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We develop a novel ‘moving-capacitor’ dynamic network model to simulate
immiscible fluid–fluid displacement in porous media. Traditional network models
approximate the pore geometry as a network of fixed resistors, directly analogous
to an electrical circuit. Our model additionally captures the motion of individual
fluid–fluid interfaces through the pore geometry by completing this analogy,
representing interfaces as a set of moving capacitors. By incorporating pore-scale
invasion events, the model reproduces, for the first time, both the displacement
pattern and the injection-pressure signal under a wide range of capillary numbers and
substrate wettabilities. We show that at high capillary numbers the invading patterns
advance symmetrically through viscous fingers. In contrast, at low capillary numbers
the flow is governed by the wettability-dependent fluid–fluid interactions with the
pore structure. The signature of the transition between the two regimes manifests
itself in the fluctuations of the injection-pressure signal.

Key words: porous media, fingering instability, capillary flows

1. Introduction

A beautiful array of flow patterns arises when a low-viscosity fluid displaces a
more viscous fluid in a porous medium. The problem has been extensively examined
through laboratory experiments, as well as numerical simulations and theoretical
models (Saffman & Taylor 1958; Paterson 1981; Tryggvason & Aref 1983; Chen &
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Wilkinson 1985; Kadanoff 1985; Måløy, Feder & Jøssang 1985; Nittmann, Daccord
& Stanley 1985; Bensimon et al. 1986; Chen 1987; Homsy 1987; Arnéodo et al.
1989; Fernández et al. 1990; Li et al. 2009; Bischofberger, Ramachandran & Nagel
2015). The dynamics of such displacement can be characterized by two dimensionless
groups: the ratio of viscous to capillary forces, or the capillary number (Ca), and
the ratio of defending to invading fluid viscosities, or viscosity contrast (M). For
high Ca, the resulting displacement patterns are reminiscent of diffusion-limited
aggregation (Witten, Sander & Sander 1981; Niemeyer, Pietronero & Wiesmann
1984; Daccord, Nittmann & Stanley 1986; Meakin, Tolman & Blumen 1989; Conti &
Marconi 2010). For low Ca, the displacement dynamics becomes more intricate, and
the emerging patterns display a strong dependence on the pore geometry (Lenormand,
Zarcone & Sarr 1983; Lenormand & Zarcone 1985; Lenormand, Touboul & Zarcone
1988; Fernandez, Rangel & Rivero 1991; Måløy et al. 1992; Furuberg, Måløy &
Feder 1996; Ferer et al. 2004; Toussaint et al. 2005; Holtzman, Szulczewski &
Juanes 2012) and the wettability of the medium – that is, the chemical affinity of
the solid for each fluid (Stokes et al. 1986; Trojer, Szulczewski & Juanes 2015;
Zhao, MacMinn & Juanes 2016; Odier et al. 2017). In particular, an intermittent
injection-pressure signal emerges in the limit of low Ca (Måløy et al. 1992; Furuberg
et al. 1996). Given that in most practical applications visualization of the flow
in porous media is not possible, the pressure signal is often the only source of
information. Surprisingly, no modelling approach to date has been able to capture
the injection-pressure signal across different Ca and pore wettabilities. Here, we
develop a new pore-network model that fills this gap, and we use it to explore the
transition from viscous-dominated to capillary-dominated flow regimes by examining
the connections among fluid morphology and pressure signal.

Pore-network models of flow in porous media can be broadly classified into
two groups: quasi-static and dynamic models (Blunt 2001; Meakin & Tartakovsky
2009; Joekar-Niasar & Hassanizadeh 2012). Quasi-static models neglect viscous
effects and advance the invading fluid through either invasion-percolation (Chandler
et al. 1982; Lenormand et al. 1988) or event-based algorithms (Cieplak & Robbins
1988, 1990). Although a quasi-static approach can be effective in reproducing
experimental invasion patterns at low Ca (Primkulov et al. 2018), it is unable to
capture the temporal evolution of the injection-pressure signal. Dynamic network
models approximate the flow channels with a network of interconnected capillary
tubes. Viscous pressure drops are calculated by assuming fully developed viscous
flow within each tube. Local capillary pressures within the network are calculated
from either the interface position within pore throats (Aker et al. 1998b; Gjennestad
et al. 2018) or through mass balance of the two phases in pore bodies (Al-Gharbi
& Blunt 2005; Joekar-Niasar, Hassanizadeh & Dahle 2010). Another notable class
of models is invasion percolation in a gradient: a percolation model designed to
incorporate buoyancy forces (Wilkinson 1984; Birovljev et al. 1991; Frette et al.
1992; Meakin et al. 1992), and then extended to model (linear) pressure gradients
(Yortsos, Xu & Salin 1997). None of the studies of invasion percolation in a gradient,
however, incorporate any notion of wettability (they all deal exclusively with strong
drainage), pore-scale dynamics, or capillary-number-dependent pressure fluctuations.

