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Abstract Methane is a potent greenhouse gas whose emission from sediments in inland waters and
shallow oceans may both contribute to global warming and be exacerbated by it. The fraction of methane
emitted by sediments that bypasses dissolution in the water column and reaches the atmosphere as
bubbles depends on the mode and spatiotemporal characteristics of venting from the sediments. Earlier
studies have concluded that hot spots—persistent, high-flux vents—dominate the regional ebullitive
flux from submerged sediments. Here the spatial structure, persistence, and variability in the intensity of
methane venting are analyzed using a high-resolution multibeam sonar record acquired at the bottom of
a lake during multiple deployments over a 9 month period. We confirm that ebullition is strongly episodic,
with distinct regimes of high flux and low flux largely controlled by changes in hydrostatic pressure. Our
analysis shows that the spatial pattern of ebullition becomes homogeneous at the sonar’s resolution over
time scales of hours (for high-flux periods) or days (for low-flux periods), demonstrating that vents are
ephemeral rather than persistent, and suggesting that long-term, lake-wide ebullition dynamics may be
modeled without resolving the fine-scale spatial structure of venting.

1. Introduction
Emissions from submerged sediments in lakes, rivers, wetlands, and oceans contribute to atmospheric
methane, but the nature and magnitude of the release remain uncertain. Owing to their buoyancy and
high methane content, bubbles emitted from the sediment transport methane more efficiently than waters
containing dissolved methane, and field studies suggest that ebullition is often the dominant mode of
methane transfer to the atmosphere [Martens and val Klump, 1980; Kuipphet and Martens, 1982; Keller and
Stallard, 1994; Bastviken et al., 2004; Walter et al., 2006; Bastviken et al., 2011; Maeck et al., 2013a]. Ebullitive
emissions are episodic and spatially heterogeneous, which complicates upscaling of flux estimates [Greinert,
2008; Ostrovsky et al., 2008; Greinert et al., 2010; DelSontro et al., 2011; Wik et al., 2011; Maeck et al., 2013b; Walter
Anthony and Anthony, 2013; Wik et al., 2013; DelSontro et al., 2015].

The episodicity of methane venting may be driven by either the methane source or an external forcing,
depending on which operates on a faster time scale [Maeck et al., 2013b]. For example, drops in hydrostatic or
atmospheric pressure trigger ebullition from methane-generating lake sediments [Scandella et al., 2011] and
marine sediments [Martens and val Klump, 1980; Kuipphet and Martens, 1982; Chanton et al., 1989], possibly
even in the presence of methane hydrates [Torres et al., 2002]. Spatial heterogeneity in methane venting often
manifests as hyperactive vents or vent clusters, sometimes referred to as hot spots [Walter et al., 2006; Wik
et al., 2011; DelSontro et al., 2015]. These focused release points may be associated with enhanced microbial
methanogenesis [Ostrovsky et al., 2008; DelSontro et al., 2011; Maeck et al., 2013a; Wik et al., 2013], sediment
morphological features like pockmarks [Bussmann et al., 2011], a geologic source [Walter Anthony et al., 2012],
dissociating gas hydrates [Westbrook et al., 2009; Berndt et al., 2014; Skarke et al., 2014], or rapidly degrading
permafrost [Shakhova et al., 2014]. The persistence of bubble outlets and the spacing and variability between
them can potentially be used to distinguish the mechanisms controlling ebullition [Greinert, 2008; Wik et al.,
2011], but observations of these critical parameters are sparse and inconclusive.

Ebullitive fluxes are sometimes measured using bubble traps deployed at discrete locations over an extended
time period, but capturing hot spot ebullition or the episodicity of venting events can be challenging with
this approach [Walter et al., 2006; Varadharajan and Hemond, 2012; Maeck et al., 2013b; Walter Anthony and
Anthony, 2013; Wik et al., 2013]. Hydroacoustic surveys from ships [Ostrovsky et al., 2008; Greinert et al., 2010;

RESEARCH LETTER
10.1002/2016GL068668

Key Points:
• We present direct high-resolution,

months-long measurements of
methane venting from lake sediments

• We show that gas vents are
ephemeral and not persistent as
previously assumed

• Our study provides an unprecedented
detailed view of the spatiotemporal
signature of methane flux

Supporting Information:
• Supporting Information S1

Correspondence to:
R. Juanes,
juanes@mit.edu

Citation:
Scandella, B. P., L. Pillsbury,
T. Weber, C. Ruppel, H. F. Hemond,
and R. Juanes (2016), Ephemerality
of discrete methane vents
in lake sediments, Geophys.
Res. Lett., 43, 4374–4381,
doi:10.1002/2016GL068668.

Received 14 MAR 2016

Accepted 28 MAR 2016

Accepted article online 1 APR 2016

Published online 4 MAY 2016

©2016. American Geophysical Union.
All Rights Reserved.

SCANDELLA ET AL. EPHEMERALITY OF DISCRETE METHANE VENTS 4374

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2016GL068668
http://dx.doi.org/10.1002/2016GL068668


Geophysical Research Letters 10.1002/2016GL068668

Figure 1. Study area, sonar lander, and calibration. (a) Location of Upper Mystic Lake (inset, Massachusetts, USA shaded)
and bathymetry at 2.5 m shaded intervals superposed on an aerial photomosaic. Red square indicates the region
bounding the deployment locations (see supporting information). (b) Diagram showing streams of bubbles (red) rising
through the horizontally oriented multibeam sonar fan (blue, not to scale). (c) Photo of the deployment tripod before
redeployment. (d) Calibration curves over 2 orders of magnitude in gas flow rate and for three different bubble size
classes. Data points represent the time-averaged sonar response to streams of a given flow rate, and lines indicate
modeled responses for each bubble class (radius in millimeter, see supporting information).

DelSontro et al., 2011, 2015; Skarke et al., 2014; Weber et al., 2014] cover large areas but only at discrete times
and therefore cannot be used for continuously quantifying fluxes. Short- and long-term seafloor deployments
of hydroacoustic sensors [Greinert, 2008] can detect ebullitive events at specific locations but require careful
calibration to infer spatially resolved fluxes. Here we extend the hydroacoustic approach to acquire long-term,
high-resolution methane emission records from a lake bottom to test hypotheses about the driving forces for
ebullition events and the mechanisms controlling spacing and persistence of gas vents.

