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Abstract The simulation of fluid-driven fracture propagation in a porous medium is a major
computational challenge, with applications in geosciences and engineering. The two main families of
modeling approaches are those models that represent fractures as explicit discontinuities and solve the
moving boundary problem and those that represent fractures as thin damaged zones, solving a continuum
problem throughout. The latter family includes the so-called phase field models. Continuum approaches
to fracture face validation and verification challenges, in particular grid convergence, well posedness,
and physical relevance in practical scenarios. Here we propose a new quasi-static phase field formulation.
The approach fully couples fluid flow in the fracture with deformation and flow in the porous medium,
discretizes flow in the fracture on a lower-dimension manifold, and employs the fluid flux between the
fracture and the porous solid as coupling variable. We present a numerical assessment of the model
by studying the propagation of a fracture in the quarter five-spot configuration. We study the interplay
between injection flow rate and rock properties and elucidate fracture propagation patterns under
the leak-off toughness dominated regime as a function of injection rate, initial fracture length,
and poromechanical properties. For the considered injection scenario, we show that the final fracture
length depends on the injection rate, and three distinct patterns are observed. We also rationalize
the system response using dimensional analysis to collapse the model results. Finally, we propose some
simplifications that alleviate the computational cost of the simulations without significant
loss of accuracy.

1. Introduction

The simulation of hydraulic fracturing processes has recently emerged as an active research topic in petroleum
engineering and environmental science. The growing interest stems from its technical complexity and from
its engineering applications in various subsurface energy technologies, including oil and gas production from
unconventional low-permeability reservoirs (Cueto-Felgueroso & Juanes, 2013; Economides & Nolte, 2000;
Patzek et al., 2013), enhanced geothermal energy systems (Legarth et al., 2005), and coalbed methane pro-
duction (Moore, 2012). Hydraulic fracturing involves the injection of a fluid at high pressure in order to create
artificial fractures, which act as high-permeability pathways (Hubbert & Willis, 1972). An important environ-
mental concern is that these pathways may also unintentionally provide enhanced hydraulic connectivity
between the reservoir and the surrounding environment, leading to leakage of fracturing fluid or gas out of
the reservoir with the potential for groundwater contamination (Osborn et al., 2011; Vidic et al., 2013). Both
perspectives of petroleum engineering and environmental stewardship need rigorous mathematical models
and numerical simulation tools capable of describing the essential flow and mechanical processes controlling
the growth of hydraulic fractures in porous rocks (Cai & Ofterdinger, 2014; Reagan et al., 2015).

Fluid-driven fracture propagation in elastic media can be simulated through analytical and numerical models.
Analytical solutions are available for simple injection protocols and fracture geometries. The medium is con-
sidered to be homogeneous and elastic with constant far field stress. Detournay (2016) provides a review of
the state-of-the-art of analytical solutions for the penny-shape fracture propagation. Full-physics numerical
modeling, however, is needed in practice for the study of more complex systems.
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Numerical models can follow either a discrete or a continuous approach. The discrete approach considers the
intact rock and the fractures separately, and discontinuities are introduced in the solid. The simplest way to
propagate fractures is by splitting nodes (Fu et al., 2013) or breaking elements (Wangen, 2011). Two drawbacks
of these techniques are the change in the topology of the discretization, and the restriction of the fracture
to propagate following mesh lines. These limitations can be partially overcome by remeshing techniques
(Bouchard et al., 2003) or using advanced approaches. Some advanced methodologies include the so-called
cohesive zone modeling that relates traction to displacement jumps through constitutive laws (Carrier &
Granet, 2012), or the enriched displacement field methods that locate discontinuities inside the finite ele-
ments, so that the formulation is enhanced with additional discontinuous-displacement modes (Haghighat
& Pietruszczak, 2016; Moës et al., 1999). Other approaches are those based on the spring network methods
(Hafver et al., 2014), where fractures are propagated by splitting springs.

Continuum approaches represent the intact rock and the fractures as a single continuum. The topology of
the discretization is preserved and discontinuities are not introduced. Examples of continuous approaches
include peridynamics (Ouchi et al., 2015), damage mechanics (Shojaei et al., 2014), or phase field models.
The latter regularizes discontinuities using a scalar auxiliary variable, the phase field, that smears the fracture
surface and interpolates between the broken and unbroken regions.

A broad family of phase field models for fracture mechanics emerged within the physics community on the
basis of the work of Aranson et al. (2000), who proposed a continuum-field model for mode-I crack propa-
gation in brittle amorphous solids. This idea has been further developed by many other authors, including
Eastgate et al. (2002), Henry and Levine (2004), Karma et al. (2001), Karma and Lobkovsky (2004), or Spatschek
et al. (2011).

Independently, a second family emerged in the mechanics community inspired in the works of Ambrosio and
Tortorelli (1990), who proposed a phase field approximation of the Mumford-Shah potential (Mumford & Shah,
1989) based on Γ-convergence. Inspired in these works, Francfort and Marigo (1998) proposed a variational
formulation for brittle fracture based on the minimization of the combined elastic energy in the bulk mate-
rial and the fracture energy. The numerical implementation of this formulation was developed by Bourdin
et al. (2000), who defined an auxiliary variable—the phase field—that distributes the fracture energy over
the bulk material. In practical implementations, both families yield fairly similar numerical schemes (Ambati
et al., 2015).

An alternative quasi-static formulation of this phase field approximation has been proposed by Miehe,
Welschinger, and Hofacker (2010), based on continuum mechanics and thermodynamical principles. This
framework was extended to dynamic problems (Hofacker & Miehe, 2012, 2013), coupled to thermomechanic
problems at large strains (Miehe, Schänzel, & Ulmer, 2015), and adapted to simulate ductile fracture coupled
with thermoplasticity at finite strains (Miehe, Hofacker, et al., 2015). It has been validated using experimental
observations and applied to academic engineering problems for simulating the fracture of two full-scale con-
crete dams (Santillán et al., 2017a) and to characterize the influence of heterogeneous mechanical properties
on the trajectories of hydraulic fractures propagating in elastic media (Santillán et al., 2017b).

Phase field models have been applied to model fluid-driven brittle fracturing. One of the first models was
developed by Bourdin et al. (2012), who proposed a phase field model to simulate hydraulic fracturing through
linear elastic impermeable materials. Mikelić et al. (2015a, 2015b) developed a phase field model for fracture
propagation through fluid-saturated poroelastic materials. The poroelastic domain is described with the Biot
linear model at infinitesimal strains, and the flow in the fracture with the Reynolds lubrication equation. Fol-
lowing the philosophy of the diffusive crack topology, the latter is described in the same dimension as the solid
and both are coupled via a pressure diffraction equation, that is, a single pressure equation for both domains
with discontinuous coefficients. Coefficients depend on the phase field variable in a way that the generalized
pressure equation becomes Darcy’s law in the reservoir domain and the Reynolds equation in the fracture
domain. In the transition zone from undamaged to damaged regions a combination of both is adopted, and
interface conduction is imposed to account for fluid exchange between both regions. The permeability of the
fracture depends on the aperture, which is computed with the normal displacement of the points adjacent
to the fracture. The model has been improved with remeshing techniques (Lee, Wheeler, et al., & Wick, 2016),
level-set approaches to compute the fracture aperture (Lee, Mikelić, et al., 2016), and has been extended to
simulate proppant transport in the fractures (Lee et al., 2017).
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Miehe, Mauthe, and Teichtmeister (2015) developed a full variational framework for phase field fracture in
poroelastic materials at finite strains. This work has been extended to simulate fluid-driven fracture propa-
gation (Miehe & Mauthe, 2016) and adapted to infinitesimal strains (Mauthe & Miehe, 2017). Fractures are
modeled by adding an additional term into the Darcy permeability tensor, which accounts for the Reynolds
lubrication theory and fluid interchange between the fracture and the porous solid. The additional permeabil-
ity is multiplied by a term that grows with the damage. Fractures are then described in the same dimension
as the solid. The fracture opening, necessary for determining the fracture permeability, is computed in terms
of the normal deformation to the fracture and multiplied by a length scale associated with the size of the
numerical discretization.

Wilson and Landis (2016) developed a phase field model at large strains through fundamental balance laws
and Coleman–Noll-type procedures. The porous solid is modeled following the Biot theory, and flow inside
the fractures with the Stokes equation. Both flow regimes are simultaneously described by using indicator
functions of the phase field. Heider and Markert (2017) proposed a phase field model embedded in the theory
of porous media to simulate fluid-driven fracturing in poroelastic media based on the Allen-Cahn diffusion
model for the evolution of the phase field. The evolution of the fracture is accounted for by updating the
porosity of the solid, which is expressed as function of the phase field variable and the material deformation
gradient of the solid. Moreover, flow in the porous solid is described through Darcy’s law and inside the frac-
ture through Stokes flow. The formulation takes into account the transition between flow regimes by using
indicator functions which depend on the porosity.

The reported approaches describe fractures as diffuse entities with the same dimension as the solid. Flow
in the porous medium is modeled through Darcy’s law and in the fracture through lubrication theory or
Stokes flow, and both in the same dimension. During the fracture propagation, the fluid flow changes from
one regime to another and is modeled through indicator functions which depend on the damage variable.
Since the damage variable smears the fracture interface, the transition between both flow regimes is also
smoothed. Moreover, this transition is conditioned by the shape of the indicator functions, and the results of
the simulations may depend on the choice for these functions.

Here we propose another framework for the simulation of fluid-driven fractures in poroelastic solids using
the phase field approach. We treat fractures as diffuse entities with the same dimension as the solid for
the mechanical problem, but we describe the fracture flow in a lower dimensional manifold through lubrica-
tion theory. The fracture aperture, and the deformation and pressure of the porous solid are solved in a fully
coupled fashion employing two separate meshes for each domain (fracture and poroelastic solid) which
are coincident in space. We adopt the distributed fluid flux between both domains as the coupling vari-
able, inspired in the strategy of some discrete approaches (Réthoré et al., 2007). This framework has been
validated for elastic solids by comparing with analytical solutions (Santillán, Juanes, & Cueto-Felgueroso,
2017), and here we extend the formulation to poroelastic solids. We apply our model to study the prop-
agation of a single existing fracture in the quarter five-spot configuration. We study the different frac-
ture propagation patterns, and we elucidate the effect of several hydromechanical characteristics, such as
injection flow rate or medium permeability, on the final fracture topology. Finally, we perform a dimen-
sional analysis to isolate the controlling dimensionless groups and demonstrate the physical consistency of
the model.

The paper is organized as follows: in section 2 we describe the mathematical formulation of the model. In
section 3 we present several analytical models employed to assess the numerical framework. In section 4 we
introduce the quarter five-spot problem that we study and present and analyze the modeling results. Finally,
we present conclusions in section 5.

