vs. flux for a multibeam sonar

Sonar is an effective tool for detecting gas bubbles in water because the large contrast
in acoustic impedance (product of density and speed of sound) causes pressure waves—
when emitted at an appropriate frequency—to reflect strongly off the surface of the bubble.
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However, estimating the volume within gas bubbles that are detected by sonar is challenging
because the magnitude of the sonar signal (the backscatter cross-section, σbs), is roughly
proportional to the total cross-sectional area of bubbles facing the sonar, not their volume.
If the distribution of bubble sizes varies little compared with the number of bubbles insonified,
the backscatter becomes proportional to the total bubble volume, and therefore the flux [1].
This “inverse” method has been demonstrated at marine ebullition sites using downward-
looking, single-beam and split-beam echosounders used during ship-based surveys [1–3]. Here
we develop an inverse method for estimating gas fluxes using a fixed-location, horizontally-
oriented, profiling multibeam sonar.

While multibeam sonars are typically used with the fan oriented vertically for bathymetric
profiling, we used the fan in a horizontal orientation to detect bubbles as they rose through
it (Fig. 1c in the main text). A profiling multibeam sonar projects a pulse that is roughly
planar and fan-shaped, and the received signal is processed to measure σbs as a function of
both the distance from the sonar head (range) and the direction. A bubble stream rising
through the sonar fan contributes to σbs in a spatially-compact collection of connected pixels.
Each pixel, in turn, may insonify multiple bubbles because the fan-shaped pulse has a slight
vertical extent (2.2◦ half-power).

The backscattering measured by the sonar may be expressed as an integral over the radius
of bubbles and over the vertical dimension, z:

σbs =

∫ ∫
N(r, z)σbs(r)B

2
v(z)drdz, (S8)

where N(r, z) is the number of bubbles per radial and vertical unit distance, and σbs(r) is
the backscatter from a single bubble of radius r, which may modeled assuming a spherical
bubble [4]. Bv is the vertical beam pattern that reflects the sensitivity of the multibeam
sonar in the alongship direction.

While the vertical position of individual bubbles within the sonar fan cannot be detected
by the sonar, the impact of the vertical beam pattern can be accounted for by averaging
measurements over a timescale equivalent to the rise time through the sonar fan (0.2-4 s).
Over this timescale, the elevation dependence of N may be neglected, so that the integrals
may be separated:

σbs ≈
∫
B2

v(z)dz

∫
N(r)σbs(r)dr (S9)

Because the profiling sonar has a relatively tight beam pattern (small φ), the relationship
z = R tan(φ) may be approximated as z ≈ Rφ. Applying this change of variables:

σbs ≈ Rφe

∫
N(r)σbs(r)dr, (S10)

φe =

∫
B2

v(φ)dφ, (S11)

where φe is the equivalent beam angle: the angle equivalent to the vertical extent of the
fan if the sensor had no sensitivity dropoff (Bv = 1). The vertical beam pattern B2

v(φ) was

4



measured for the Imagenex 837B during calibration to be Gaussian with half-power angle
φ0 = 2.2◦ (Fig. S2):

B2
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where the second equation is the solution of Equations (S11) and (S12).
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Figure S2: Vertical beam pattern, Bv(φ), for the Imagenex 837B, as measured in the ocean
engineering tank at the UNH (colored lines), and with a Gaussian best-fit curve (black), with
half-power angle φ0 = 2.2◦ [Eq. (S12)]. Colors on lines indicate the horizontal (athwartship)
beam measured, from −60◦ (orange) to 60◦ (blue).

The volumetric gas flow rate through a pixel may similarly be expressed as an integral
over the bubble radius:

Q =

∫
N(r)V (r)urise(r)dr, (S14)

where urise is the vertical rise velocity of the bubble, which may be modeled [5], and V (r) =
(4/3)πr3 is the volume of an assumed-spherical bubble. By combining Equations (S10)
and (S14), we obtain:

Q ≈ σbs

Rφe

∫
N(r)V (r)urise(r)dr∫

N(r)σbs(r)dr
. (S15)
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When the bubble size distribution (BSD), f(r), is relatively constant, the number of bub-
bles may be expressed as the product of the overall bubble density N0 and the BSD,
N(r) = N0f(r). Applying this approximation allows N0 to cancel from the numerator
and denominator, and a combined expression for the flow rate is:

Q ≈ K

(
σbs

R

)
, (S16)

K =

∫
f(r)V (r)urise(r)dr

φe

∫
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. (S17)

The flow rate estimated by Eq. (S16) is subject to temporal smoothing because σbs is mea-
sured over a timescale at least equivalent to the time a bubble takes to traverse the sonar fan.
This smoothing does not impact estimates of the total volume because the smoothed flow
rate is integrated over time. This equation permits theoretical calculation of the coefficient
K for an arbitrary BSD. This may be compared with the coefficients used for the inverse
method in single-beam and split-beam sonar units [1; 3].

Due to the high spatial resolution of the sonar, bubble streams typically activate a cluster
of 2-20 connected pixels, depending on the flow rate and distance from the sonar head. Of
interest for our analysis is the total flow rate from a bubble stream, so Eq. (S16) was applied
to the sum of connected pixels that were active above a threshold of minimum flow rate:

Qtot ≈ K ′
∑(

σbs

R

)
, (S18)

K ′ =
K

foverlap
, (S19)

where foverlap is the degree of overlap between neighboring pixels and is measured empirically.
As an alternative, one could analyze the maximum backscatter value from within the cluster
of pixels, but such a measurement would be more sensitive to the horizontal beam pattern
within each beam (Fig. S5) and would neglect the contribution of bubble streams active
simultaneously and within a few pixel widths.

Fixed bubble size distribution assumption

The approximation of a constant bubble size distribution (BSD) is most appropriate when
the bubble plume is dense enough that the variations in the backscatter derive primarily from
changes in the density of bubbles rather than their size. The ebullition events in UML are
typically sparse, with only 1-20 bubbles per event, so that variations in the instantaneous
backscatter may be primarily due to changes in bubble size and vertical position of the
bubbles within the sonar fan. However, the use of 5-second temporal averaging to estimate
the flow rate both accounts for the impact of the vertical beam pattern and increases the
number of bubbles sampled for a given measurement, making the approximation of constant
BSD more appropriate.

Some single-beam and split-beam sonar units independently report both the backscatter
cross-section and the distribution of backscattering values from individual bubbles [5; 6] that
allow simultaneous estimation of the BSD and flow rate. However, such detail is typically
not available from multibeam sonar units like the one used in our study.
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Multiple scatter reflections

When multiple nearby bubbles are insonified, the received sonar signal amplitude may be
composed of not only the direct backscatter from each of the bubbles, but also the multiple-
scatter signal that bounces between multiple bubbles. The relative intensity of a multi-
scatter signal depends on the scattering from each target and the distance between them.
To estimate the importance of this effect, consider two identical bubbles separated from
each other by distance D and from the sonar head by range R. The scattering from a gas
bubble may be up to 10 times that of the backscattering for kr < 10 [7], so the scattering
cross-section from the multi-scatter signal (σmulti) is:

σmulti ≤
10σ2

bs

4πD2
, (S20)
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σmulti

σbs
≤ 10γ

4

( r
D

)2

, (S21)

where γ is the scattering normalized by the cross-sectional area. For bubbles in the size
range of a ∈ [0.5, 5] mm, γ≈0.1 [7] so that for inter-bubble distance D > 5 mm, σms ≤ 10−2.
If Q = V u/D, where V is the bubble volume for bubbles rising in a homogeneous vertical
stream, then we can define σms as a function of Q and r:

D =
V u

Q
=

4ur3

3Q
, (S22)
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This allows us to define iso-lines of σms in the space of Q and r, a lower bound for Q required
to make multi-scatter signals detectible at a given tolerance σms,

Q ≥
√

2πσms

5γ

4πur2

3
. (S24)

Thus, the flow rate threshold at a given tolerance for multi-scatter signals increases with the
square of the bubble radius, and high-flow bubble streams with small bubbles are the most
conducive to multi-scatter (Fig. S3). For the range of bubble sizes and flow rates observed in
the lake, multi-scatter signals are expected to contribute typically less than 1% of the total
sonar signal and only rarely up to 10%, so their influence is neglected.