2. Multibeam Sonar Deployment

An Imagenex 837B DeltaT 260 kHz rotating multibeam sonar was deployed on a benthic lander in the deep-
water basin (18–19 m) of Upper Mystic Lake (UML), an eutrophic kettle lake north of Boston, MA (Figure 1).
The sonar surveyed in a horizontal plane ≈1.5 m above the lake’s bottom and ≈8–9 m below the depth of
observed thermoclines to collect data over a 9 month period in a ≈330 m2 area. The sediments within this
region are organic rich (20–40%) [Spliethoff and Hemond, 1996] and remain anoxic and at roughly constant
temperature beneath the 4–6∘C hypolimnetic water [Varadharajan, 2009]. The previously measured sediment
accumulation rate of 0.5 cm/yr is expected to be homogeneous within the basin due to relatively flat
bathymetry, and freeze cores from within the basin show strikingly similar depth profiles of arsenic concentra-
tion [Spliethoff and Hemond, 1996]. Over the scale of the lake, deposition rates are expected to be faster near
the periphery and the northern end, where water flows in from a forebay. An identical sonar was calibrated
in a 1300 m3 freshwater tank at the University of New Hampshire to convert the sonar signals into estimates
of the instantaneous flow rate from bubble streams (Figure 1d), which were then integrated to calculate the
flux associated with ebullition episodes (see Methods and supporting information).

3. Temporal Signature of Methane Venting

Episodicity observed in spatially averaged daily flux from the sonar data confirms that strong venting episodes
can be triggered by drops in hydrostatic pressure (Figure 2a), although the negative correlation of ebullition
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Figure 2. Episodicity of methane venting. (a) Time series of daily, spatially averaged fluxes (black bars) from 10 February
through 31 May 2012 shows that enhanced fluxes are triggered by hydrostatic pressure drops (blue line). The episodicity
of this triggering can be reproduced using a mechanistic numerical model of gas release through dynamic conduits
(orange line). (b) Time series from October 2012, when a hydrostatic pressure drop of 1 m beginning on 26 October
triggered massive venting (note the different axis scales) at a different location from the data presented in Figure 2a
(see supporting information). (c) Cumulative distribution of 1 min spatially averaged flux values shows three distinct
lognormal regimes, which each appears as lines of constant slope on the given axes. (d) The hazard function h decays as
a power law with interarrival time 𝜏 for coarse (64 m2, black) and fine (0.25 m2, red) pixels during high-flux (solid lines)
and low-flux (dashed lines) periods.

rate with hydrostatic pressure and its rate of change (R2 =0.5 and 0.1, respectively) is weak, primarily because
not all hydrostatic pressure drops trigger ebullition episodes. For example, the releases in late February and
late April 2012 are both followed by month-long periods of relative quiescence, despite several ≈0.3 m
hydrostatic drops that had earlier been enough to trigger large methane releases. The duration of these
quiescent periods reflects the time for sediments to recharge the trapped bubbles to a size large enough to
be susceptible to mobilization by hydrostatic triggering.

Hydrostatic triggering of ebullition may be explained mechanistically as a response to changes in effective
stress. With falling hydrostatic pressure, total stress is reduced, forcing gas-charged sediments into a more
tensile effective stress state. At a critical stress, gas-filled cavities then dilate near-vertical conduits to the sedi-
ment’s surface [Boudreau et al., 2005; Jain and Juanes, 2009], and the critical stress may be modeled assuming
that the sediment-water matrix is elastic [Algar et al., 2011a, 2011b] or plastic [Scandella et al., 2011]. The
timing and relative magnitude of many of the peak ebullition events can be reproduced using a numerical
model [Scandella et al., 2011] that captures this process and that is tuned with another UML data set (Figures 2a
and 2b). The tuning parameter, the ebullition number, controls the episodicity of methane fluxes and reflects
the balance between the tensile strength of the sediment-water matrix and the characteristic hydrostatic
pressure variations. The model can capture the features of most large ebullition events, although it does not
fully reproduce the long quiescent periods during March and May 2012 (Figures 2a and 2b).

The high temporal resolution, together with the large areal coverage and long duration of the sonar record,
allows for a more detailed analysis of ebullition dynamics that had previously been possible with bubble-trap
methods. High-frequency flux measurements (binned at 1 min) show that approximately 98% of the flux mea-
surements follow a lognormal distribution over 3 orders of magnitude (0.1–100 mL/m2/d) (Figure 2c, see
supporting information). Lognormally distributed measurements typically arise from processes controlled by
the product of independent factors, which in this setting may include the bubble mobilization rate over the
observation area and heterogeneity in conductivity of dynamic gas escape pathways.
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Further insight into processes controlling ebullition is furnished by the distribution of interarrival times
between bubble-release events—“events” are bubble-release sequences that persist with breaks no longer
than 2 s (given 5 s moving-average filtering). Distributions of interarrival times may be analyzed using the
hazard function

h(𝜏) = f (𝜏)
1 − F(𝜏)

, (1)

where f (𝜏) is the probability density function of interarrival times 𝜏 , and F(𝜏) is the cumulative density func-
tion [Stapelberg, 2009]. h(𝜏) quantifies the probability of an event occurring conditioned on a given amount
of time having passed since the last event. For a Poisson process, events are independent and have uniform
probability, corresponding to constant h since the events have no memory of previous arrivals. For a Weibull
process—a model often used in reliability engineering to model component failures—the hazard function
is a power law, h(𝜏) = (𝛽∕𝜆)(𝜏∕𝜆)𝛽−1, where 𝛽 and 𝜆 are the shape and scale parameters, respectively. A
decreasing power law (𝛽<1) corresponds to strong temporal clustering, while an increasing power law (𝛽>1)
is associated with more regularly periodic arrivals [Stapelberg, 2009].