2. Phase Field Modeling of Hydraulic Fracture

The mathematical modeling approach used in this study is presented in two steps for clarity. We start with
the basic equations of linear poroelasticity, which will characterize the coupled flow and mechanics of intact
rock, and the Reynolds lubrication equation, which will describe the flow in the fracture. After introducing
the poroelastic equations, we turn to explaining the regularized damage model, built using the phase field
modeling framework and the variational approach to fracture.
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Figure 1. Schematic of the problem domains and boundary conditions,
where we define an intact rock domain (subscript R), and a fracture domain
(subscript F).

2.1. Field Equations of Poroelasticity and Fluid Flow in the Fracture
For a fluid-saturated medium, and assuming Darcy flow, the Biot equations
of poroelasticity summarize the coupling between solid and fluid mass
conservation, and mechanical equilibrium (Biot, 1941, 1972):

𝛼
𝜕𝜀v

𝜕t
+ 1

M
𝜕p
𝜕t

= ∇ ⋅
(
𝜅

𝜇f

(
∇p − 𝜌f ag

))
+ qfm, (1)

∇ ⋅ 𝝈 = −f, (2)

where 𝛼 is the Biot coefficient, 𝜀v is the volumetric strain, 𝜀v = tr (𝜺), 𝜺 is the
strain tensor, t is time, M is the Biot modulus, p is the pressure field, 𝜅 is the
intrinsic permeability of the porous medium,𝜇f is the fluid dynamic viscos-
ity, 𝜌f is the fluid density, ag is the gravity acceleration, qfm is the source or
sink term between the fracture and the poroelastic medium, 𝜎 is the total
stress tensor, and f is the body force per unit volume.

We assume that the porous medium is a linear elastic material, undergoing
small deformations. Thus, the effective stress tensor,𝝈′ = 𝝈+𝛼pI, is a linear
function of strains as

𝝈
′ = 𝜆tr(𝜺)I + 2𝜇𝜺, (3)

where 𝜆 and 𝜇 are the Lamé constants, 𝜺 is the infinitesimal strain tensor, 𝜺 = 1
2

(
∇u + ∇uT

)
, and u is the dis-

placement field. The above equations govern the coupled flow and rock mechanical deformation of saturated
flow through a linear elastic porous material.

The fluid flow in the fracture is described by the lubrication theory and is considered to take place on a lower
dimensional manifold. The fluid motion is given by the Reynolds lubrication equation as

𝜕w
𝜕t

+ cf w
𝜕pF

𝜕t
= ∇s ⋅

(
w2

12𝜇f

(
∇spF − 𝜌f ag∇sz

))
+ qmf , in ΩF , (4)

where w is the fracture aperture, cf is the fluid compressibility, pF is the fluid pressure inside the fracture, z is the
elevation, s is the longitudinal coordinate along the fracture, and qmf is the source or sink flow rate between
the poroelastic medium and the fracture.

2.2. Variational Approach to Rock Damage and Brittle Fracture
Let us consider a domain Ω ⊂ ℜ𝛿 with spatial dimension 𝛿 ∈ [2, 3], composed by a poroelasic reservoir
domain ΩR and a pressurized fracture domain ΩF , that is, Ω = ΩR ∪ ΩF (see Figure 1). The boundary of Ωi

is denoted by 𝜕Ωi, where i = R, F. Homogeneous Dirichlet conditions for the displacements are imposed
on 𝜕DΩi , and Neumann conditions on 𝜕NΩi, with 𝜕DΩi ∪ 𝜕NΩi = 𝜕Ωi and 𝜕DΩi ∩ 𝜕NΩi = ∅. The outward unit
normal to 𝜕Ω is n.

We adopt the Griffith interpretation to model quasi-static brittle fracture propagation, which states that the
elastic energy release during the fracture process is balanced by newly created surface energy as the fracture
propagates (Griffith, 1921). Based on this idea, Francfort and Marigo (1998) developed a variational formu-
lation based on the minimization of the total potential energy, that is, the system adopts the configuration
whose potential energy is minimized.

The potential energy Ψ has four components: the energy dissipated in the fracturing process Ψd , the energy
stored in the bulk of the solid Ψe, the energy stored in the fluid Ψf , and the external sources of energy Ψs,

Ψ = Ψd + Ψe + Ψf − Ψs. (5)

The energy dissipated in the fracturing process, Ψd , is the work required to create a unit fracture area,

Ψd = ∫
𝜕ΩF

gc d𝜕, (6)

where gc is the Griffith critical energy release rate for mode I failure. The integral in equation (6) is extended
to the boundary of the fracture domain, which a priori is unknown. The regularization of the fracture surface
allows us to extend equation (6) to the whole domain,

Ψd = ∫Ω
gc𝛾𝓁 dΩ, (7)
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where 𝛾𝓁 is the fracture density that serves as a smoothed indicator function, and it is given by (Miehe,
Welschinger, & Hofacker, 2010):

𝛾𝓁 = 1
2𝓁

d2 + 𝓁
2
|∇d|2

, (8)

where d is the phase field variable, and𝓁 is a length scale parameter. d is the key new variable that is introduced
as damage variable and interpolates between the broken state, d = 1, and the unbroken one, d = 0.

The energy stored in the undamaged bulk of the solid, Ψe
0, reads

Ψe
0 = ∫Ω

𝜓e
0 (𝜺)dΩ, (9)

where 𝜓e
0 is the undamaged elastic energy density, given by

𝜓e
0 (𝜺) =

𝜆

2
tr(𝜺)2 + 𝜇tr(𝜺2). (10)

The loss of stiffness of the solid due to the fracturing process implies that it cannot store the same amount of
energy as it degrades. The degradation can be modeled mathematically in two ways (Miehe, Welschinger, &
Hofacker, 2010): the isotropic and the anisotropic formulations. The isotropic formulation considers the degra-
dation of the whole elastic energy regardless of the sign of stress. The anisotropic formulation, in contrast,
allows for degradation in tension only. We adopt the latter since it provides more realistic results. The damaged
elastic energy, Ψe, is then given by

Ψe = ∫Ω

[
g(d)𝜓e+

0 (𝜺) + 𝜓e−
0 (𝜺)

]
dΩ = ∫Ω

𝜓e(𝜺, d)dΩ, (11)

where 𝜓e+
0 is the part of the undamaged elastic energy generated by tension, 𝜓e−

0 is the part generated by
compression, and g(d) is the degradation function. A common expression for g(d) is (Vignollet et al., 2014)

g(d) = (1 − d)2. (12)

Each part of the undamaged energy is defined as follows:

𝜓e±
0 (𝜺) = 𝜆

2

(⟨
𝛿∑

a=1

𝜺a

⟩
±

)2

+ 𝜇
𝛿∑

a=1

(⟨𝜺a⟩±)2
, (13)

where 𝜀a is the ath principal strain, and ⟨x⟩± = (x ± |x|)∕2. The decomposition fulfills

𝜓e
0 (𝜺) = 𝜓e+

0 (𝜺) + 𝜓e−
0 (𝜺). (14)

The resulting effective stress-strain constitutive relation is defined as follows:

𝝈
′(u, d) ∶= g(d)

𝜕𝜓e+
0

𝜕𝜺
+
𝜕𝜓e−

0

𝜕𝜺
, (15)

or alternatively

𝝈
′+(u, d) = g(d)

𝛿∑
a=1

[
𝜆

⟨
𝛿∑

i=1

𝜀i

⟩
+

+ 2𝜇 ⟨𝜀a⟩+
]

na ⊗ na, (16)

and

𝝈
′−

0 (u) = 𝝈
′−(u) =

𝛿∑
a=1

[
𝜆

⟨
𝛿∑

i=1

𝜀i

⟩
−

+ 2𝜇 ⟨𝜀a⟩−
]

na ⊗ na, (17)

where na is the principal strain direction associated to the principal strain 𝜀a. The eigenvalue bases na⊗na are
computed in terms of the principal strains 𝜀i , where i = a, b, and the strain tensor, 𝜺, as follows (Miehe, 1998):

na ⊗ na = 1∏𝛿

b≠a

(
𝜀a − 𝜀b

) 𝛿∏
b≠a

(
𝜺 − 𝜀b1

)
. (18)

The potential energy stored in the fluid, Ψf , reads

Ψf = ∫ΩR

𝜓 f (p,∇ ⋅ u)dΩ, (19)
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where 𝜓 f is the potential energy density of the fluid, defined as

𝜓 f
0(p,∇ ⋅ u) = −p𝛼∇ ⋅ u. (20)

The integral in equation (19) is extended over the reservoir, whose domain changes with time. We avoid this
difficulty by using the degradation function, g(d), and extending the integral over the whole domain and
localizing its effect at the interface through the degradation function as follows:

Ψf = ∫ΩR

𝜓 f (p,∇ ⋅ u)dΩ = ∫Ω
g(d)𝜓 f (p,∇ ⋅ u)dΩ = −∫Ω

g(d)p𝛼∇ ⋅ u dΩ. (21)

The external energy functional, Ψs, is given by

Ψs = ∫Ω
f ⋅ u dΩ + ∫

𝜕NΩ
t ⋅ u d𝜕, (22)

where t is the vector of applied forces. The second term includes the force introduced by the pressure inside
the fracture, which is applied on a surface which, a priori, is unknown:

∫
𝜕NΩF

t ⋅ u d𝜕 = −∫
𝜕NΩF

pFn ⋅ u d𝜕. (23)

The pressure continuity at 𝜕ΩF implies that we can use the pressure field p, which fulfills p = pF in ΩF and p =
pR in ΩR. Equation (23) can be interpreted as a flux of energy through the surface of the fracture. Using the
divergence theorem, we rewrite the equation as

∫
𝜕NΩF

pn ⋅ u d𝜕 = ∫ΩR

∇ ⋅ (pu)dΩ − ∫
𝜕NΩR

pn ⋅ u d𝜕. (24)

By using the degradation function, g(d), the previous integral is redefined over the whole domain (Mikelić
et al., 2015b):

∫ΩR

∇ ⋅ (pu)dΩ = ∫Ω
g(d)∇ ⋅ (pu)dΩ. (25)

Therefore, the external energy functional Ψs reads

Ψs = ∫Ω
f ⋅ u dΩ − ∫Ω

g(d)∇ ⋅ (pu)dΩ + ∫
𝜕NΩR

pn ⋅ u d𝜕 + ∫
𝜕NΩR

t ⋅ u d𝜕. (26)

We derive the strong form of the problem via minimization of the total potential energy, Ψ, with respect to u
and d. The Fréchet derivative of Ψ with respect to u provides the equilibrium equations:

𝜕Ψ
𝜕u

− ∇ ⋅
(
𝜕Ψ
𝜕∇u

)
= 0, in Ω, (27)

𝜕Ψ
𝜕∇u

⋅ n = t, in 𝜕NΩ. (28)

The equilibrium equations are as follows:

− ∇ ⋅
{

g(d)𝝈′+
0 + 𝝈

′−
0

}
+ ∇{𝛼g(d)p} − ∇{g(d)p} + g(d)∇p − f = 0, in Ω, (29)

g(d)𝝈′+
0 n + 𝝈

′−
0 n + (1 − 𝛼)g(d)pn = t, in 𝜕NΩ. (30)

Equation (29) can be rewritten as

− ∇ ⋅
{

g(d)𝝈′+
0 + 𝝈

′−
0

}
+ ∇{𝛼g(d)p} − p∇g(d) − f = 0, (31)

or alternatively

∇ ⋅
{
𝝈
′ − 𝛼g(d)p1

}
+ p∇g(d) + f = 0, (32)

where the first term is the divergence of the total stresses with 𝝈
′ given by equation (15), the second term

is the pressure force introduced by the fluid inside the fracture, and the last term is the external body force.
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The pressure force from the fluid-filled fracture is handled as a body force by using the gradient of the degra-
dation function. The main advantage of this approach is that there is no need to know the geometry of
the fracture.