In fact, most existing pore-network models, both quasi-static and dynamic, are
limited to strong drainage (or injection of non-wetting fluid) and do not include
wettability-induced cooperative pore filling (Aker et al. 1998b; Al-Gharbi & Blunt
2005; Holtzman & Juanes 2010; Joekar-Niasar et al. 2010). The only dynamic
pore-network model to date that includes cooperative pore-filling events (Holtzman &
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FIGURE 1. (a) Schematic diagram of in-plane and out-of-plane curvatures within the flow
cell. Out-of-plane curvature represents the overall affinity of the porous medium to the
invading fluid. It is determined by θ and is analogous to a battery. In-plane curvature
changes as the local interface evolves while pinned to a pore throat, and it is analogous
to a capacitor. (b) Evolution of burst, touch, and overlap events. (c) Temporal profiles of
the injection pressure bear close resemblance to similar experiments in the drainage regime
at low (orange) and high (blue) Ca (Furuberg et al. 1996; Zhao et al. 2016).

Segre 2015) does so by combining pore-level invasion events of Cieplak & Robbins
(1988, 1990) with viscous relaxation through the pore network. This viscous-relaxation
assumption is at odds with the physics of interface motion in the capillary-dominated
regime and, as a result, this model is unable to capture the injection-pressure signal
observed experimentally in the limit of intermediate and low Ca (Måløy et al. 1992;
Furuberg et al. 1996; Zhao et al. 2016). We present in § 2 a consistent framework
that combines viscous, capillary, and wettability effects in a single dynamic network
model that builds a direct analogy between local fluid–fluid interfaces and electric
capacitors. Our model reproduces, quantitatively, the fluid–fluid displacement patterns
for a wide range of Ca and wettabilities (§ 3), and points to a surprising and
heretofore unrecognized transition in the pressure fluctuations between the low- and
high-Ca flow regimes (§ 4).

2. Moving-capacitor model

Consider a moving fluid–fluid interface in a micromodel (figure 1a). Neglecting
dynamic-contact-angle effects (Hoffman 1975) for simplicity, the shape of the
meniscus between posts is uniquely defined by the combination of Laplace pressure
and substrate wettability, defined through a contact angle θ at which the interface
meets post surfaces (Cieplak & Robbins 1988, 1990). As the interface advances, the
Laplace pressure increases until the interface encounters a burst, touch or overlap
event, as defined by Cieplak & Robbins (1988, 1990). The burst event is equivalent
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to a Haines jump (Haines 1930; Berg et al. 2013), while the touch and overlap
events take place when the local interface either touches the nearest opposing post
or coalesces with a neighbouring interface, respectively (figure 1b). If the interface
becomes unstable due to burst or touch, a single pore is invaded and two new
interfaces appear. In the case of an overlap event, two (in some cases more) pores
are filled simultaneously. These pore-level events are an integral part of the model
and, indeed, this sensitivity is what permits capturing wettability effects within the
model. The events evolve differently at different wettabilities – burst events are most
frequent in drainage, while touch and overlap are most frequent in imbibition (or
injection of wetting fluid) (Cieplak & Robbins 1990; Primkulov et al. 2018).