In UML, ebullition events are characterized by decaying power laws. For events collected from a 64 m2 aver-
aging area, the decay in both high- and low-flux regimes is well fit by 𝛽≈0.4, which reflects mild temporal
clustering (Figure 2d). At the fine-scale resolution of the sonar (0.25 m2), h(𝜏) shows two distinct regimes
characterized by different power law scalings. For short-term interarrival times (𝜏 <5 min), the decay has a
slope less than −1, indicating stronger short-term clustering than possible with a Weibull process, which
requires 𝛽 > 0. The power law regime does not extend over all 𝜏 but instead transitions to a regime of more
gradual decay over long interarrival times (𝜏 > 5 min), consistent with reestablishment of sediment cohesion
and healing of vent conduits. Over long 𝜏 , the high-flux regime shows even more gradual decay in h(𝜏) than
the low-flux regime, implying a larger role for independent arrivals.

4. Spatial Signature of Methane Venting

The spatial structure of methane venting is found to depend on the overall flux regime (high flux versus low
flux). Daily gas flux maps during high-flux periods reveal gas release from densely spaced outlets, while the
low-flux periods are associated with sparser venting (Figure 3a). The ubiquity of venting across the observa-
tion area during high-flux periods may reflect the relative homogeneity of methanogenesis, whose controlling
parameters (sediment accumulation and temperature) are fairly homogeneous above the meter scale in the
deepwater basin [Spliethoff and Hemond, 1996].

During high-flux periods, ebullition events occur in clusters of enhanced activity, although, over time, events
appear throughout the field of observation. While some locations vent gas at over 3 times the spatiotem-
poral mean flux of 10 mL/m2/d (Figure 3b), these contribute only 1% of the total flux, suggesting a minimal
role for hot spots. Instead, gas appears to be released through independent, near-vertical conduits or conduit
networks linked to outlets, where the scale of lateral transport or significant heterogeneity in sediment
properties is less than the resolution of the sonar, 0.5 m. Such a laterally dense network of release pathways
should develop in sediments that generate methane throughout their bulk. In this case, transport from the
sediment matrix toward release pathways would be diffusion limited to a distance on the scale of centimeters
in the days to weeks between ebullition events. The outlet and conduit spacing may also be controlled by
heterogeneity in the chemistry and mechanics of the sediments, though our results show that such hetero-
geneity does not give rise to persistent outlets spaced more than 0.5 m apart.

A spatial clustering analysis of the observed methane-flux signal yields additional clues about the system’s
self-organization. Our analysis is based on the radial distribution function (RDF), g(r), which detects clustering
as a function of interpoint distance r [Illian et al., 2008] (see Methods and supporting information). The analysis
yields g> 1 for short-range (r<1 m) events over short time periods (10 min and 1 h samples), indicating a high
areal density of events relative to a completely spatially random (CSR) process. The short-range clustering is
balanced by long-range spacing (g<1 for r>1 m). This signature of short-range clustering and long-range
spacing was strongest for 10 min samples and became progressively weaker for longer duration samples,
eventually decaying to a homogeneous RDF (g(r)≈1) over daily samples (Figure 3d). This clustering signa-
ture indicates that gas is vented from nearby, distinct outlets within a short period of time (see Methods and
supporting information).
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Figure 3. Spatial structure of methane venting. (a) This calendar representation of daily sonar-detected gas venting in
April 2012 shows the spatial variability of methane fluxes across the sonar detection area. Days with higher than average
flux are underlined. (b) Average flux map from March to May 2012. (c) Spatial coefficient of variation (CV) between flux
measurements on a grid with resolution of 0.5 m, averaged over samples of duration 1–24 h collected during Spring
2012. (d and e) Radial distribution function (RDF), g(r), for high-flux (Figure 3d) and low-flux (Figure 3e) periods during
Spring 2012.

Compared with the high-flux regime, low-flux periods show both stronger variability and longer persistence
in the structure of the heterogeneity. For a given observation duration, the coefficient of variation (CV) across
space is more than twice the CV from high-flux periods (Figure 3c). The spatial structure of this variability
is evident in the RDF, which exhibits short-range spatial clustering that is similar to the clustering observed
during high-flux periods, except that it extends to r≤2 m and persists over timescales as long as 1 day
(Figure 3e, see supporting information).

The ephemeral nature of spatial clustering evidenced by the RDF is consistent with the spatial localization
of short-term temporal clustering observed in h(𝜏) and is likely associated with the same process. Ebullition
events may trigger “aftershock” events by mechanically disturbing nearby sediments that contain critically
stressed gas pockets. Due to the compliance of the sediments and the small magnitude of deformation asso-
ciated with bubble passage, this mechanism would likely require that trapped bubbles be spaced only a few
centimeters apart.

The decay of clustering over progressively longer periods indicates that individual outlet clusters are active
for a short time but do not persist to dominate the long-term flux pattern. Instead, independent outlets or
clusters subsequently become active at intermediate, independent locations until the domain is filled with
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emission sites approximating a CSR pattern. The clustering pattern in the RDF decays faster during high-flux
periods, suggesting that higher fluxes arise primarily from more frequent initiation of spatially independent
events. The spatial independence of new arrivals over long time periods is consistent with the conceptual
model that long-term, large-scale fluxes are driven by hydrostatic pressure drops, which act equally over the
sediment surface to liberate trapped gas.

5. Conclusions

In summary, the high spatial and temporal resolution afforded by the sonar data allows discernment of
discrete ebullitive episodes and vent locations, and the long deployments permit analyses over months’ long
periods. Our analysis shows that specific methane vents in UML do not repeatedly dominate fluxes during
ebullitive episodes; instead, vents are frequently forming and closing off throughout the homogeneous
sediments that make up the seep field in the lake’s deep basin. This finding challenges the idea that sediment
vents, once established, will continue to be the preferential loci over the scale of meters. While these results
may not directly apply to settings with more heterogeneous geology [Hornbach et al., 2004; Walter Anthony
et al., 2012; Skarke et al., 2014] or sediment deposition patterns [Bussmann et al., 2011; DelSontro et al., 2011;
Maeck et al., 2013a; DelSontro et al., 2015], they suggest that the acquisition of longer and more spatially
comprehensive data sets on ebullition events in such settings may better constrain the relative importance
of hot spot versus distributed methane emissions from submerged sediments for both local and global
flux estimates.