The Fréchet derivative of Ψ with respect to d,

𝜕Ψ
𝜕d

− ∇ ⋅
(
𝜕Ψ
𝜕∇d

)
= 0, in Ω, (33)

𝜕Ψ
𝜕∇d

⋅ n = 0, in 𝜕NΩ, (34)

provides the Euler equations of the phase field problem:

gc

𝓁

(
d − 𝓁2∇2d

)
= 2(1 − d)

(
𝜓e+

0 (𝜺) − 𝛼p∇ ⋅ u + ∇ ⋅ (pu)
)
, in Ω, (35)

∇d ⋅ n = 0, in 𝜕NΩ. (36)

The irreversibility of the fracture process is accounted for by the local history field of maximum positive store
energy, H+, defined as (Miehe, Hofacker, & Welschinger, 2010)

H+(u, p, t) = max
s∈[0,t]

(
𝜓e+

0 (𝜺) − (𝛼 − 1)p∇ ⋅ u + u ⋅ ∇p
)
. (37)

The Euler equation of the phase field is then written as follows:

gc

𝓁

(
d − 𝓁2∇2d

)
= 2(1 − d)H+. (38)

2.3. Summary of Governing Equations
The phase field mathematical model comprises four partial differential equations, modeling mass conser-
vation in the poroelastic medium, fluid flow inside the fracture, mechanical equilibrium, and phase field.
The mass conservation equation in the poroelastic medium is given by the Biot equation of poroelasticity
(Biot, 1941, 1972)

𝛼
𝜕𝜀v

𝜕t
+ 1

M
𝜕p
𝜕t

= ∇ ⋅
(
𝜅

𝜇f

(
∇p − 𝜌f ag

))
+ qfm. (39)

The fluid flow inside the fracture is described through the Reynolds lubrication equation

𝜕w
𝜕t

+ Cf w
𝜕p
𝜕t

= ∇s ⋅
(

w2

12𝜇f

(
∇sp − 𝜌f ag∇sz

))
+ qmf , in ΩF , (40)

where qmf = −qfm, except at the injection or extraction points. The third equation is the mechanical
equilibrium,

∇ ⋅
{
𝝈
′ − 𝛼g(d)p1

}
+ p∇g(d) + f = 0, (41)

where 𝝈
′ is given by equation (15). The last equation is the phase field equation,

gc

𝓁

(
d − 𝓁2∇2d

)
= 2(1 − d)H+, (42)

where

H+(u, p, t) = max
s∈[0,t]

(
𝜓e+

0 (𝜺) − (𝛼 − 1)p∇ ⋅ u + u ⋅ ∇p
)
. (43)

2.4. Numerical Implementation
The governing equations (39)–(43) constitute a nonlinear system of partial differential equations. The equilib-
rium equation (41) includes a nonlinear stress-strain relation due to the spectral decomposition of the strain
tensor and the presence of the phase field variable. The nonlinearity is handled with a hybrid formulation for
the stress-strain relationship (Ambati et al., 2015), combined with a staggered scheme for updating the fields
involved (Miehe, Hofacker, & Welschinger, 2010).
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Figure 2. Flow chart of the staggered scheme.

The idea behind the hybrid formulation for the spectral decomposition of the strain tensor is to retain a linear
equilibrium equation within a staggered algorithm. The formulation requires the stress-strain relationship

𝝈
′(u, d) ∶= g(d)

𝜕𝜓e
0

𝜕𝜺
(44)

combined with the phase field equation (42), where the evolution of d is driven by the tensile energy 𝜓e+
0 . In

the case that the sides of the fracture touch each other, the interpenetration is avoided by the constrain:

∀ x ∶ Ψe+
0 < Ψe−

0 ⇒ d ∶= 0, (45)

imposed in the phase field equation (42). The hybrid formulation provides physical results for fracture
evolution that are similar to those of the anisotropic formulation (Ambati et al., 2015).

We adopt the staggered scheme proposed by Miehe, Hofacker, and Welschinger (2010) for computing all the
fields involved in our problem, which is a simple and robust alternative to the monolithic scheme. The scheme
in the time interval [tn, tn+1] consists of four steps, Figure 2. We assume that all fields are known at time tn.

1. First, u, p, Qmf , and w are updated using a fully coupled scheme with frozen d, and fracture permeability,
equations (39)–(41).

2. Then, H+ is updated with the values of un+1 and pn+1, equation (43).
3. Afterward, dn+1 is computed with the updated value of H+, equation (42).
4. Finally, the tip of the fracture is updated with the value of dn+1, as well as the fracture permeability.

This strategy combined with the hybrid formulation has been applied to mechanical problems, with results of
comparable quality to the most complex schemes (Ambati et al., 2015). However, the scheme requires small
loading increments to properly capture the nonlinearity and strong coupling of the problem.
2.4.1. Numerical Implementation of the Hydromechanical Problem
The first step of the computational scheme involves the solution of the coupled governing equations of flow
and rock mechanics. We approximate the equations using a finite volume scheme on a Cartesian regular
quadrilateral mesh for the spatial discretization (Demirdžić & Martinović, 1993; Nordbotten, 2014). Pressure,
p, displacement, u, and fracture-matrix flux, qfm, are solved in a monolithically coupled fashion, using a
Backward Euler scheme for the time integration. The starting point for the finite volume formulation of the
flow problem is the integral form of the conservation law (39) over an arbitrary control volume Ω,

∫Ω
𝛼
𝜕𝜀v

𝜕t
dΩ + ∫Ω

1
M
𝜕p
𝜕t

dΩ − ∫Ω
∇ ⋅

(
𝜅

𝜇f

(
∇p − 𝜌f ag

))
dΩ − ∫Ω

qfmdΩ = 0. (46)

Using the divergence theorem, equation (46) is rewritten as

∫Ω
𝛼
𝜕𝜀v

𝜕t
dΩ + ∫Ω

1
M
𝜕p
𝜕t

dΩ − ∫
𝜕Ω

𝜅

𝜇f

(
∇p − 𝜌f ag

)
d𝜕Ω − ∫Ω

qfmdΩ = 0, (47)

where the volume Ω is bounded by the surface 𝜕Ω. The discrete equation for the flow in the poroelastic solid
is, for a given control volume (i, j) in a regular Cartesian grid and ignoring gravity effects,

𝛼
𝜀n+1

v,i,j − 𝜀
n
v,i,j

𝛿t
𝛿x𝛿y + 1

M

pn+1
i,j − pn

i,j

𝛿t
𝛿x𝛿y +

[
−𝜆m

𝜕p
𝜕x

]
i+1∕2,j

+

−
[
−𝜆m

𝜕p
𝜕x

]
i−1∕2,j

+
[
−𝜆m

𝜕p
𝜕y

]
i,j+1∕2

−
[
−𝜆m

𝜕p
𝜕y

]
i,j−1∕2

− Qn+1
fm,i,j

= 0,

(48)
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where 𝜆m = 𝜅∕𝜇f is the mobility. The volumetric strains are integrated quantities that we approximate using
the divergence theorem. The fully discrete equation is given by

𝛼

1
2

(
un+1

i+1,j − un+1
i−1,j

)
− 1

2

(
un

i+1,j − un
i−1,j

)
𝛿t

𝛿y + 𝛼
1
2

(
vn+1

i,j+1 − vn+1
i,j−1

)
− 1

2

(
vn

i,j+1 − vn
i,j−1

)
𝛿t

𝛿x+

+ 1
M

pn+1
i,j − pn

i,j

𝛿t
𝛿x𝛿y − 𝜆m,i+1∕2,j

(
pn+1

i+1,j − pn+1
i,j

𝛿x

)
𝛿y + 𝜆m,i−1∕2,j

(
pn+1

i,j − pn+1
i−1,j

𝛿x

)
𝛿y+

− 𝜆m,i,j+1∕2

(
pn+1

i,j+1 − pn+1
i,j

𝛿y

)
𝛿x + 𝜆m,i,j−1∕2

(
pn+1

i,j − pn+1
i,j−1

𝛿y

)
𝛿x − Qn+1

fm,i,j
= 0.

(49)

In the above expression, we deliberately allow for a heterogeneous spatial distribution of the mobility.
Rearranging the above expression, we arrive at(

𝛿x𝛿y
M𝛿t

+ 𝜆m,i−1∕2,j
𝛿y
𝛿x

+ 𝜆m,i+1∕2,j
𝛿y
𝛿x

+ 𝜆m,i,j−1∕2
𝛿x
𝛿y

+ 𝜆m,i,j+1∕2
𝛿x
𝛿y

)
pn+1

i,j +

− 𝜆m,i+1∕2,j
𝛿y
𝛿x

pn+1
i+1,j − 𝜆m,i−1∕2,j

𝛿y
𝛿x

pn+1
i−1,j − 𝜆m,i,j+1∕2

𝛿x
𝛿y

pn+1
i,j+1 − 𝜆m,i,j−1∕2

𝛿x
𝛿y

pn+1
i,j−1+

+
𝛼𝛿y
2𝛿t

(
un+1

i+1,j − un+1
i−1,j

)
+ 𝛼𝛿x

2𝛿t

(
vn+1

i,j+1 − vn+1
i,j−1

)
− Qn+1

fm,i,j

=
𝛿x𝛿y
M𝛿t

pn
i,j +

𝛼𝛿y
2𝛿t

(
un

i+1,j − un
i−1,j

)
+ 𝛼𝛿x

2𝛿t

(
vn

i,j+1 − vn
i,j−1

)
.