2.3 Calibration experiment

This flux-estimation model was tested during a calibration experiment in the Ocean En-
gineering Tank at the University of New Hampshire (UNH). Gas was released at constant
flow rates from an aperture that produced a fairly narrow range of bubble sizes, which were
measured with underwater photographs. The rate of bubble release was measured using
a passive hydrophone near the bubble outlet. The time-averaged sonar signal σbs/R was
summed over all the pixels activated by a given bubble stream, which typically ranged from
2–20 pixels depending on width of the plume and its distance R from the sonar head. This
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Figure S3: Normalized multiple-scatter reflection magnitude σms (isolines in legend) as a
function of flow rate and bubble volume. The shaded orange region shows the range of
bubble sizes and flow rates expected to be encountered, from the BSD [8] and from the
limits on mean flow rate for distinguishing bubbles from anchor lines. In most cases we
expect multi-scatter reflections to contribute less than 1% of the signal, and only above 10%
for the cases of highest flow rates with smallest bubbles.

summed sonar signal was plotted against the flow rate for a range of Q (Fig. 1d in the main
text). These measurements were compared against the modeled response for 3 different bub-
ble size classes ranging from 1.1–2.5 mm in radius. The modeled response fit the data when
foverlap = 1.4.

Bubble image analysis

In addition to passive acoustic methods, bubble photographs were used to estimate the
bubble sizes. The observation area was back lit with a powerful underwater light behind a
1/4-inch translucent plastic diffuser panel. Individual images were taken every second for
at least 1 minute during the calibration tests, and the bubbles were identified and sized
automatically using MATLAB. Bubbles were identified by a best-fit ellipse on a group of
nearby pixels that correspond to edges in intensity in the red channel. Edge pixels were
identified using the Canny method, which identifies pixels in a gradient with magnitude above
a given threshold. We used lower and upper thresholds of 0.0002 and 0.005, respectively, and
a Gaussian filter with width of 1 pixel. Edge pixels were grouped with their neighbors using
the density-based scan algorithm [9]. For these pixel groups, best-fit ellipses were identified
using MATLAB’s regionprops function, and the radii were shrunk by 20% to match the
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images [10] (Fig. 2.3). Bubble volumes were estimated assuming that the bubbles were oblate
spheroids so that V = 4

3
πr2

maxrmin, where rmax and rmin are the respective major and minor
axes of an ellipse. Bubbles smaller than 0.5 mm in radius were rejected from the automated
processing algorithm, to avoid spuriously treating image noise as bubbles.

Figure S4: Automatic bubble identification from calibration images. Left: grayscale image
with identified ellipses superimposed in red. Right: edge pixels with the same ellipses. In
both cases, the radii are reduced by 20% from those identified using MATLAB’s regionprops
tool.

2.4 Classification of events

Events were identified from the sonar data in a way appropriate for detecting and quantifying
ebullition, although other targets can manifest themselves as bubble events. The bottom
of UML is a fairly quiescent zone, with slow seich-driven current on the order of 5 cm/s
and oxygen levels too low to support aerobic biota like fish. However, strong sonar returns
were caused by ropes and chains connecting buoys to anchors. These targets can be clearly
distinguished from bubbles by their persistence and slow lateral drift, which can be observed
directly in animations of the sonar signal. We implemented an automated workflow, which
classified the events using thresholds on their duration, total volume released, and intensity
(mean and maximum flow rate). The values of these thresholds were chosen to as to achieve
high rates of correct identification of both bubbles and anchors.

2.5 Beam pattern

Every sonar unit exhibits directionality dependence in the strength of the sonar returns. To
correct for this dependence, we normalized the data with a beam pattern found through a
combination of detailed calibration and tuning to eliminate the remaining large-scale pattern.
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The beam pattern of an Imagenex 837B sonar unit was measured in the ocean engineering
tank at UNH using a 38.1 mm diameter tungsten-carbide calibration sphere, using a rotating
pole to turn the sonar head horizontally (athwartship) and a motorized spool and sensor to
raise and lower the sphere vertically (alongship). Tests were carried out at 4 and 8 m, though
the 8 m test was less reliable due to interactions with the wall in one direction. The high-
resolution 4-m test shows a roughly Gaussian shape with a central peak and high-frequency
oscillations that correspond to the sensitivity within each beam (Fig. S5).