Appendix A: Methods Summary
A1. Sonar
The sonar data were acquired using an Imagenex 837B multibeam profiling sonar, which detects acoustic
targets with high spatial and temporal resolution over a roughly planar observation area, a fan of ≈100∘

by ≈2∘. The pulse repetition rate was approximately 6 Hz so that bubbles at 1 and 20 m range were insonified
by 1 and 30 consecutive pings, respectively. The locations of the detected bubbles are accurate to <0.5 m
because the distance resolution was 0.18 m and the angular resolution of 1∘ corresponds to at most 0.4 m at
the maximum range of 20 m. The horizontal orientation of the unit was set using a gimbal and measured to
remain within ≈0.2∘ of horizontal with an on-board pitch-roll-heading sensor.

The directional sensitivity of the sonar was corrected using a combination of the beam pattern measured
in the ocean engineering tank at the University of New Hampshire (UNH) and tuning to remove large-scale
directional sensitivity from the long-term average flux during a given multimonth deployment period (see
supporting information).

A2. Calibration
The sonar was calibrated to estimate the volumetric flow rate of bubble streams rising through its obser-
vation area of ≈330 m2. The calibration was performed on a unit of the same model in the Ocean
Engineering tank at UNH by injecting bubbles at a constant flow rate and bubble size distribution from
beneath the sonar fan. The bubble sizes were measured independently using a camera in a waterproof
housing, and the rate of bubble release was monitored with a passive hydrophone. The time-averaged
backscatter 𝜎bs measured by the sonar scaled linearly with the flow rate Q at a given bubble size, and the
calibration coefficient K varied with the bubble size (Figure 1d),

Q = K

(
𝜎bs

R

)
, (A1)

where R is the range, the distance from the sonar head to the target. The dependence on flow rate and
bubble size matched predictions from an analytical model of the expected sonar response to a constant
bubble stream rising through a horizontally oriented multibeam sonar. The expected response from a bubble
stream with a wide but constant bubble size distribution was calculated by adapting a method that was devel-
oped for single and split beam sonar [Muyakshin and Sauter, 2010; Veloso et al., 2015], assuming a constant
bubble size distribution measured in UML with an optical bubble sizer [Delwiche et al., 2015] and assuming
that plumes are too sparse to be influenced significantly by multiple scatter reflections (see supporting
information). The relative uncertainty in flux estimates is estimated to be ∼70% (see supporting information).
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A3. Bubble Identification
After the raw data were smoothed with a 5 s moving-average filter and coarsened to 1 s resolution, they were
thresholded to identify connected groups of pixels contributing a minimum flow rate, 0.03 mL/min. Ebullition
events, comprising a series of bubbles released in rapid succession from the same location, were identified
from the time series of flow rates from these active groups as periods of nonzero activity with breaks of no
more than 2 s. The volume of gas estimated by the sonar was adjusted to STP.

Candidate ebullition events were distinguished from nonbubble targets with limits on their intensity
and duration, and this process correctly classified >99% of both the bubble and nonbubble volume (see
supporting information).

A4. Hazard Function
The hazard function was estimated using a histogram of the event interarrival times to estimate f (𝜏), which
was then converted to h(𝜏) using the definition in equation (1). Logarithmically spaced bins were used to
reduce the variance of the estimator at long interarrival times, and the estimator was validated with simula-
tions of Poisson and Weibull processes. A minimum interarrival time of 15 s was used because this represents
the characteristic duration of bubbling events. In order to analyze long, continuous records in each location,
day-long samples were classified as either high flux or low flux based on their relation to the long-term average
flux, which is independent of the time scale of coarsening.

A5. Radial Distribution Function
To account for the enhanced importance of events releasing large volumes of gas, the volume-weighted RDF
g(r) was estimated using the marked pair correlation function [Illian et al., 2008] (see supporting information).
Estimating the RDF requires an observation window within which the data are first-order stationary in density
and magnitude [Illian et al., 2008]. This stationary window was found to span the central 60∘ of the sonar fan
and from 6 to 20 m from the sonar head (Figure 3b), after correcting for the directional sensitivity of the sonar.

A6. Conduit Dilation Model
The episodicity of spatially-averaged fluxes was reproduced with a numerical, mechanistic model of methane
gas transport through dynamic conduits that dilate in response to changes in effective stress [Scandella
et al., 2011]. This 1-D model captures the accumulation of trapped gas in a vertical column of sediment
and tracks the gas pressure and volume as a hydrostatic pressure forcing triggers plastic deformation of
the sediment-water matrix surrounding gas cavities. When the effective stress reaches a depth-dependent
tensile strength threshold, the gas forces open a conduit to the surface and escape. The fundamental param-
eter of the model, called the ebullition number, Ne, reflects the balance between the vertical gradient in
tensile strength of the mud and the characteristic magnitude of hydrostatic pressure changes. Larger values of
Ne require larger, rarer drops in hydrostatic pressure to release gas from the deepest sediments and thus drive
more strongly episodic venting. In this study, the best fit value of Ne = 5 was the same as in a previous study
on UML that quantified ebullition with floating bubble traps [Scandella et al., 2011].
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1 Deployment locations

The data presented in this paper were collected from 2 nearby locations in the deepwater
central basin of UML. Their relative locations and deployment periods in 2012 are mapped
in Fig. S1.

Figure S1: Map showing the relative locations and orientations of the 2 deployment locations
where the data presented here were collected.

2 Flux estimation methods

2.1 Backscatter measurement using the Imagenex 837B

The Imagenex 837B Delta T multibeam profiling sonar does not measure backscatter cross-
section directly, so we present here the method used to calibrate it for that purpose.