(50)

The interfacial mobilities are approximated using the harmonic mean:

𝜆m,i±1∕2,j =
2

1
𝜆m,i±1,j

+ 1
𝜆m,i,j

, 𝜆m,i,j±1∕2 = 2
1

𝜆m,i,j±1
+ 1

𝜆m,i,j

. (51)

The flow equation inside the fracture, equation (40), has a lower dimensionality in space. It is solved on a
regular compatible one-dimensional (1-D) mesh embedded in the two-dimensional (2-D) domain whose cen-
ters of cells or volumes are coincident in space. Ignoring gravity effects, the integral form of the equation
is given by

∫Ω

𝜕w
𝜕t

dΩ + ∫Ω
Cf w

𝜕p
𝜕t

dΩ − ∫Ω
∇s ⋅

(
w2

12𝜇f
∇sp

)
dΩ − ∫Ω

qmf dΩ = 0. (52)

The divergence theorem yields

∫Ω

𝜕w
𝜕t

dΩ + ∫Ω
Cf w

𝜕p
𝜕t

dΩ − ∫
𝜕Ω

w2

12𝜇f
∇spd𝜕Ω − ∫Ω

qmf dΩ = 0. (53)

For a given control cell k whose Cartesian coordinates in the 2-D computational grid are (i, j), we denote its
neighbor at the right side as k + 1 and at the left side as k − 1 in the 1-D computational grid. The Cartesian
coordinates of the neighbors in the 2-D mesh are (i, j) + 1 and (i, j) − 1, respectively. The discrete version of
the mass conservation equation in the fracture, equation (53), reads

wn+1
i,j − wn

i,j

𝛿t
𝛿s + Cf wn

i,j

pn+1
i,j − pn

i,j

𝛿t
𝛿s +

[
−𝜆f

𝜕p
𝜕s

]
k+1∕2

−
[
−𝜆f

𝜕p
𝜕s

]
k−1∕2

− Qn+1
mf ,i,j

= 0, (54)

where 𝜆f = w2∕(12𝜇f ) is the mobility, and Qmf is the integral form of the matrix-fracture flux qmf . The fully
discrete equation is given by

wn+1
i,j − wn

i,j

𝛿t
𝛿s + Cf wn

i,j

pn+1
i,j − pn

i,j

𝛿t
𝛿s − 𝜆f ,k+1∕2

pn+1
(i,j)+1 − pn+1

i,j

𝛿s
+ 𝜆f ,k−1∕2

pn+1
i,j − pn+1

(i,j)−1

𝛿s
− Qn+1

mf ,i,j
= 0. (55)

Rearranging the above expression and recalling that Qmf = −Qfm , we arrive at

𝛿s

𝛿t
wn+1

i,j +
(

Cf wn
i,j
𝛿s
𝛿t

+ 𝜆f ,k+1∕2
1
𝛿s

+ 𝜆f ,k−1∕2
1
𝛿s

)
pn+1

i,j −
𝜆f ,k+1∕2

𝛿s
pn+1
(i,j)+1

−
𝜆f ,k−1∕2

𝛿s
pn+1
(i,j)−1 + Qn+1

fm,i,j
=
𝛿s

𝛿t
wn

i,j + Cf wn
i,j
𝛿s
𝛿t

pn
i,j.

(56)
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Figure 3. Strategy to propagate the fracture. (a) Here we draw a surface plot of d at time tn . The fracture propagates following a curve trajectory. (b) We zoom
the tip of the fracture. The computational mesh and the integration points are depicted in black. The fracture domain at time tn−1 is represented by the solid
magenta line, and the fitted curve to the fracture path by the white solid line. (c) We compute the normal to the fracture path through the fitted curved to the
trajectory. The normal is defined with the angle 𝛽 .

The interfacial mobilities are approximated using the harmonic mean as follows:

𝜆f ,k±1∕2 = 2
1

𝜆f ,(i,j)±1
+ 1

𝜆f ,(i,j)

. (57)

The aperture at point x, w(x,u, d), is given by the line integral (Mikelić et al., 2015b)

w(x,u, d) = ∫
b

a
u(r(t)) ⋅ ∇d(r(t)) ‖‖r′(t)‖‖ dt, (58)

where r(t) is the normal line to the fracture that passes through x. Integral (58) is defined on interval [a, b],
whose limits are points sufficiently far away from the ends of the fracture that ∇d(r(a)) and ∇d(r(b))
are negligible.

We evaluate numerically equation (58) for an arbitrary oriented fracture by computing the components of the
aperture along two lines parallel to the x and y axes, wx(x)and wy(x), at every fracture point (Figure 3c). The dis-
crete equation of the components of the aperture at the point (i, j) is approximated in a regular quadrilateral
mesh as follows:

wx(x) ≈ wx,i,j =
k=i+b∑
k=i−a

ux,k,j

dk+1,j − dk−1,j

2𝛿x
𝛿x , (59)

and

wy(x) ≈ wy,i,j =
k=i+b∑
k=i−a

uy,i,k

di,k+1 − di,k−1

2𝛿y
𝛿y. (60)

The aperture is given by the addition of the projection of wx,i,j and wy,i,j onto the normal to the fracture path

wi,j = wx,i,j sin 𝛽i,j + wy,i,j cos 𝛽i,j. (61)

The angle 𝛽i,j , which defines the normal to the path at the cell (i, j), is computed through a curve fitted to the
fracture domain.

The integral form of the conservation law (41) of the mechanics problem over an arbitrary control volume
reads

∫Ω
∇ ⋅ 𝝈′dΩ − ∫Ω

𝛼g(d)∇pdΩ + ∫Ω
p∇g(d)dΩ + ∫Ω

fdΩ = 0. (62)
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Using the divergence theorem, the discrete equations for the displacements u and v for a given control
volume (i, j) in a Cartesian grid are:

[𝜎′

xx]i+1∕2,j − [𝜎′

xx]i−1∕2,j + [𝜎′

xy]i,j+1∕2 − [𝜎′

xy]i,j−1∕2+

− 𝛼
(

pi+1∕2,j − pi−1∕2,j

)
𝛿y − pi,j

[
g(d)i+1∕2,j − g(d)i−1∕2,j

]
𝛿y + fx𝛿x𝛿y = 0,

(63)

[𝜎′

yx]i+1∕2,j − [𝜎′

yx]i−1∕2,j + [𝜎′

yy]i,j+1∕2 − [𝜎′

yy]i,j−1∕2+

− 𝛼
(

pi,j+1∕2 − pi,j−1∕2

)
𝛿x − pi,j

[
g(d)i,j+1∕2 − g(d)i,j−1∕2

]
𝛿x + fy𝛿x𝛿y = 0.

(64)

We approximate the stress fluxes at the interfaces with

[𝜎′

xx]i+1∕2,j =
(
𝜆i+1∕2,j + 2𝜇i+1∕2,j

) ui+1,j − ui,j

𝛿x
𝛿y+

+ 𝜆i+1∕2,j

vi+1,j+1 + vi,j+1 − vi+1,j−1 − vi,j−1

4𝛿y
𝛿y,

(65)

[𝜎′

yy]i,j+1∕2 =
(
𝜆i,j+1∕2 + 2𝜇i,j+1∕2

) vi,j+1 − vi,j

𝛿y
𝛿x+

+ 𝜆i,j+1∕2

ui+1,j+1 + ui+1,j − ui−1,j+1 − ui−1,j

4𝛿x
𝛿x,

(66)

[𝜎′

xy]i,j+1∕2 = 𝜇i,j+1∕2

(vi+1,j+1 + vi+1,j − vi−1,j+1 − vi−1,j

4𝛿x
+

ui,j+1 − ui,j

𝛿y

)
𝛿x, (67)

[𝜎′

yx]i+1∕2,j = 𝜇i+1∕2,j

(vi+1,j − vi,j

𝛿x
+

ui+1,j+1 + ui,j+1 − ui+1,j−1 − ui,j−1

4𝛿y

)
𝛿y, (68)

and similar for the [⋅]i−1∕2,j and [⋅]i,j−1∕2 interfaces. As above, the interface mechanical properties, 𝜆 and 𝜇,
are approximated using the harmonic mean. The Lamé constants for the hybrid formulation and plain strain
state reads

𝜆i,j =
𝜈g(d)i,jE

(1 + 𝜈)(1 − 2𝜈)
, 𝜇i,j =

g(d)i,jE

2(1 + 𝜈)
. (69)

We approximate the pressure at the interfaces with the arithmetic mean

pi±1∕2,j =
pi±1,j + pi,j

2
, pi,j±1∕2 =

pi,j±1 + pi,j

2
, (70)

and similar for the degradation function, g(d). Rearranging the expression (63), we arrive at

(
𝜆i+1∕2,j + 2𝜇i+1∕2,j

) 𝛿y
𝛿x

ui+1,j + 𝜇i,j+1∕2
𝛿x
𝛿y

ui,j+1 + 𝜇i,j−1∕2
𝛿x
𝛿y

ui,j−1

−
[(
𝜆i−1∕2,j + 𝜆i+1∕2,j + 2𝜇i−1∕2,j + 2𝜇i+1∕2,j

) 𝛿y
𝛿x

+
(
𝜇i,j−1∕2 + 𝜇i,j+1∕2

) 𝛿x
𝛿y

]
ui,j+

+
(
𝜆i−1∕2,j + 2𝜇i−1∕2,j

) 𝛿y
𝛿x

ui−1,j +
1
4

(
𝜆i+1∕2,j + 𝜇i,j+1∕2

)
vi+1,j+1

+ 1
4

(
𝜇i,j+1∕2 − 𝜇i,j−1∕2

)
vi+1,j −

1
4

(
𝜆i+1∕2,j + 𝜇i,j−1∕2

)
vi+1,j−1

+ 1
4

(
𝜆i+1∕2,j − 𝜆i−1∕2,j

)
vi,j+1 +

1
4

(
𝜆i−1∕2,j − 𝜆i+1∕2,j

)
vi,j−1

− 1
4

(
𝜆i−1∕2,j + 𝜇i,j+1∕2

)
vi−1,j+1 +

1
4

(
𝜇i,j−1∕2 − 𝜇i,j+1∕2

)
vi−1,j

+ 1
4

(
𝜆i−1∕2,j + 𝜇i,j−1∕2

)
vi−1,j−1 +

𝛼𝛿y
2

(
pi−1,j − pi+1,j

)
+

[
g(d)i−1∕2,j − g(d)i+1∕2,j

]
𝛿ypi,j = fx𝛿x𝛿y,

(71)
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and for the expression (64) at

1
4

(
𝜆i,j+1∕2 + 𝜇i+1∕2,j

)
ui+1,j+1 +

1
4

(
𝜆i,j+1∕2 − 𝜆i,j−1∕2

)
ui+1,j

− 1
4

(
𝜆i,j−1∕2 + 𝜇i+1∕2,j

)
ui+1,j−1 +

1
4

(
𝜇i+1∕2,j − 𝜇i−1∕2,j

)
ui,j+1

+ 1
4

(
𝜇i−1∕2,j − 𝜇i+1∕2,j

)
ui,j−1 −

1
4

(
𝜇i−1∕2,j + 𝜆i,j+1∕2

)
ui−1,j+1

+ 1
4

(
𝜆i,j−1∕2 − 𝜆i,j+1∕2

)
ui−1,j +

1
4

(
𝜇i−1∕2,j + 𝜆i,j−1∕2

)
ui−1,j−1

+
(
𝜆i,j+1∕2 + 2𝜇i,j+1∕2

) 𝛿x
𝛿y

vi,j+1 + 𝜇i+1∕2,j
𝛿y
𝛿x

vi+1,j + 𝜇i−1∕2,j
𝛿y
𝛿x

vi−1,j

−
[(
𝜆i,j+1∕2 + 2𝜇i,j+1∕2 + 𝜆i,j−1∕2 + 2𝜇i,j−1∕2

) 𝛿x
𝛿y

+
(
𝜇i−1∕2,j + 𝜇i+1∕2,j

) 𝛿y
𝛿x

]
vi,j

+
(
𝜆i,j−1∕2 + 2𝜇i,j−1∕2

) 𝛿x
𝛿y

vi,j−1 +
𝛼𝛿x

2

(
pi,j−1 − pi,j+1

)
+

[
g(d)i,j−1∕2 − g(d)i,j+1∕2

]
𝛿xpi,j = fy𝛿x𝛿y.