We can explicitly calculate the critical Laplace pressure 1pcrit corresponding to
all events from the values of the contact angle, radii and coordinates of the posts
(Primkulov et al. 2018), and thus can use the analogy between electric capacitors
and fluid–fluid interfaces in constructing our network model. A capacitor represents
the pinning of the fluid–fluid interface at a pore throat, and is active in both drainage
and imbibition: the interface moves only when a local depinning threshold (1pcrit) is
reached, and the fluid front moves to restart the pinning–depinning cycle from zero
in-plane curvature (figure 1b). This progression of the in-plane curvature in our model
was motivated by the work of Cieplak and Robbins (Cieplak & Robbins 1988, 1990)
(see also Rabbani et al. 2018) and experiments on the progression of the in-plane
curvature between the Hele-Shaw cell posts (Jung et al. 2016; Lee et al. 2017). This
is what allows capturing pressure fluctuations in the limit of low Ca (figure 1c). The
battery analogy represents the overall affinity of the porous medium to the invading
fluid, set by the out-of-plane curvature at the fluid front. The out-of-plane curvature
is fixed throughout a single simulation, and determined by the value of the contact
angle (given the constant gap between the flow-cell plates): it is positive in drainage
and negative in imbibition (figure 1a). To complete the analogy between an electric
circuit and a pore network, one can think of a network of resistors being responsible
for viscous effects, capacitors and batteries responsible for capillary effects, and local
rules for circuit rearrangements responsible for wettability effects (figure 1b).

Therefore, the pressure drop across an edge of the network containing a fluid–fluid
interface has three components: (i) pressure drop due to viscous dissipation,
(ii) Laplace pressure drop due to in-plane curvature of the interface, and (iii) Laplace
pressure drop due to out-of-plane curvature of the interface. We calculate the viscous
pressure drop assuming Poiseuille flow in a capillary tube, which is analogous to the
potential drop across a resistor. The out-of-plane component of the Laplace pressure
can be expressed as either a positive or negative pressure jump (1p⊥=−(2γ cos θ/h),
where γ is the interfacial tension, and h is the cell height) depending on the substrate
wettability; this is analogous to a battery in an electric circuit. The Laplace pressure
due to in-plane curvature of the interface is analogous to a capacitor which allows
flow until it reaches the critical pressure (1pcrit = min{pburst, ptouch, poverlap}). Since
we can calculate 1pcrit for all edges at the invading fluid front, we use a linear
estimate of the in-plane Laplace pressure drops within our network (Φ(t)1pcrit),
where Φ(t) stands for the filling ratio of a given throat. When Φ(t)→ 0, the in-plane
Laplace pressure is negligible. When Φ(t)→ 1, the throat is nearly full and has a
critical in-plane Laplace pressure 1pcrit. This analogy between local interfaces and
capacitors allows us to incorporate local changes in Laplace pressure due to filling
of pore throats. Once a node in the network reaches its maximal potential, which
coincides with its filling capacity, it becomes unstable and the interface advances. We
assume that the in-plane and out-of-plane Laplace pressures are decoupled, and this
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is done to maintain the simplicity of the overall model. With this assumption, one
can run the model for either h/a� 1 or h/a� 1, where these conditions would result
in negligible or dominant contributions of the out-of-plane curvature in the model,
respectively.

The topology of the pore network is captured through the incidence matrix A
by examining the adjacency of the pores (Strang 2007). We number all pores and
adopt the convention that pore connections are oriented in the direction of increasing
pore numbers. Rows of A represent edges, and columns of A represent nodes of the
network. We also make use of the diagonal conductance matrix C, whose elements
are hydraulic conductivities of the network edges. The elements of this matrix can be
calculated as c= πr4/8µL, assuming fully developed Hagen–Poiseuille flow through
a rectangular tube with hydraulic radius r and length L, where µ is the effective
viscosity of the fluid in the channel.

The pressure difference across the network edges can be calculated as e= b− A p,
where b and p stand for pressure change due to out-of-plane contribution to Laplace
pressure (batteries) and node pressures, respectively. The network flow rates can be
calculated from this pressure difference as q=Ce. At the same time, flow rates must
obey mass conservation, ATq = f , where f stands for flow sources at the nodes.
After eliminating e, the flow through the network without the in-plane contribution to
Laplace pressure (capacitors) is obtained through the following system of equations:

q = C(b− A p), (2.1)
ATq = f . (2.2)

We set constant flow boundary conditions at the inlet pores (at the centre of the flow
cell) and constant-pressure boundary conditions at the outlet pores (at the edges of
the flow cell). We note that A p can be decomposed into components of nodes with
prescribed pressure and all other nodes (A p= Aouter pouter + Ã p̃), and therefore (2.1)–
(2.2) transform to [

C−1 Ã

ÃT 0

] [
q
p̃

]
=

[
b− Aouter pouter

f̃

]
=

[
b̃
f̃

]
. (2.3)

The solution to (2.3) provides values of both edge flow rates and node pressures for
given boundary conditions.