The pressure wave amplitude of the sound received by a sonar unit is that of the source,
diminished by spherical spreading and attenuation, and increased by the magnitude of the
target causing the reflection. The received amplitude Prec after travel to and from targets
with backscatter cross-section σbs at distance R, with spherical spreading, is:(

Prec

P0

)2

=

(
Psrc(θ)

P0

)2(
R

R0

)−4

10−
2αR
10
σbs
R2

0

, (S1)

where Psrc(θ) is the directionally-dependent amplitude of the source signal, P0 and R0 are
reference pressure and length values, and α is a coefficient of acoustic attenuation in the
water. The use of reference values facilitates handling the sonar equation in logarithmic
form, though for the sake of clarity we will use SI units.
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The Imagenex DeltaT reports an amplitude that is proportional to the received pressure
in each pixel (beam for direction and sample for distance from the sonar head):

(a∆T )2 =

(
ka
Prec(θ)

P0

)2

G2

(
R

R0

)2

10
2αR
10 , (S2)

G = 10
Gs
20

(
Gd

100

)
, (S3)

where ka is an unknown proportionality constant and G is the user-defined gain on the
signal. The user-defined gain G depends on 2 parameters, the hardware “StartGain” (Gs)
and the software “DisplayGain” (Gd) that scales the data into the 8-bit dynamic range.
The power of 2 in R/R0 compensates for part of the geometric spreading and is applied
as a time-varying gain (TVG) to the incoming signal. It is appropriate for quantifying the
reflectivity of surface targets that extend past the incident area of the sonar pulse (which is
proportional to R2), as is the case for the sediment surface in a bathymetric survey. Since ka
is Imagenex proprietary information, we define arec = kaPrec/P0 and asrc(θ) = kaPsrc(θ)/P0.
This way, Equations (S1) and (S2) can each be solved for arec:

a2
rec = a2

src

(
R

R0

)−4

10
−2αR

10
σbs
R2

0

(S4)

=
(a∆T

G

)2
(
R

R0

)−2

10
−2αR

10 . (S5)

Setting these two equal and solving for σbs yields:

σbs =

(
a∆TR

asrc(θ)G

)2

. (S6)

For the data reported here, Gs = 20 dB and Gd = 3 so that G = 0.3. The source amplitude
asrc(θ) has two components: a base magnitude a0 and directional dependence, or horizontal
beam pattern, Bh(θ):

asrc(θ) = a0Bh(θ). (S7)

The horizontal beam pattern was estimated in a two-step process described below. The
base magnitude a0 was then estimated using a standard 38.1 mm diameter tungsten-carbide
calibration sphere in situ (σbs = 1.19 × 10−4 m2 for f = 260 kHz). The sphere was raised
and lowered through the sonar fan in a variety of locations (θ and R) to get a record of
the maximum a∆T . Equations (S6) and (S7) were then combined to solve for a0, yielding
estimates of a0 = (3.2± 0.7)× 105 for the unit used in this study.

2.2 Backscatter vs. flux for a multibeam sonar

Sonar is an effective tool for detecting gas bubbles in water because the large contrast
in acoustic impedance (product of density and speed of sound) causes pressure waves—
when emitted at an appropriate frequency—to reflect strongly off the surface of the bubble.
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However, estimating the volume within gas bubbles that are detected by sonar is challenging
because the magnitude of the sonar signal (the backscatter cross-section, σbs), is roughly
proportional to the total cross-sectional area of bubbles facing the sonar, not their volume.
If the distribution of bubble sizes varies little compared with the number of bubbles insonified,
the backscatter becomes proportional to the total bubble volume, and therefore the flux [1].
This “inverse” method has been demonstrated at marine ebullition sites using downward-
looking, single-beam and split-beam echosounders used during ship-based surveys [1–3]. Here
we develop an inverse method for estimating gas fluxes using a fixed-location, horizontally-
oriented, profiling multibeam sonar.

While multibeam sonars are typically used with the fan oriented vertically for bathymetric
profiling, we used the fan in a horizontal orientation to detect bubbles as they rose through
it (Fig. 1c in the main text). A profiling multibeam sonar projects a pulse that is roughly
planar and fan-shaped, and the received signal is processed to measure σbs as a function of
both the distance from the sonar head (range) and the direction. A bubble stream rising
through the sonar fan contributes to σbs in a spatially-compact collection of connected pixels.
Each pixel, in turn, may insonify multiple bubbles because the fan-shaped pulse has a slight
vertical extent (2.2◦ half-power).

The backscattering measured by the sonar may be expressed as an integral over the radius
of bubbles and over the vertical dimension, z:

σbs =

∫ ∫
N(r, z)σbs(r)B

2
v(z)drdz, (S8)

where N(r, z) is the number of bubbles per radial and vertical unit distance, and σbs(r) is
the backscatter from a single bubble of radius r, which may modeled assuming a spherical
bubble [4]. Bv is the vertical beam pattern that reflects the sensitivity of the multibeam
sonar in the alongship direction.

While the vertical position of individual bubbles within the sonar fan cannot be detected
by the sonar, the impact of the vertical beam pattern can be accounted for by averaging
measurements over a timescale equivalent to the rise time through the sonar fan (0.2-4 s).
Over this timescale, the elevation dependence of N may be neglected, so that the integrals
may be separated:

σbs ≈
∫
B2

v(z)dz

∫
N(r)σbs(r)dr (S9)

Because the profiling sonar has a relatively tight beam pattern (small φ), the relationship
z = R tan(φ) may be approximated as z ≈ Rφ. Applying this change of variables:

σbs ≈ Rφe

∫
N(r)σbs(r)dr, (S10)

φe =

∫
B2

v(φ)dφ, (S11)

where φe is the equivalent beam angle: the angle equivalent to the vertical extent of the
fan if the sensor had no sensitivity dropoff (Bv = 1). The vertical beam pattern B2

v(φ) was
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measured for the Imagenex 837B during calibration to be Gaussian with half-power angle
φ0 = 2.2◦ (Fig. S2):

B2
v(φ) ≈ exp

[
− ln(2)

(
φ

φ0/2

)2
]
, (S12)

and, thus, the equivalent beam angle takes the form

φe ≈
φ0

2

√
π

ln(2)
. (S13)

where the second equation is the solution of Equations (S11) and (S12).
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Figure S2: Vertical beam pattern, Bv(φ), for the Imagenex 837B, as measured in the ocean
engineering tank at the UNH (colored lines), and with a Gaussian best-fit curve (black), with
half-power angle φ0 = 2.2◦ [Eq. (S12)]. Colors on lines indicate the horizontal (athwartship)
beam measured, from −60◦ (orange) to 60◦ (blue).