(72)

The updated pressure, displacements, and fracture-matrix flux at the next time level n + 1 are obtained after
solving the linear system of equations

Un+1 = K−1
fullR

n, (73)

where the vectors of unknowns U include cell pressures, displacements, and, if exists, fluid flow between
domains

Un+1 =
⎛⎜⎜⎝

pn+1

qn+1

un+1

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pn+1
(1,1)
⋮

pn+1
(N,M)

qn+1
1
⋮

qn+1
K

un+1
(1,1)
⋮

un+1
(N,M)

vn+1
(1,1)
⋮

vn+1
(N,M)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(74)

where we recall qn+1 = Qn+1
mf

, and the system matrix is a 4 × 4 block matrix

Kfull =

⎛⎜⎜⎜⎜⎝
Kpp Kpq Kpu Kpv

Kqp Kqq Kqu Kqv

Kup 0 Kuu Kuv

Kvp 0 Kvu Kvv

⎞⎟⎟⎟⎟⎠
(75)

and the source vector is

Rn =

⎛⎜⎜⎜⎜⎝
Rn

p

Rn
q

Rn
u

Rn
v

⎞⎟⎟⎟⎟⎠
. (76)

The coefficients of the p-blocks, Kpp,… ,Kpv , are given by equation (50); the q-blocks, Kqp,… ,Kqv , by
equation (56); the u-displacement blocks, Kup,… ,Kuv , by equation (71); and the v-displacement blocks,
Kup,… ,Kuv , by equation (72). The corresponding coefficients of the source vector are also given by the
same equations.
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2.4.2. Numerical Implementation of the Phase Field Equation
The integral form of the phase field equation (42) over an arbitrary control volume Ω reads

∫Ω

(gc

𝓁
+ 2H+

)
ddΩ + ∫Ω

gc𝓁∇2ddΩ − ∫Ω
2H+dΩ = 0. (77)

Using the divergence theorem, the above expression is rewritten as

∫Ω

(gc

𝓁
+ 2H+

)
ddΩ + ∫

𝜕Ω
gc𝓁∇dd𝜕Ω − ∫Ω

2H+dΩ = 0. (78)

The discrete equation for the phase field problem is, for a given control volume (i, j) in a regular Cartesian grid,(gc

𝓁
+ 2H+

)
di,j𝛿x𝛿y +

[
−gc𝓁

𝜕d
𝜕x

]
i+1∕2,j

+
[

gc𝓁
𝜕d
𝜕x

]
i−1∕2,j

+
[
−gc𝓁

𝜕d
𝜕y

]
i,j+1∕2

+
[

gc𝓁
𝜕d
𝜕y

]
i,j−1∕2

− 2H+𝛿x𝛿y = 0.
(79)

The fully discrete equation is given by(gc

𝓁
+ 2H+

)
di,j𝛿x𝛿y − gc,i+1∕2,j𝓁

(di+1,j − di,j

𝛿x

)
𝛿y + gc,i−1∕2,j𝓁

(di,j − di−1,j

𝛿x

)
𝛿y

−gc,i,j+1∕2𝓁
(di,j+1 − di,j

𝛿y

)
𝛿x + gc,i,j−1∕2𝓁

(di,j − di,j−1

𝛿y

)
𝛿x − 2H+𝛿x𝛿y = 0.

(80)

The interface critical energy release rate is computed, as in the previous equations, with the harmonic mean.
Rearranging the above expression, we arrive at[(gc

𝓁
+ 2H+

)
𝛿x𝛿y +

(
gc,i+1∕2,j + gc,i−1∕2,j

)
𝓁
𝛿y
𝛿x

+
(

gc,i,j+1∕2 + gc,i,j−1∕2

)
𝓁
𝛿x
𝛿y

]
di,j

− gc,i+1∕2,j𝓁
𝛿y
𝛿x

di+1,j − gc,i−1∕2,j𝓁
𝛿y
𝛿x

di−1,j − gc,i,j+1∕2𝓁
𝛿x
𝛿y

di,j+1

− gc,i,j−1∕2𝓁
𝛿x
𝛿y

di,j−1 = 2H+𝛿x𝛿y.

(81)

The updated phase field is obtained after solving the linear system of equations

D = K−1Rd, (82)

where the vectors of unknowns D include cell phase fields

D =

⎛⎜⎜⎜⎜⎝
d(1,1)
d(2,1)
⋮

d(N,M)

⎞⎟⎟⎟⎟⎠
. (83)

The coefficients of the system matrix K and the source vector Rd are given by equation (81).
2.4.3. Tracking Algorithm of the Fracture
In our Cartesian grid, the 1-D fracture domain, ΩR, is composed by a set of 0 and 𝜋∕2 radians segments. It
is updated by adding at each time step a set of segments that links the previous fracture tip with the new
one. We explain our strategy through Figure 3. At time step n + 1, the displacement field un+1 and the phase
field dn+1 are known, as well as the fracture path at the previous time step, Ωn

F . We determine the fracture
domain at the time step n + 1 through an iterative process that compromises two steps.

In the first step of the kth iteration, we group in Ωk
tip the four neighboring cells surrounding the current tip,

xn,k−1
tip,i,j , except the ones that are already part of the fracture. Out of those candidate neighboring cells, we retain

the ones for which the phase field variable exceeds a prescribed threshold value, df . The set of candidates that
could become the new fracture tip after applying this first step is

Ωk
tip =

{
xn,k−1

tip,I=i±1,J=j±1I ≠ J ∕ xI,J ∉ Ωn
F , dn+1

I,J ≥ df

}
. (84)
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In the second step, we determine the direction of propagation of the fracture by selecting the new fracture
tip among the above set of candidates. The new tip, xn,k

tip,i,j , is done by determining the direction where the
gradient of d is minimum:

xn,k
tip,i,j = min

x∈Ωk
tip

∇d(x) ⋅ x, (85)

where x is the versor direction. For example, in Figure 3b the fracture tip would propagate to the next cell
in the vertical direction. The iteration process is repeated K times until Ωk

tip = ∅. The new fracture tip is

then xn+1
tip,i,j = xn,K

tip,i,j . A limitation of our tracking algorithm is related to branching. Our algorithm is unable to
capture branching and, consequently, is limited to track a single fracture.

To avoid abrupt changes in the direction of the normal to the fracture trajectory we fit a function to the fracture
domain at every time step. We computed the normal direction to the fracture path through this function.
The function can be defined by splines, piecewise functions, Fourier series, or polynomials, for example. For
our particular problem where fractures describe smooth trajectories, we choose a polynomial with shape
y = a1 + a2x + a3x1.5. Coefficients ai are determined by the least squares method.

3. Benchmark Analytical Model and Code Verification

The performance of the numerical model is tested against two benchmarks. The simple first test of the poroe-
lastic model is an analytic solution of the Biot poroelasticity equation in a 2-D domain derived from Barry
and Mercer (1999). The second benchmark is the Sneddon analytical solution of a pressurized fracture with
constant length located in a 2-D infinite elastic domain (Sneddon, 1946).

3.1. Analytical Solution of the Poroelasticity Equations
Analytical solutions of the Biot model are available under the standard linear poroelastic assumptions: homo-
geneous and isotropic material with constant medium permeability, linear stress-strain dependence and
infinitesimal strains, incompressible fluid and solid materials, and constant temperature.

Under these assumptions, we consider a 2-D rectangular domain Ω = (a, b)2 with a point source q(x, y, t)
at (x0, y0) (see Figure 4). The boundary conditions for flow are zero pressure, whereas for displacements are
u = 0 and 𝜕v∕𝜕y = 0 on y = 0 and y = b; and v = 0, 𝜕u∕𝜕x = 0 on x = 0 and x = a. The imposed flow rate is

q(x, y, t) = 𝛽𝛿(x − x0)𝛿(y − y0)e𝜔t, (86)

where 𝛽 [T−1] and 𝜔 [T−1] are constants, and 𝛿 is the Dirac delta function. The analytical solution is obtained
by applying Laplace transforms and Fourier expansions and reads

u(x, y, t) = 4
ab

∞∑
q=1

∞∑
n=1

ū(n, q, t) cos(𝜑nx) sin(𝜑qy), (87)

v(x, y, t) = 4
ab

∞∑
q=1

∞∑
n=1

v̄(n, q, t) cos(𝜑nx) sin(𝜑qy), (88)

p(x, y, t) = − 4
ab

∞∑
q=1

∞∑
n=1

p̄(n, q, t) cos(𝜑nx) sin(𝜑qy), (89)

where

ū(n, q, t) = 1
𝜆 + 2𝜇

𝜑n

�̂�
p̄(n, q, t), v̄(n, q, t) = 1

𝜆 + 2𝜇

𝜑q

�̂�
p̄(n, q, t), (90)

𝜆 and 𝜇 are the Lamé constants,

p̄(n, q, t) = − 𝛽

k∗

sin(𝜑nx0) sin(𝜑qy0)
�̂� + 𝜔

(
e𝜔t − e−�̂�t

)
, (91)

and k∗ = 𝜅∕𝜇f . Finally, we define

𝜑n = n𝜋
a
, 𝜑q =

q𝜋
b
, �̂� = 𝜑2

n + 𝜑
2
q. (92)
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Figure 4. Poroelastic benchmark model. (a) Model setup for the verification with injection point at (x0, y0). (b) Testing
the grid convergence, log-log scale plot of the L2 error norm measure for the u displacements, plotted against the mesh
size h. As expected, the displacements converge quadratically.