Finally, we incorporate the pressure drop due to in-plane Laplace pressure
(capacitors) within the network. Taking into account the direction of the edges
(an array d(t) consisting of 1 and −1), the total pressure drop across the network
edges can be written as e = b̃ − Ã p̃ − d(t)Φ(t)1pcrit. In other words, the in-plane
Laplace pressure is the product of the filling ratio and the critical pressure from
the quasi-static model (Primkulov et al. 2018). Therefore, the equations governing
two-phase flow through the network can be written as[

C−1(t) Ã

ÃT 0

] [
q(t)
p̃(t)

]
=

[
b̃− d(t)Φ(t)1pcrit

f̃

]
. (2.4)

We now discuss the mechanics of the time stepping in our two-phase flow model.
After we initialize the interface locations within the network, we use an adaptive
forward Euler time stepping to update the filling ratios of the network edges at the
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interface Φ(t). We ensure that only a fraction of the edge total volume at the interface
flows within the time step (Aker et al. 1998b). After every time step, we use Φ(t) to
update the conductance matrix C(t) and resolve the flow through (2.4) with updated
pressure drops across the fluid–fluid front.

In the spirit of the fundamental contributions from Cieplak & Robbins (1988,
1990), our model takes the form of an arrangement of cylindrical posts confined
between the plates of a Hele-Shaw cell. The approach is simple enough to lead to
universal findings, yet sufficiently complex to have direct relevance to microfluidic
geometries, as well as engineered and natural porous media – much like Lenormand’s
phase diagram (Lenormand et al. 1988). By doing so, we demonstrate the ability
to reproduce physics – in particular, pressure fluctuations under a wide range of
wetting conditions – which, until now, were inaccessible to pore-network modelling.
A limitation of the model presented here is that it does not extend to contact
angles below 45◦, where the wetting fluid preferentially wets the corners of the pore
geometry at low Ca and forms film flow at high Ca (Zhao et al. 2016; Odier et al.
2017).

3. Invasion patterns

We simulate immiscible fluid–fluid displacement by setting a constant injection
rate at the centre of the flow cell and zero pressure at the outlets. The invading and
defending fluid viscosities are set to 8.9× 10−4 Pa s and 0.34 Pa s respectively. The
post height h is 100 µm, and interfacial tension γ is set to 13× 10−3 N m−1. These
parameters as well as the pore geometry are chosen to mimic the experiments of Zhao
et al. (2016). The flow cell has an outer diameter of 30 cm. We perform simulations
for wetting conditions from strong drainage (θ = 160◦) to weak imbibition (θ = 46◦).
Figure 1(c) shows the pressure profiles for θ = 160◦ at Ca∈ {10−3, 10−7

}, respectively.
In the limit of high Ca, the more viscous defending fluid sustains substantial spatial
pressure gradients, and the injection pressure gradually drops as more of the defending
fluid is displaced (Zhao et al. 2016). In contrast, in the limit of low Ca, the pressure
field is virtually uniform in each fluid, and the injection pressure exhibits intermittent
fluctuations typical of slow capillary-dominated drainage (Måløy et al. 1992; Aker,
Måløy & Hansen 1998a; Knudsen & Hansen 2002; Moebius & Or 2012).

The morphology of the invading fluid at breakthrough can be analysed by means
of a binary-image representation of the invasion patterns (Cieplak & Robbins 1988,
1990; Primkulov et al. 2018) (figure 2a). We estimate the width and number of fingers
in the invading fluid pattern following the protocol outlined in Cieplak & Robbins
(1988, 1990) and modified in Primkulov et al. (2018). The binary image is sliced
horizontally and vertically, with each slice containing clusters of invading fluid pixels.
We calculate the finger width as the mean size of these clusters. Figure 2(d) shows
that the finger width, normalized by the typical pore size, increases as θ→ 46◦ for all
Ca, which is in agreement with experimental observations (Stokes et al. 1986; Trojer
et al. 2015; Zhao et al. 2016). While figure 2(a) demonstrates that the number of
fingers increases with Ca (Lenormand et al. 1988; Fernández et al. 1990; Zhao et al.
2016), we observe an unexpected behaviour (figure 2b): the finger density changes
with the substrate wettability, and exhibits a maximum at approximately θ = 90◦. This
effect is most pronounced for 10−6 < Ca< 10−3 (when viscous and capillary effects
are comparable).