Figure S5: Left: beam pattern from a calibration sphere shows a roughly Gaussian shape.
The variability in backscatter across each 1-degree beam corresponds to the sensitivity within
each beam. Each line represents the pattern at a different elevation angle (legend in degrees).
The black line superimposed is the calibration-sphere beam pattern. Right: average flux
values as a function of direction (2◦ resolution) from the April 2012 data corrected with the
uncorrected beam pattern, normalized to the value in the central beams.

When corrected with the calibration-sphere beam pattern intensity, the resulting long-
term ebullitive flux data still showed a recognizable residual directional dependence (Fig. S5,
right). The symmetry and temporal consistency of the residual directional dependence in-
dicates that it more likely arises from the measurement system than from an actual spatial
pattern of ebullition heterogeneity. This suggests that the beam pattern measured with the
calibration sphere did not fully account for the field measurements at UML. This discrepancy
may be due to the nearby walls in the tank impacting the measured signal, although the
beam pattern measurements were carried out at a closer range than any wall reflections. The
discrepancy may also arise from differences between the immobile sphere used for calibration
and rising bubble targets detected in the lake. Motion of the bubbles may decorrelate the
sonar pulse in time, spreading the sonar signal over neighboring beams and reducing the
magnitude of the flow rate estimate. This effect is expected to play a larger role in the
outer beams. Ultimately, to address this issue, the residual directional dependence of the
flux record was used to correct the beam pattern.
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3 Analysis of flux magnitudes

3.1 Regimes of the cumulative distribution function

Approximately 98% of the flux measurements follow a lognormal trend over intermediate
magnitudes (0.1-100 mg/m2/day), with parameters log-mean µ = 0.62 and log-standard
deviation σ = 1.8 (Fig. 2c in the main text). Smaller and larger flux measurements are fit
by lognormal models with smaller variance, σ = 0.5 and 1.0, respectively. A flux distribution
composed of multiple lognormal regimes was also observed at natural hydrocarbon seeps in
a marine setting, although in that study the high-flux regime constituted 13% of the flux
measurements, compared with ∼ 1% here [11].

3.2 Uncertainty analysis

The uncertainty associated with flux measurements is estimated to be ∼70% and is primarily
derived from variability and uncertainty in the bubble size distribution (BSD), although the
uncertainty in bubble rise speed, source amplitude, beam pattern and instrument noise were
considered. The flux may be expressed as:

q = cK
nevent∑
i=1

nping∑
j=1

(
σbs

R

)
(S25)

=
cK

a0

nevent∑
i=1

nping∑
j=1

(
a∆TR

Bh(θ)G

)
, (S26)

c =
∆tping

∆tsampleA
, (S27)

where K is the calibration coefficient (L/day/m), ∆tping is the time between pings, nping is
the number of pings in a given event, and ∆tsample and A are the duration and observation
area of the sample over which the flux is calculated from the sum of nevent events. The
backscattering is calculated using the instrument-reported sonar amplitude, a∆T , and the
source level amplitude a0.

The product nping × nevent is large for most flux estimates presented in this work, and
the averaging over so many measurements makes the contribution from instrument noise
negligible. However, the parameters K, a0 and Bh(θ) all have significant uncertainty. Each
is independent and contributes multiplicatively to q, so the relative uncertainty in q can be
estimated using propagation of uncertainty:

var(q)

q2
≈ var(K)

K2
+

var(a0)

a2
0

+
var(Bh)

B2
h

. (S28)

The uncertainty associated with the calibration coefficient K derives from 3 sources: un-
certainty in the bubble rise speed urise, uncertainty in the long-term BSD, and short-term
variations in the BSD (Eq. (S17)).

A number of models for bubble rise speed have been developed, and the nature of the
bubble interface (“clean” vs. “dirty”) can cause discrepancies of up to ≈40%. However, in
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a study of marine gas fluxes using the same inverse hydroacoustic method, the relative error
between 7 different models contributed only 15% relative uncertainty in K and Q [3]. Plumes
of rising bubbles may create upwelling velocities that allow bubbles to rise faster than the
terminal velocity of an individual bubble. However, for the relatively low flow rates observed
in UML (Q ≤ 20 mL/min), upwelling velocities are observed to be limited to 2 cm/s, less
than 10% of the terminal velocity [12]. Thus, we estimate a combined relative uncertainty
of 18% for the rise velocity.