The discrepancy between the analytical and the numerical models is measured computing the L2 error norm,
given by

L2 = ‖Vex − Vnum‖2 =
⎧⎪⎨⎪⎩

Ni∑
i=1

Nj∑
j=1

∫Ω

(
Vex

i,j − Vnum
i,j

)2
dΩ

⎫⎪⎬⎪⎭
1∕2

, (93)

where Vex
i,j is the exact value of the variable at location (i, j) and Vnum

i,j is its value computed with the numerical
model.

The numerical model is applied to the domain depicted in Figure 4a, with unit length and hydromechanical
properties: E = 1 [ML−1T−2], 𝜈 = 0.25, k∗ = 1 [M−1L3T], 𝛼 = 1, and S = 0 [M−1LT2]. Fluid is injected at constant
rate q = 1 [T−1] at location (0.75 [L], 0.75 [L]). We test the grid convergence of the base poroelastic solver by
discretizing the domain with several mesh sizes and computing the L2 norm, equation (93). We adopt a finite
volume scheme on a regular quadrilateral mesh for the spatial discretization and a Backward Euler scheme
for the time integration. Pressure and displacement fields are solved with a fully coupled scheme. The results
for the u displacements are depicted in Figure 4b in log-log scale. The displacements converge quadratically,
as expected from the order of the numerical scheme, second order.

3.2. Sneddon Analytical Solution for a Pressurized Fracture
The second benchmark is based on the analytical solutions obtained by Sneddon (1946). Sneddon consid-
ered an infinite 2-D elastic domain with a Griffith fracture of constant length 2c centered at the origin of the
Cartesian coordinate system, and whose axis is aligned with the x axis. The elastic material is assumed to
be homogeneous and isotropic, with linear stress-strain dependence, isothermal conditions, and plane and
infinitesimal strains. Under these assumptions, the aperture of the fracture under constant pressure applied
to its edges is given by

w(x, 0) =
4(1 − 𝜈2)pc

E

√
1 − x2

c2
. (94)

This simple model allows us to validate equation (24), where pressure forces are accounted for as body forces
in the phase field formulation.

We consider a 2-D squared domain of length 4 [L] with mechanical properties: E = 1 [ML−1T−2], 𝜈 = 0.25,
gc = 1.80×10−10 [MT−2], and𝓁 = 0.015 [L]. The boundary conditions are zero displacements. The fracture has
a length of 1 [L], and it is introduced by setting such a large value for H+ in the damaged area that the value
of the phase field is very close to 1 in the fracture (Figure 5a). The applied pressure is 10−4 [ML−1T−2], and the
aperture of the fracture is computed through equation (41).

We plot the vertical (normal to the fracture) displacements in Figure 5b. By using these displacements and
the phase field variable, we compute the aperture, which is plotted in Figure 5c for several mesh sizes ranging
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Figure 5. Sneddon benchmark model. (a) Initial fracture: map of phase field (damage) variable d. Model results:
(b) contour plot of normal displacements, (c) fracture profiles for the analytical solution and the numerical model with
mesh sizes ranging from 1∕100 to 1∕500 [L], and (d) L2 error norm for the fracture aperture against the mesh size h.
The phase field model results agree well with the analytical solution except near the tips, where the phase field model
introduces a smearing effect due to the regularization of the fracture surface.

from 1∕70 to 1∕500 [L]. In the same figure we depict the aperture computed with the analytical solution. We
plot the L2 error norm of the fracture aperture against the mesh size in log-log scale in Figure 5d. The numerical
results converge to the analytical solution as the element size decreases. The aperture converges quartically
for the largest mesh sizes up to h = 1∕100 [L]. For smaller sizes, the convergence order is lower than one. The
convergence order of the aperture differs from the order of the numerical scheme—equal to 2—since the
aperture is a variable computed from the solution of the numerical model. These results suggest that a good
choice of the mesh size is h = 1∕400 = 2.5 × 10−3 [L]. The accuracy of the numerical solution, in terms of the
root-mean-square error, is 6.6 × 10−6 [L] for this size.

The numerical models agree well with the analytical solution except near the fracture tips, where the phase
field model does not match the exact solution due to the smearing effect introduced by the regularization of
the fracture.

4. Numerical Assessment of the Phase Field Approach to Hydraulic Fracturing
4.1. The Propagation of a Fracture in the Quarter Five-Spot Problem
To test the potential of the proposed methodology to describe realistic injection scenarios, we consider the
case of the propagation of a hydraulic fracture in the quarter five-spot configuration of injection and produc-
tion wells (Figure 6). Due to its practical importance in enhanced oil recovery, this arrangement has served
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Figure 6. Schematic diagram of the quarter five-spot configuration. Our computational domain is the shaded area.

as the paradigm configuration in many porous media problems for exploring miscible and immiscible fluid
displacements (Christie & Blunt, 2001; Coats, 1982; Lajeunesse et al., 1999; Lie & Juanes, 2005; Riaz & Meiburg,
2003; Russell & Wheeler, 1983; Zhang et al., 1997). We model fracturing induced by injection at constant flow
rate at the bottom-left corner of a two-dimensional square domain of length L, while fluid is produced at the
top-right corner at constant pressure. An initial straight fracture of length 0.15L is aligned along the domain
diagonal. This fracture is introduced as a region with a large value of the local history field of maximum posi-
tive energy such that the computed phase field was close to the broken state. In that way, a consistent initial
condition is guaranteed. The poroelastic medium is assumed to be initially homogeneous and isotropic, with
constant permeability, linear stress-strain dependence, and infinitesimal planar strains. Symmetry boundary
conditions are imposed; that is, 𝜕u∕𝜕x = 0, v = 0, 𝜕p∕𝜕y = 0 on y = 0 and y = 1, and u = 0, 𝜕v∕𝜕y = 0,
𝜕p∕𝜕x = 0 on x = 0 and x = L.

The mechanical and hydraulic properties of the media and the fluid are listed in Table 1. The values corre-
spond to sandstone saturated with water, and water is also the injected fluid. The dimensional analysis of the
governing equations renders five dimensionless parameters:

𝜋1 =
gc

EL
, 𝜋2 = M

E
, 𝜋3 =

𝜇f k∗

L2
, 𝜋4 = Q

Ek∗ , 𝜋5 = tEk∗

L2
, (95)

where k∗ = 𝜅∕𝜇f is the ratio between the medium intrinsic permeability and the fluid dynamic viscosity.
Since we consider plane-strain conditions, the previous magnitudes are measured per unit thickness of solid.
Taking E, L, and k∗ as reference magnitudes, we compute the dimensionless parameters shown in Table 1.

With this test we aim at assessing the physical consistency and convergence properties of phase field models
and corresponding numerical discretizations. For a given injection flow rate above the breakdown threshold,
we expect that the fracture will propagate a certain distance, reaching a steady state length and flow config-
uration. The arrest of fracture propagation is expected to occur due to the poroelastic coupling. We choose

Table 1
Model Parameters for the Quarter Five-Spot Configuration

Parameter Name Dimensional value Dimensionless value

E Young modulus 17 GPa 1

L Length of domain 40 m 1

k∗ = 𝜅∕𝜇f Ratio permeability to viscosity 1 × 10−11 m2 Pa−1 s−1 1

gc Griffith critical energy release rate 120 J m−2 1.8 × 10−10

M Biot modulus 53.7 MPa 3.2 × 10−3

𝜇f Dynamic viscosity 10−3 Pa s 6.6 × 10−18

cf Fluid compressibility 4.5 × 10−10 Pa−1 7.65

𝜈 Poisson ratio 0.25

𝛼 Biot coefficient 0.90
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the final fracture length as the key model output to be analyzed. The question is, then, how this length
depends on hydromechanical and injection parameters, and whether it is robust when the grid, or the length
scale parameter, 𝓁, change. In summary, we assess whether the fracture patterns observed are robust and
physically relevant, rather than grid controlled in an ill-posed problem. We have also conducted a parametric
study to evaluate the physical consistency of the model.

4.2. Observed Fracture Propagation Patterns
By varying the imposed injection flow rate, we conduct multiple experiments of fracture propagation in the
quarter five-spot problem. The injection-driven fracture propagation is resolved in time until a steady state
is reached, where pressures, mechanical deformations, and damage (phase field) variables do not change in
time further. We consider that the steady state has been reached when the convergence criteria fulfill. The
criteria refer to ||(si − si−1)∕si

|| < T , where si is the value of the considered variable s at time i and T is the
relative tolerance. We adopt T = 10−3. For given hydromechanical properties, the steady state fracture length
depends on the injection rate, and three distinctive patterns arise: (1) for low enough injection rates, the initial
fracture does not propagate; (2) for a given injection flow rate above a breakdown threshold, the initial fracture
propagates and a steady state fracture length is reached, the steady state length increases with injection rate.
and, in the absence of heterogeneity or disorder, the fracture propagates along the diagonal from the injection
to producing well; and (3) for high rates, the fracture branches near the production well, where compressive
stresses concentrate. Figure 7 illustrates the three fracture patterns, along with the corresponding evolution
of the injection pressure and flow rates. In what follows, we describe and analyze patterns that we observe in
the simulations.

Fractures propagate due to the pressure gradient generated at the interface between the fracture and the
porous medium, which results in strain concentration at fracture tips and induces damage, that is, increases
the phase field variable. The magnitude of the strains depends on the pressure gradient, which increases
with the injection flow rate for constant hydromechanical properties. For relatively small injection rates, the
pressure gradient is not large enough to propagate the fracture (Figure 7a). Under this situation, the injection
pressure and production flow rate increase with time up to constant values (Figure 7a).

The second pattern corresponds to injection flow rates for which the fracture propagates following a straight
path and reaches a steady state length. That evolution is depicted in Figure 7b, where the dimensionless
injection rate is q = 5.0 × 10−5. The production flow rate presents a similar evolution to the previous case,
but the pressure evolution has a distinctive feature: an initial steep buildup up to the point where the fracture
starts to grow, followed by a sudden decrease due to the propagation of the fracture. Afterward, the pressure
continues to increase because of the nature of the hydraulic boundary conditions, zero flux, up to a steady
state is reached. The leaked fluid from the fracture makes the pressure in the poroelastic medium increase,
but the fluid pressure inside the fracture is not high enough and fracture propagation stops.

The last pattern corresponds to fractures driven by high ratios of q to k∗. In such cases, fractures branch near
the top-corner production well (Figure 7c). This pattern emerges due to the combination of the fracture prop-
agation velocity and the poroelastic effect. The high propagation velocity of the fracture does not allow to
reach the steady state when the fracture is close to the production well. Due to the poroelastic effect, com-
pressive stresses in the vicinity of the production well are generated as the production flow increases and the
propagation stops. Afterward, if the fluid pressure is high enough, branching occurs. The pressure evolution
is also characterized by a sudden drop when the fracture starts to propagate.