We explain the peak in the viscous finger density at θ ≈ 90◦ in figure 2(b) by
considering in-plane and out-of-plane contributions to the Laplace pressure. At a fixed
Ca, the ratio of viscous and capillary forces in the micromodel changes as a function
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FIGURE 2. (a) Phase diagram of the invading fluid morphology at breakthrough;
(b) fractal dimension, computed by means of the box-counting method; (c) number
of fingers per unit area of injected fluid, which exhibits a maximum near θ =
90◦; (d) normalized finger width (w/a) at different Ca and wettabilities measured at
breakthrough. Finger width increases as the posts become more wetting to the invading
fluid.

of substrate wettability. The capillary forces have out-of-plane contributions, which are
nominally equal to zero when θ = 90◦, so the ratio of viscous and capillary forces
increases as θ changes from 160◦ to 90◦ at fixed Ca. In addition, when θ changes
from 90◦ to 46◦, the cooperative pore-filling mechanisms become dominant and widen
the largest fingers, which in turn consume the smaller ones and reduce the number of
fingers. The combination of these two effects results in the local maximum in the
number of viscous fingers around θ ≈ 90◦ across different Ca (figure 2b).

For a contact angle θ near 160◦ (strong drainage) and high values of Ca (10−3 and
10−4), the invading fluid front advances through viscous fingers with fractal dimension
close to 1.71, typical of diffusion-limited aggregation (DLA)-type morphology (Witten
et al. 1981). As Ca is reduced to a low value (10−7), the fractal dimension increases
to approximately 1.82, characteristic of invasion percolation (Wilkinson & Willemsen
1983) (figure 2b). This increasing trend in fractal dimension is consistent with the
decrease in finger density (figure 2c) and the increase in finger width (figure 2d).

As the contact angle approaches 46◦, cooperative pore filling becomes the dominant
flow mechanism at all values of Ca. This flow regime results in the compact
displacement of the defending fluid, and thus the fractal dimension increases,
approaching a value of 2 at low Ca, indicative of stable displacement.

4. Pressure signature

The fundamental difference in the fluid–fluid displacement process between low
and high Ca is reflected in the temporal injection-pressure signals (figure 3). When
the capillary number is relatively high (Ca = 10−3), viscous forces dominate, and
the injection pressure decreases with time for all substrate wettabilities (Zhao
et al. 2016) (figure 3a). Here, most of the pressure drop takes place in the more
viscous defending fluid. Consequently, as more of the defending fluid is displaced,
the pressure required to maintain the prescribed injection flow rate decreases. In
contrast, at Ca = 10−7, viscous dissipation is negligible, and the injection pressure
is determined by the sum of outlet and Laplace pressures. As a result, the injection
pressure fluctuates in a stick–slip manner around a mean value (figure 3b), as
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FIGURE 3. (a,b) Temporal evolution of the injection pressure at Ca= 10−3 and Ca= 10−7

respectively. At high Ca, the injection pressure decreases as the viscous fingers approach
the outer boundary of the flow cell. At low Ca, the injection pressure is dominated by
Laplace pressure fluctuations at the interface. We use wavelet decomposition (Cai 2002;
Sygouni, Tsakiroglou & Payatakes 2006, 2007) to split the pressure signal (Ca = 10−5

and θ = 160◦ here) into its (c) global trend and (d) cyclic component. (e) The standard
deviation of the pressure fluctuations point at two different regimes. At low Ca, pressure
fluctuations are dominated by stick–slip changes in Laplace pressure. At high Ca, pressure
fluctuations are dominated by changes in the effective hydraulic conductance of dominant
flow channels.