The uncertainty in the long-term BSD may be estimated as ≈23% using the relative dif-
ference in calibration coefficients calculated using BSDs from UML [8] and Lake Kinneret [5].
The final source of uncertainty in K is from short-term variations in the BSD, over timescales
larger than the 5-second averaging period used to measure σbs. We estimate that BSD varies
from the long-term mean by up to ∼50% in the radius. If these factors have a multiplicative
effect, then the combined relative uncertainty is

√
var(K)/K ≈ 58%.

The relative uncertainty in a0 is estimated to be ≈22% from the variability in values
measured across the sonar fan in UML. The relative uncertainty in Bh(θ) is estimated to
be ≈36%, from the coefficient of variance in the flux-derived correction to the beam pattern
(Fig. S5, right) across θ. Using these values in Eq. (S28), we find a combined relative
uncertainty of

√
var(q)/q ≈ 70%. Over long time periods, the large number of bubbles

samples will converge towards the system-wide BSD and reduce the uncertainty in K, the
primary contributor to the overall uncertainty. However, because of the inverse relationship
between K and r, this convergence in BSD does not guarantee that the flux estimates will
converge on the long-term average if there is significant variability in the apparent BSD.

3.3 Spatiotemporal variability as a function of scale

The flux estimates from the deployment from February 18–June 1, 2012 were subsampled
uniformly in space and time (gridded in space and time) at different spatial and temporal
scales, and the fraction of subsamples that fell within ±50% of the long-term, global mean
flux of 7 mg/m2/day are shown in Fig. S6. The fraction of samples in the interval generally
increases with larger spatial and temporal scales, reflecting the rate at which larger-scale,
longer-duration observations become more likely to represent the overall mean. Some slight
non-monotonicity in the trend may be attributed to time periods where the sensor was
inactive. The long-duration (40 day) samples converge to 1 in the limit as the spatial scale
increases to 8 m, but for finer spatial resolution significant heterogeneity remains. Similarly,
the 8-m samples still show significant temporal variability for samples shorter than 10 days.

3.4 Estimation of the radial distribution function

To account for the enhanced importance of events releasing large volumes of gas, the volume-
weighted RDF was estimated using the marked pair correlation function [15, Eqn. (5.3.54)]
and the mark-sum intensity [15, Eqns. (4.2.20) and (5.2.2)], with the volume of gas released
during an event serving as its mark. The isotropized set covariance was estimated numerically
for the irregular observation window and used in place of the pair-specific displacement
area [16, Eqn. (9.29)]. The method was confirmed as unbiased using simulations of a CSR
process on the same domain used by the sonar.
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Figure S6: Spatiotemporal variability as a function of scale of measurement. Color scale
represent the fraction of subsamples of the data from February 18–June 1, 2012 that fall
within ±50% of the long-term, global average flux value, as a function of the spatial extent
for gridding of fluxes (0.5-8 m) and duration (1 hr-40 days). Samples shorter than 1 day in
duration or with a spatial scale on the order of 1 m (as with most bubble traps) are less
than 50% likely to measure a sample within ±50% of the long-term mean. Only multi-week
samples with spatial scale over 5 m always fell within ±50%.

Data from Feb 18–May 31, 2012 were divided into segments of 20 min in duration, which
were classified as high- or low-flux relative to the average over the whole deployment period.
From these segments, continuous samples of durations from 10 min to 4 days were analyzed
to test the impact of observation time on the spatial signature observed.

The sonar technique provides sufficient resolution to confirm that the outlets are distinct,
as the maximum pixel separation of 0.35 m is finer than the event separation of ≥ 0.5 m, and
bubbles are unlikely to drift laterally by more than 0.1 m during their rise of ∼ 1.5 m from
the sediment surface to the sonar fan, given typical lateral currents on the scale of 1 cm/s
(observed from slow, spatially-coherent drift of low-intensity signals reflecting suspended
flocs) and bubble rise velocities of 20 − 25 cm/s [5]. It is possible that non-bubble targets,
such as anchor lines, contaminate the RDF sufficiently to create an appearance of spatial
clustering in the mean, but these constitute ≤ 6% of the flux so should not create the
pronounced effect seen here (Figs. 3d,e in the main text).
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