To test the robustness of branching with respect to the grid size and d value threshold, we conduct a mesh
refinement and threshold study. We study the presence of branching, as well as the fracture length at which
branching occurs, Lb. We confirm that branching is independent of the d value threshold and mesh size. For a
given dimensionless flow rate of 5×10−4 without confinement, branching occurs for increasingly four d values
of the threshold ranging from 0.80 to 0.95, insets of Figure 8a, as well as for increasingly fine seven mesh sizes,
from 1∕100 to 1∕700, insets of Figure 8b.

The steady state fracture length at which branching occurs is not independent of df . The length decreases for
increasing d value threshold. This is to be expected since larger strains are required to propagate the fracture
as the threshold increases, Figure 8a. Nevertheless, Lb is grid independent: the steady state length converges
for increasingly mesh size, Figure 8b.
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Figure 7. Steady state fracture patterns in the quarter five-spot configuration: phase field variable (left) and injection
pressure evolution (right). (a) An initial fracture does not propagate for low enough injection rate; here q = 2 × 10−5.
(b) For intermediate flow rates, an initial fracture grows until it reaches a steady state length; here q = 5 × 10−5. (c) For
large enough flow rates, an initial fracture grows until it bifurcates near the production well, where compressive stresses
dominate; here q = 5 × 10−4.

The permeability of the poroelastic medium has a direct influence on the leak-off flow rate from the fracture
to the medium. We plot the evolution of the leak-off and storage flow rates in Figure 9a. The sum of both
rates equals the injection rate, q = 5.0 × 10−4. Before the fracture begins to propagate, the pressure of the
fluid inside the fracture rises, inducing an increase in the leak-off rate. Once the propagation starts, the fluid
pressure suddenly drops and the leak-off rate decreases. Afterward, both variables (pressure and leak-off rate)
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ba

Figure 8. Convergence study for branching. The dimensionless flow rate is 5 × 10−4 without confinement. (a) We plot
the steady state fracture length at the branching point, Lb , for several d value threshold, df . The steady state length
decreases for increasing d value threshold. The branching is robust with respect to the selection of the threshold.
(b) We depict the steady state fracture length at the branching point for several mesh sizes with df = 0.90. The model
results are grid independent; the steady state length converges for increasingly fine mesh sized. The branching is
also robust with respect to the mesh size.

increase with time, although the leak-off flow rate quickly grows up to a value close to the injection rate. The
pressure distribution inside the fracture is shown in Figure 9b at three different times. The pressure is virtually
uniform along the fracture during the entire simulation.

The high leak-off ratio indicates that most of the fluid is stored in the porous medium. Moreover, the uniform
pressure along the fracture means that the viscous dissipation is negligible compared to the energy expended
in fracturing the solid. Both phenomena indicate that the fracture propagates in the leak-off toughness
dominated regime.

We depict the contour plots of pressure and phase field variables for the dimensionless injection flow rates
q = 5.0×10−5 and q = 5.0×10−4 in Figures 10a and 10b, respectively, at two given times when both fractures
have the same length. The maximum dimensionless pressure in both simulations is approximately 6 × 10−5,
but the distribution patterns are very different. The pressure field in the simulation with q = 5.0 × 10−5

(Figure 10a) is similar to the steady state pattern since the fracture propagation velocity is slow enough to
allow the pressure to diffuse across the porous solid. The stationary fracture length and pressure fields are
reached approximately at the same time, as can be seen from the right plot of Figure 7b, where the injection
and production flow rates are coincident at time 4,000, when the stationary fracture length is also reached.

The pressure field pattern in the simulation with q = 5.0 × 10−4 (Figure 10b) is markedly different. The frac-
ture propagates at such high velocity that the pressure has no time to diffuse through the medium, and it
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Figure 9. The permeability of the poroelastic medium has a direct influence on the leak-off flow rate from the fracture
into the medium. (a) Evolution of the leak-off and storage flow rates. The sum of both rates equals the total injection
rate, q = 5 × 10−4, which is constant in time. (b) Fluid pressure along the fracture at three time steps.
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ba

Figure 10. Hydraulic fractures propagate in the quarter five-spot configuration, reaching a final steady state length.
Here we show maps of pressure field for (a) q = 5 × 10−5, and (b) q = 5 × 10−4. The dimensionless length of both
fractures is 0.40. The pressure field in (a) is similar to the steady state pattern since the fracture propagation velocity is
slow enough to allow the pressure to diffuse across the porous solid. Instead, the fracture propagates at such high
velocity in (b) that the pressure has no time to diffuse through the medium, and it only changes in a small region
around the damaged zone.

only changes in a small region around the damaged zone. The stationary fracture length is reached much
earlier than the stationary pressure distribution, as shown in Figure 7c, where at dimensionless time 100 the
stationary length occurs, but the production flow rate is 5 times lower than the injection rate.

4.3. Convergence Study on Phase Field Fracture Models
To test the grid convergence and grid independence of our model results, we conduct a mesh refinement
study. In particular, we study the effect of mesh size over the final fracture length without confining strains
and over the fracture path and aperture when confining strains are applied. We confirm that the model results
are grid independent. For a fixed dimensionless injection flow rate of q = 5 × 10−5, the steady state lengths
of the fracture converge for increasingly seven mesh sizes, from 1∕100 up to 1∕700 (Figure 11). The shortest
dimensionless fracture length, 0.71, is computed with the coarsest dimensionless mesh size, 1∕100. As the
mesh is refined, the fracture length increases.

Figure 11. Effect of the mesh size on the steady state fracture length in the
quarter five-spot configuration. The dimensionless flow injection rate is
q = 5 × 10−5. The model results are grid independent: for a fixed
dimensionless injection rate, the steady state fracture length converges for
increasingly fine mesh sizes.

We also conduct a convergence study on a crack that propagates
describing a curved path. For a far field displacement parallel to
the y axis that under drained conditions produces confining strains
𝜀yy = 1.25 × 10−5 and 𝜀xx = 𝜀xy = 0 and a fixed dimensionless injec-
tion flow rate of q = 5 × 10−5, the steady state fracture path describes
a curve, Figure 12a. We quantify the robustness of these trajectories by
computing the root-mean-square deviation, Sr , of the simulated fracture
paths with respect to the trajectory obtained using the smallest mesh size,
Figure 12b. The difference between predicted trajectories decreases as the
grid is refined, as it remains relatively small even for the coarsest grids.
The fracture aperture at the steady state fracture length also converges
as the grid is refined, Figure 12c. The Sr of the simulated fracture aper-
tures with respect to the aperture computed through the smallest mesh
size also decreases as the as the grid is refined, Figure 12d. Based on these
convergence results, we adopt a mesh size 𝛿x = 𝛿y = 1∕400 = 2.5 × 10−3.

4.4. The Effect of the Length Scale Parameter 𝓵
The internal length scale 𝓁 plays a central role in the phase field formula-
tion of fracture, as it behaves mathematically as a regularization parameter.
We study the dependence of the fracture patterns and lengths on this
intrinsic length scale by running multiple simulations with the same grid
and dimensionless injection rate q = 5× 10−5. We vary 𝓁 from 0.01 to 0.03
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Figure 12. Mesh convergence study for arbitrary oriented fractures. The dimensionless flow rate is 5 × 10−5 and the
initial strains are 𝜀yy = 1.25 × 10−5 and 𝜀xx = 𝜀xy = 0. (a) We plot the steady state fracture paths for mesh sizes ranging
from 1∕200 [L−1] to 1∕700 [L−1]. (b) Here we plot the value of Sr of the fracture path for every simulation, taking as
reference solution the simulation with the smallest size. The model solution converges to the reference case for
increasingly fine mesh sizes. (d) We depict the steady state fracture aperture, w, for mesh sizes ranging from 1∕200 [L−1]
to 1∕700 [L−1]. (d) We plot the value of Sr of the fracture aperture for every simulation, taking as reference solution
the simulation with the smallest size. The model solution also converges to the reference case for increasingly fine
mesh sizes.

and plot against corresponding steady state fracture lengths (Figure 13a). The fracture length varies from 0.72
for the largest value of 𝓁 to 0.78 for the smallest ones. The variation is only a 4% around the mean value of
the fracture. A slight dependence of the fracture length on 𝓁 is detected: an increasing length scale results
in a shorter fracture length. We also show several contour plots of the phase field variable, where it can be
appreciated that the damaged zone around the fracture is wider as 𝓁 increases.

The pressure evolution in the injection point is plotted in Figure 13b. The evolution presents an extremely
steep slope up to a time equal to approximately 20, when the fracture starts to propagate, and suddenly
the pressure decreases. After that time, the pressure gradually increases up to a constant value. The length
scale parameter has a minor influence on the injection pressure evolution, although a larger 𝓁 involves larger
injection pressure.

The length scale parameter was introduced, in principle, as a mathematical parameter for approximating the
Mumford-Shah potential (Mumford & Shah, 1989). However, the results of the numerical experiments reveal
that it also behaves as an effective material parameter, something that has already been pointed out by sev-
eral authors (Borden et al., 2012; Pham et al., 2011; Vignollet et al., 2014). Vignollet et al. (2014) reported a
dependence of the peak force on the length scale parameter of a 1-D bar subjected to a constant tensile
loading. The peak force decreased as the length scale parameter increased. In the present context of fluid-
driven fracturing of a poroelastic medium, 𝓁 can be interpreted as a measure of the damaged zone around
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Figure 13. The internal length scale 𝓁 plays a central role in the phase field formulation of fracture, as it behaves
as a regularization parameter. For a dimensionless injection rate of q = 5 × 10−5 in the quarter five-spot configuration,
we show the effect of the length scale parameter 𝓁 on the following: (a) the steady state fracture length and (b) the
injection pressure.

the fracture, that is, the phase field provides an area where the main fracture may be accompanied by a large
number of much smaller fractures around it, instead of sharp fracture edges where the formation of the frac-
ture does not imply damage in the surrounding area. This fact can be appreciated in the contour plots of
Figure 13a, where the width of the damaged zone increases slightly as 𝓁 does.

4.5. The Effect of the Initial Fracture Length
To evaluate the effect of the initial fracture length on the steady state fracture patterns, we run a set of models
whose initial dimensionless fracture length varies from 0.1 to 0.6. The dimensionless injection rate is fixed
at q = 5 × 10−5. The initial fracture length against the final one is depicted in Figure 14a. The initial length
seems to have a negligible effect on the final ones, since final lengths increase slightly as initial ones do.