The volumetric gas flow rate through a pixel may similarly be expressed as an integral
over the bubble radius:

Q =

∫
N(r)V (r)urise(r)dr, (S14)

where urise is the vertical rise velocity of the bubble, which may be modeled [5], and V (r) =
(4/3)πr3 is the volume of an assumed-spherical bubble. By combining Equations (S10)
and (S14), we obtain:

Q ≈ σbs

Rφe

∫
N(r)V (r)urise(r)dr∫

N(r)σbs(r)dr
. (S15)
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When the bubble size distribution (BSD), f(r), is relatively constant, the number of bub-
bles may be expressed as the product of the overall bubble density N0 and the BSD,
N(r) = N0f(r). Applying this approximation allows N0 to cancel from the numerator
and denominator, and a combined expression for the flow rate is:

Q ≈ K

(
σbs

R

)
, (S16)

K =

∫
f(r)V (r)urise(r)dr

φe

∫
f(r)σbs(r)dr

. (S17)

The flow rate estimated by Eq. (S16) is subject to temporal smoothing because σbs is mea-
sured over a timescale at least equivalent to the time a bubble takes to traverse the sonar fan.
This smoothing does not impact estimates of the total volume because the smoothed flow
rate is integrated over time. This equation permits theoretical calculation of the coefficient
K for an arbitrary BSD. This may be compared with the coefficients used for the inverse
method in single-beam and split-beam sonar units [1; 3].

Due to the high spatial resolution of the sonar, bubble streams typically activate a cluster
of 2-20 connected pixels, depending on the flow rate and distance from the sonar head. Of
interest for our analysis is the total flow rate from a bubble stream, so Eq. (S16) was applied
to the sum of connected pixels that were active above a threshold of minimum flow rate:

Qtot ≈ K ′
∑(

σbs

R

)
, (S18)

K ′ =
K

foverlap
, (S19)

where foverlap is the degree of overlap between neighboring pixels and is measured empirically.
As an alternative, one could analyze the maximum backscatter value from within the cluster
of pixels, but such a measurement would be more sensitive to the horizontal beam pattern
within each beam (Fig. S5) and would neglect the contribution of bubble streams active
simultaneously and within a few pixel widths.

Fixed bubble size distribution assumption

The approximation of a constant bubble size distribution (BSD) is most appropriate when
the bubble plume is dense enough that the variations in the backscatter derive primarily from
changes in the density of bubbles rather than their size. The ebullition events in UML are
typically sparse, with only 1-20 bubbles per event, so that variations in the instantaneous
backscatter may be primarily due to changes in bubble size and vertical position of the
bubbles within the sonar fan. However, the use of 5-second temporal averaging to estimate
the flow rate both accounts for the impact of the vertical beam pattern and increases the
number of bubbles sampled for a given measurement, making the approximation of constant
BSD more appropriate.

Some single-beam and split-beam sonar units independently report both the backscatter
cross-section and the distribution of backscattering values from individual bubbles [5; 6] that
allow simultaneous estimation of the BSD and flow rate. However, such detail is typically
not available from multibeam sonar units like the one used in our study.
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Multiple scatter reflections

When multiple nearby bubbles are insonified, the received sonar signal amplitude may be
composed of not only the direct backscatter from each of the bubbles, but also the multiple-
scatter signal that bounces between multiple bubbles. The relative intensity of a multi-
scatter signal depends on the scattering from each target and the distance between them.
To estimate the importance of this effect, consider two identical bubbles separated from
each other by distance D and from the sonar head by range R. The scattering from a gas
bubble may be up to 10 times that of the backscattering for kr < 10 [7], so the scattering
cross-section from the multi-scatter signal (σmulti) is:

σmulti ≤
10σ2

bs

4πD2
, (S20)

σms =
σmulti

σbs
≤ 10γ

4

( r
D

)2

, (S21)

where γ is the scattering normalized by the cross-sectional area. For bubbles in the size
range of a ∈ [0.5, 5] mm, γ≈0.1 [7] so that for inter-bubble distance D > 5 mm, σms ≤ 10−2.
If Q = V u/D, where V is the bubble volume for bubbles rising in a homogeneous vertical
stream, then we can define σms as a function of Q and r:

D =
V u

Q
=

4ur3

3Q
, (S22)

σms ≤
5γ

2

(
3Q

4πur2

)2

. (S23)

This allows us to define iso-lines of σms in the space of Q and r, a lower bound for Q required
to make multi-scatter signals detectible at a given tolerance σms,

Q ≥
√

2πσms

5γ

4πur2

3
. (S24)

Thus, the flow rate threshold at a given tolerance for multi-scatter signals increases with the
square of the bubble radius, and high-flow bubble streams with small bubbles are the most
conducive to multi-scatter (Fig. S3). For the range of bubble sizes and flow rates observed in
the lake, multi-scatter signals are expected to contribute typically less than 1% of the total
sonar signal and only rarely up to 10%, so their influence is neglected.

2.3 Calibration experiment

This flux-estimation model was tested during a calibration experiment in the Ocean En-
gineering Tank at the University of New Hampshire (UNH). Gas was released at constant
flow rates from an aperture that produced a fairly narrow range of bubble sizes, which were
measured with underwater photographs. The rate of bubble release was measured using
a passive hydrophone near the bubble outlet. The time-averaged sonar signal σbs/R was
summed over all the pixels activated by a given bubble stream, which typically ranged from
2–20 pixels depending on width of the plume and its distance R from the sonar head. This
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Figure S3: Normalized multiple-scatter reflection magnitude σms (isolines in legend) as a
function of flow rate and bubble volume. The shaded orange region shows the range of
bubble sizes and flow rates expected to be encountered, from the BSD [8] and from the
limits on mean flow rate for distinguishing bubbles from anchor lines. In most cases we
expect multi-scatter reflections to contribute less than 1% of the signal, and only above 10%
for the cases of highest flow rates with smallest bubbles.

summed sonar signal was plotted against the flow rate for a range of Q (Fig. 1d in the main
text). These measurements were compared against the modeled response for 3 different bub-
ble size classes ranging from 1.1–2.5 mm in radius. The modeled response fit the data when
foverlap = 1.4.

Bubble image analysis

In addition to passive acoustic methods, bubble photographs were used to estimate the
bubble sizes. The observation area was back lit with a powerful underwater light behind a
1/4-inch translucent plastic diffuser panel. Individual images were taken every second for
at least 1 minute during the calibration tests, and the bubbles were identified and sized
automatically using MATLAB. Bubbles were identified by a best-fit ellipse on a group of
nearby pixels that correspond to edges in intensity in the red channel. Edge pixels were
identified using the Canny method, which identifies pixels in a gradient with magnitude above
a given threshold. We used lower and upper thresholds of 0.0002 and 0.005, respectively, and
a Gaussian filter with width of 1 pixel. Edge pixels were grouped with their neighbors using
the density-based scan algorithm [9]. For these pixel groups, best-fit ellipses were identified
using MATLAB’s regionprops function, and the radii were shrunk by 20% to match the
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images [10] (Fig. 2.3). Bubble volumes were estimated assuming that the bubbles were oblate
spheroids so that V = 4

3
πr2

maxrmin, where rmax and rmin are the respective major and minor
axes of an ellipse. Bubbles smaller than 0.5 mm in radius were rejected from the automated
processing algorithm, to avoid spuriously treating image noise as bubbles.

Figure S4: Automatic bubble identification from calibration images. Left: grayscale image
with identified ellipses superimposed in red. Right: edge pixels with the same ellipses. In
both cases, the radii are reduced by 20% from those identified using MATLAB’s regionprops
tool.

2.4 Classification of events

Events were identified from the sonar data in a way appropriate for detecting and quantifying
ebullition, although other targets can manifest themselves as bubble events. The bottom
of UML is a fairly quiescent zone, with slow seich-driven current on the order of 5 cm/s
and oxygen levels too low to support aerobic biota like fish. However, strong sonar returns
were caused by ropes and chains connecting buoys to anchors. These targets can be clearly
distinguished from bubbles by their persistence and slow lateral drift, which can be observed
directly in animations of the sonar signal. We implemented an automated workflow, which
classified the events using thresholds on their duration, total volume released, and intensity
(mean and maximum flow rate). The values of these thresholds were chosen to as to achieve
high rates of correct identification of both bubbles and anchors.

2.5 Beam pattern

Every sonar unit exhibits directionality dependence in the strength of the sonar returns. To
correct for this dependence, we normalized the data with a beam pattern found through a
combination of detailed calibration and tuning to eliminate the remaining large-scale pattern.
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The beam pattern of an Imagenex 837B sonar unit was measured in the ocean engineering
tank at UNH using a 38.1 mm diameter tungsten-carbide calibration sphere, using a rotating
pole to turn the sonar head horizontally (athwartship) and a motorized spool and sensor to
raise and lower the sphere vertically (alongship). Tests were carried out at 4 and 8 m, though
the 8 m test was less reliable due to interactions with the wall in one direction. The high-
resolution 4-m test shows a roughly Gaussian shape with a central peak and high-frequency
oscillations that correspond to the sensitivity within each beam (Fig. S5).

Figure S5: Left: beam pattern from a calibration sphere shows a roughly Gaussian shape.
The variability in backscatter across each 1-degree beam corresponds to the sensitivity within
each beam. Each line represents the pattern at a different elevation angle (legend in degrees).
The black line superimposed is the calibration-sphere beam pattern. Right: average flux
values as a function of direction (2◦ resolution) from the April 2012 data corrected with the
uncorrected beam pattern, normalized to the value in the central beams.

When corrected with the calibration-sphere beam pattern intensity, the resulting long-
term ebullitive flux data still showed a recognizable residual directional dependence (Fig. S5,
right). The symmetry and temporal consistency of the residual directional dependence in-
dicates that it more likely arises from the measurement system than from an actual spatial
pattern of ebullition heterogeneity. This suggests that the beam pattern measured with the
calibration sphere did not fully account for the field measurements at UML. This discrepancy
may be due to the nearby walls in the tank impacting the measured signal, although the
beam pattern measurements were carried out at a closer range than any wall reflections. The
discrepancy may also arise from differences between the immobile sphere used for calibration
and rising bubble targets detected in the lake. Motion of the bubbles may decorrelate the
sonar pulse in time, spreading the sonar signal over neighboring beams and reducing the
magnitude of the flow rate estimate. This effect is expected to play a larger role in the
outer beams. Ultimately, to address this issue, the residual directional dependence of the
flux record was used to correct the beam pattern.
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3 Analysis of flux magnitudes

3.1 Regimes of the cumulative distribution function

Approximately 98% of the flux measurements follow a lognormal trend over intermediate
magnitudes (0.1-100 mg/m2/day), with parameters log-mean µ = 0.62 and log-standard
deviation σ = 1.8 (Fig. 2c in the main text). Smaller and larger flux measurements are fit
by lognormal models with smaller variance, σ = 0.5 and 1.0, respectively. A flux distribution
composed of multiple lognormal regimes was also observed at natural hydrocarbon seeps in
a marine setting, although in that study the high-flux regime constituted 13% of the flux
measurements, compared with ∼ 1% here [11].