The evolution of injection pressures is shown in Figure 14b for four initial lengths: 0.10, 0.15, 0.30, and 0.60. The
initial length seems to have an effect on the evolution of the pressure during the initial stages: the pressure is
higher as the initial fracture is shorter. Afterward, all cases have similar evolutions. Nevertheless, the stationary
pressure is slightly larger as the initial fracture is shorter. This is an expected behavior because the station-
ary length is slightly shorter, and consequently, the injection pressure should be higher since the flow rate

Figure 14. Effect of the initial fracture length in the quarter five-spot configuration on (a) the steady state fracture
length and (b) the injection pressure. The dimensionless injection flow rate is q = 5 × 10−5.
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Figure 15. Stationary fracture length against injection flow rate in the quarter five-spot configuration. We run many
simulations varying the permeability of the medium, the Young modulus, the Griffith critical energy release rate,
and the injection flow rate. Fractures propagate in all simulations under the leak-off toughness dominated regime.
(a) Stationary fracture length against flow rate in dimensional quantities for the different simulations; (a) when plotted in
dimensionless quantities (see text), the data collapses along exponential-type curves whose slope decreases with LQ∕L.

is the same. In all cases, the mild dependence of pressure and phase field evolution on the initial fracture
length suggests that the observed steady states are robust and physically relevant.

4.6. Parametric Study and Dimensional Analysis
We provide a dimensional analysis argument that summarizes the observed fracture behavior. We run a large
set of simulations varying the medium permeability, the Young modulus, the Griffith critical energy release
rate, and the injection flow rate. Fractures propagate in all simulations under the leak-off toughness domi-
nated regime. Figure 15a summarizes the simulated results by plotting the length of the stationary fracture
against the injection flow rate for different values of the aforementioned parameters. To collapse the results,
we define the following four characteristics lengths: the length scale parameter, 𝓁, the length of the domain,
L, the Griffith length, L0 = gc∕E, and the loading length, LQ = Q∕(Ek∗). LQ can be interpreted as the mechanical
response or “mean fracture aperture” against Q, k∗, and E. Intuitively, the fracture aperture is directly propor-
tional to the injection rate, since the fluid pressure increases with Q, and inversely proportional to E or k∗, as
those properties measure the stiffness of the medium and the fluid leak-off from the fracture, respectively.

Taking L as reference length, we define four dimensionless numbers: LQ∕L, L0∕L, 𝓁∕L, and Lf∕L. The param-
eter 𝓁∕L will not be considered since it is constant in all simulations and equals 0.015. The dimensionless
number Lf∕L is associated with the stationary fracture length. Lf∕L is plotted against LQ∕L in Figure 15b for
three values of L0∕L. Points collapse along an exponential-type curve whose slope increases with LQ∕L.

The effect of the hydromechanical properties on the stationary fracture length is analyzed in Figure 15b. Lf∕L
increases with LQ∕L, which means that the fracture is longer as the injection rate is larger or the permeability is
lower. Moreover, the effect of Q can be counteracted with k∗, since while the number LQ∕L = Q∕(Ek∗) remains
constant, Lf∕L also does. This phenomenon is also presented in Figure 15a where simulations with k∗ = 0.1,
1, 10, and, respectively, Q = 0.1Q,Q, 10Q result into the same fracture length for each value of Q. The effect
of gc is analyzed through the number L0∕L. For a constant value of LQ∕L, Figures 15b shows that Lf∕L increases
as L0∕L decreases. Fractures propagate further in material with lower energy release rate, gc.

The effect of the Young modulus is analyzed with both numbers LQ∕L, and L0∕L. As the modulus increases
the number L0∕L decrease which, in principle, means that the fracture length becomes larger. But the num-
ber LQ∕L also decreases and the exponential shape of the curves makes this effect dominate over the previous
one. As a result, the stationary fracture length is shorter as the Young modulus becomes larger.

4.7. Practical Remarks
The fluid motion in the poroelastic medium was modeled with Darcy’s law solved on a regular 2-D mesh,
whereas flow inside the fracture was modeled with Reynolds lubrication equation on a 1-D mesh embedded
in the 2-D mesh. We suggest reducing the complexity of this approach by making two simplifications.

We propose to replace the storage term in the Reynolds lubrication equation with the storage term of the
Biot poroelasticity equation. This approximation allows us to solve the problem on a unique 2-D mesh where
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Figure 16. Decomposition of the injected fluid flow through the fracture into the following: (a) storage flow rate and
(b) leak-off flow rate. The storage rate in the 2-D model is higher than in the 1-D, since it depends on the volumetric
strain of the fractured nodes. Evolution of (c) injection pressure and (d) fracture length. The evolution the injection
pressure and fracture length, and the pressure fields are very similar in both approaches. q is 5 × 10−5.

the permeability of the fractured nodes is then replaced by an effective permeability in the direction of the
fracture path. The effective permeability is computed through the cubic law and scaled to account for the
mesh size. The permeability in the perpendicular direction accounts for leakage and can be modified if
necessary.

We apply the proposed simplification to model the propagation of a fluid-driven fracture in our case study
with dimensionless q = 5 × 10−5 and the hydromechanical properties listed in Table 1. Simulation results
with the original and simplified models are given in Figure 16, where the models are denoted as 1D and 2D,
respectively, in reference to the way fractures are handled.

We depict the evolution of the flow rate leaked from the fracture to the porous solid and the rate stored in the
crack in Figure 16a. The storage rate in the simplified model is higher than in the original, since it depends on
the volumetric strain of the fractured nodes. Phase field models regularize damage and the transition between
broken and unbroken regions is spread out over a small finite region. As a result, the fractured nodes are
surrounded by others with some degree of damage which induces slightly higher strains than the values
provided by discrete approaches. This drawback is avoided in the original model by computing the fracture
aperture with equation (58), extended over a region around the fracture. We also plot the leak-off flow rate in
Figure 16b. The sum of both rates, storage and leak-off, is equal to the prescribed injection rate.

We plot the evolution of the injection pressure in Figure 16c, together with contour plots of the pressure field.
The evolutions and the pressure fields for both treatments of fractures are very similar. A minor difference can
be seen in the contour plots at time 500. The region with the highest pressure is extended through a smaller
area in the simplified model due to the higher storage flow rate. The discrepancy disappears as the fracture
propagates.
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Figure 17. Evaluation of the fracture aperture using the proposed approximation, equation (96), instead of
equation (58). (a) Schematic of the fracture path, unit normal vector to fracture ns, and parallel curves to fracture at
distances 𝛿s . (b) Mean absolute percentage error of fracture aperture against s. (c) Plot of w against wa for the optimal
value of s for all time steps of the simulation with q = 5 × 10−5.

We provide the evolution of the fracture length in Figure 16d for both approaches, and some contour plots of
the phase field variable. No differences are seen between both evolutions. The observed discrepancies in the
storage and leak-off flow rates do not seem to significantly affect the pressure or phase field variables.

The regularization of damage involves computing the fracture aperture through equation (58). We propose
an approximate but straightforward function to calculate w:

w(x,u, d) ≈ wa(x,u) =
⟨

u(x + 𝛿s),n+
s (x)

⟩
−

⟨
u(x),n+

s (x)
⟩

+
⟨

u(x − 𝛿s),n−
s (x)

⟩
−

⟨
u(x),n−

s (x)
⟩

∀x ∈ s
(96)

where ⟨a,b⟩ is the scalar product of vectors a and b, s is the fracture path, u(x± 𝛿s) is the displacement of the
point situated at distance ±𝛿s from s(x), and n±

s (x) is the unit normal to the fracture at upper and lower sides
of point x (see Figure 17a). Points (x ± 𝛿s) belong to curves parallel to s at distance 𝛿s.

We computed a posteriori the fracture aperture of the simulation with q = 5×10−5 through both formulations
and we calculated the mean absolute percentage error, defined by

MAPE = 100
N

N∑
i=1

||||w − wa

w

||||. (97)

We plot MAPE against 𝛿s in Figure 17b. The minimum error is 0.56% which corresponds to 𝛿s = 0.025. For lower
values of 𝛿s, wa is higher than w due to the higher strain introduced by the regularization of the damage, and
for higher values of 𝛿s, wa is lower than w. We depict wa against w for the optimal 𝛿s in Figure 17c in log-log
scale. The computed apertures are aligned along the diagonal, which indicates that the loss of accuracy from
these approximations is negligible.

5. Conclusions

Phase field models have emerged as a promising tool to simulate fluid-driven fracturing in poroelastic media.
Here, we have extended a phase field model of fluid-driven fracturing in elastic media, which has been vali-
dated with analytical solutions (Santillán, Juanes, & Cueto-Felgueroso, 2017), to poroelastic media. Our model
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describes the fluid flow in the fracture through the Reynolds lubrication equation, and the poroelastic medium
follows the Biot poroelasticity model. A central novel aspect of our approach is the simulation of the fracture
flow on a lower-dimension manifold in space with a nonlocal definition of the fracture aperture, and the use
of the fluid flux between the fracture and the porous solid as coupling variable.

We have assessed our model in the quarter five-spot configuration. We have simulated the propagation of a
small initial fracture located in the diagonal of the domain. The fracture started in the injection well where fluid
was injected at constant rate trough the fracture. The production well was situated in the opposite corner,
and fluid was extracted at constant pressure. Under this configuration, we have identified three stationary
fracture patterns: (1) the fracture did not propagate, (2) the fracture propagated following a straight line and
reached a robust steady state length whose magnitude depended, as expected, on the injection flow rate; and
(3) the fracture propagated following a straight path up to a point where it branched into two. The transition
between patterns depends on the injection flow rate. We have found that the poroelastic coupling plays a
vital role on the final fracture topology: the stress induced by the pore pressure around the production well
arrests the propagation of the fracture.

We have found a slight dependence of the stationary fracture length on the length scale parameter; an
increasing length scale resulted in a shorter fracture length. The injection pressure evolution showed a minor
dependence on this parameter; for the same flow injection rate, the pressure increases slightly as the length
scale parameter increases. We have conducted a dimensional analysis, which enabled us to determine sev-
eral characteristic length scales and to evaluate the physical consistency of the model. We have analyzed
the effect of the hydromechanical properties and the injection flow rate on the stationary fracture length.
As expected, the fracture length increases as the flow rate does, or as the hydraulic conductivity, the Griffith
energy release rate or the Young modulus decrease. Finally, we have proposed two simplifications to reduce
the complexity of our approach, with encouraging results under the leak-off toughness dominated fracture
propagation regime.

An important problem in phase field modeling of fracture is the determination of the fracture aperture, which
cannot be directly recovered from the displacement field. This is an important drawback of the phase field
approach, since the aperture plays a vital role in the computation of the fluid pressure inside the fracture,
which in turn controls fracture propagation and leak-off rate. Our approach incorporates a careful compu-
tation of the fracture aperture, which allows a detailed description and simulation of the fracture flow. A
consequence of this description is the need for inferring the fracture path, which could be a limitation for the
simulation of complex fracture topologies. Our approach captures the key controlling mechanisms of cou-
pled flow, rock deformation, and brittle fracture mechanics and shows promise to simulate and understand
more complex processes in fluid-driven fracturing of porous media.
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