3.2 Uncertainty analysis

The uncertainty associated with flux measurements is estimated to be ∼70% and is primarily
derived from variability and uncertainty in the bubble size distribution (BSD), although the
uncertainty in bubble rise speed, source amplitude, beam pattern and instrument noise were
considered. The flux may be expressed as:

q = cK
nevent∑
i=1

nping∑
j=1

(
σbs

R

)
(S25)

=
cK

a0

nevent∑
i=1

nping∑
j=1

(
a∆TR

Bh(θ)G

)
, (S26)

c =
∆tping

∆tsampleA
, (S27)

where K is the calibration coefficient (L/day/m), ∆tping is the time between pings, nping is
the number of pings in a given event, and ∆tsample and A are the duration and observation
area of the sample over which the flux is calculated from the sum of nevent events. The
backscattering is calculated using the instrument-reported sonar amplitude, a∆T , and the
source level amplitude a0.

The product nping × nevent is large for most flux estimates presented in this work, and
the averaging over so many measurements makes the contribution from instrument noise
negligible. However, the parameters K, a0 and Bh(θ) all have significant uncertainty. Each
is independent and contributes multiplicatively to q, so the relative uncertainty in q can be
estimated using propagation of uncertainty:

var(q)

q2
≈ var(K)

K2
+

var(a0)

a2
0

+
var(Bh)

B2
h

. (S28)

The uncertainty associated with the calibration coefficient K derives from 3 sources: un-
certainty in the bubble rise speed urise, uncertainty in the long-term BSD, and short-term
variations in the BSD (Eq. (S17)).

A number of models for bubble rise speed have been developed, and the nature of the
bubble interface (“clean” vs. “dirty”) can cause discrepancies of up to ≈40%. However, in
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a study of marine gas fluxes using the same inverse hydroacoustic method, the relative error
between 7 different models contributed only 15% relative uncertainty in K and Q [3]. Plumes
of rising bubbles may create upwelling velocities that allow bubbles to rise faster than the
terminal velocity of an individual bubble. However, for the relatively low flow rates observed
in UML (Q ≤ 20 mL/min), upwelling velocities are observed to be limited to 2 cm/s, less
than 10% of the terminal velocity [12]. Thus, we estimate a combined relative uncertainty
of 18% for the rise velocity.

The uncertainty in the long-term BSD may be estimated as ≈23% using the relative dif-
ference in calibration coefficients calculated using BSDs from UML [8] and Lake Kinneret [5].
The final source of uncertainty in K is from short-term variations in the BSD, over timescales
larger than the 5-second averaging period used to measure σbs. We estimate that BSD varies
from the long-term mean by up to ∼50% in the radius. If these factors have a multiplicative
effect, then the combined relative uncertainty is

√
var(K)/K ≈ 58%.

The relative uncertainty in a0 is estimated to be ≈22% from the variability in values
measured across the sonar fan in UML. The relative uncertainty in Bh(θ) is estimated to
be ≈36%, from the coefficient of variance in the flux-derived correction to the beam pattern
(Fig. S5, right) across θ. Using these values in Eq. (S28), we find a combined relative
uncertainty of

√
var(q)/q ≈ 70%. Over long time periods, the large number of bubbles

samples will converge towards the system-wide BSD and reduce the uncertainty in K, the
primary contributor to the overall uncertainty. However, because of the inverse relationship
between K and r, this convergence in BSD does not guarantee that the flux estimates will
converge on the long-term average if there is significant variability in the apparent BSD.

3.3 Spatiotemporal variability as a function of scale

The flux estimates from the deployment from February 18–June 1, 2012 were subsampled
uniformly in space and time (gridded in space and time) at different spatial and temporal
scales, and the fraction of subsamples that fell within ±50% of the long-term, global mean
flux of 7 mg/m2/day are shown in Fig. S6. The fraction of samples in the interval generally
increases with larger spatial and temporal scales, reflecting the rate at which larger-scale,
longer-duration observations become more likely to represent the overall mean. Some slight
non-monotonicity in the trend may be attributed to time periods where the sensor was
inactive. The long-duration (40 day) samples converge to 1 in the limit as the spatial scale
increases to 8 m, but for finer spatial resolution significant heterogeneity remains. Similarly,
the 8-m samples still show significant temporal variability for samples shorter than 10 days.

3.4 Estimation of the radial distribution function

To account for the enhanced importance of events releasing large volumes of gas, the volume-
weighted RDF was estimated using the marked pair correlation function [15, Eqn. (5.3.54)]
and the mark-sum intensity [15, Eqns. (4.2.20) and (5.2.2)], with the volume of gas released
during an event serving as its mark. The isotropized set covariance was estimated numerically
for the irregular observation window and used in place of the pair-specific displacement
area [16, Eqn. (9.29)]. The method was confirmed as unbiased using simulations of a CSR
process on the same domain used by the sonar.
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Figure S6: Spatiotemporal variability as a function of scale of measurement. Color scale
represent the fraction of subsamples of the data from February 18–June 1, 2012 that fall
within ±50% of the long-term, global average flux value, as a function of the spatial extent
for gridding of fluxes (0.5-8 m) and duration (1 hr-40 days). Samples shorter than 1 day in
duration or with a spatial scale on the order of 1 m (as with most bubble traps) are less
than 50% likely to measure a sample within ±50% of the long-term mean. Only multi-week
samples with spatial scale over 5 m always fell within ±50%.

Data from Feb 18–May 31, 2012 were divided into segments of 20 min in duration, which
were classified as high- or low-flux relative to the average over the whole deployment period.
From these segments, continuous samples of durations from 10 min to 4 days were analyzed
to test the impact of observation time on the spatial signature observed.

The sonar technique provides sufficient resolution to confirm that the outlets are distinct,
as the maximum pixel separation of 0.35 m is finer than the event separation of ≥ 0.5 m, and
bubbles are unlikely to drift laterally by more than 0.1 m during their rise of ∼ 1.5 m from
the sediment surface to the sonar fan, given typical lateral currents on the scale of 1 cm/s
(observed from slow, spatially-coherent drift of low-intensity signals reflecting suspended
flocs) and bubble rise velocities of 20 − 25 cm/s [5]. It is possible that non-bubble targets,
such as anchor lines, contaminate the RDF sufficiently to create an appearance of spatial
clustering in the mean, but these constitute ≤ 6% of the flux so should not create the
pronounced effect seen here (Figs. 3d,e in the main text).
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