has been documented in slow drainage experiments (Måløy et al. 1992; Furuberg
et al. 1996; Moebius & Or 2012). The pressure signals in figure 3(b) highlight
the roles that in-plane and out-of-plane curvatures play in our model. Out-of-plane
curvature plays the role of batteries, and thus provides additional resistance/drive (in
drainage/imbibition, respectively) to the flow at the interface. The magnitude of the
pressure drop/rise at the batteries is a function of wettability, which explains why the
mean value of the injection-pressure signal also varies with wettability (figure 3b).
The in-plane curvature plays the role of capacitors. As the invading fluid is injected,
the in-plane component of Laplace pressure grows at the interface until the meniscus
near the pore with lowest critical entry pressure becomes unstable due to burst, touch
or overlap. This results in the rapid advance of the local interface, which pressurizes
the defending fluid ahead. This overpressure then dissipates (see movie S1 in the
supplementary materials available at https://doi.org/10.1017/jfm.2019.554). The critical
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œ = 160�

œ = 46�
a

h
l

(a) (b)

FIGURE 4. (a) Pore-scale perspective for the scaling of pressure fluctuations. The diagram
shows a typical pore being invaded. The characteristic distance between the pore centres
is l (red line), the post height is h, and a characteristic throat size is a. (b) Typical
configurations of the fluid–fluid interface in drainage and imbibition. Burst events are
prevalent in drainage and the typical radius of out-of-plane curvature is of order a. Overlap
events are prevalent in imbibition and the typical radius of out-of-plane curvature is an
order of magnitude greater than a.

pressures of touch and overlap are always smaller than the critical pressures of burst
events (Cieplak & Robbins 1988, 1990; Primkulov et al. 2018), so the magnitude
of the pressure fluctuations decreases as the substrate becomes more wetting to the
invading fluid (figure 3b).

To gain further insight into the difference in the pressure signature between low
and high Ca, we decompose the injection-pressure signal into its global trend and
fluctuating components with block James–Stein wavelet decomposition (Cai 2002)
(see figure 3c,d). We compute the standard deviation of the fluctuating component of
the pressure signal for both drainage and imbibition conditions (θ = 160◦ and 46◦,
respectively) for a wide range of Ca, and find that it exhibits two distinct regimes
(figure 3e). At low Ca, pressure fluctuations are controlled by the stick-slip-type
changes in local Laplace pressures. In contrast, at high Ca, pressure fluctuations
are controlled by changes in the effective hydraulic conductance of the dominant
flow channels. In the limit of high Ca, the Laplace pressure drop is negligible in
comparison with the viscous pressure gradient, but the dominant flow channels are
rearranged slightly as the fingers grow (see movie S2 in the supplementary materials).
Since the pore geometry has a heterogeneous distribution of throat sizes, shifts in the
dominant flow channels result in viscosity-driven pressure fluctuations at high Ca.

Scaling arguments support the findings from the model simulations. Let us take a
pore-scale perspective (see figure 4). Invading a single pore involves overcoming a
capillary pressure and pushing defending fluid out through a throat of width a and
height h at a speed proportional to the injection rate. The capillary pressure is pcap≈

γ ((1/h)+ (1/af (θ))), where f (θ) is a wettability-dependent function that takes a value
∼1 near drainage and ∼10 near strong imbibition (figure 4b). Taking variations of pcap
with a yields

δpcap ∼
γ

a2f (θ)
δa. (4.1)

The characteristic flow velocity through a typical throat is u = (k(a, h)/µ)(pvisc/l),
where k(a, h) = R2

h/8 is the rectangular channel permeability and Rh = ah/2(a+ h)
the hydraulic radius. Thus the viscous pressure is pvisc ∼ (32(a+ h)2/a2h2)µul =
32µul/h2(1+ h/a)2. Taking variations of pvisc with a yields

δpvisc ∼
64µul

h2
(1+ h/a)

h
a2
δa=

64µul
ha2

(1+ h/a)δa. (4.2)
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The magnitude of the total characteristic pressure fluctuation is δpcap + δpvisc, and its
two components are comparable when δpvisc/δpcap ∼ 1. Using (4.1) and (4.2),

δpvisc

δpcap
∼

64µul
ha2

(1+ h/a)
a2f (θ)
γ
=Ca f (θ)64

l
h
(1+ h/a)∼ 1, (4.3)

which implies a crossover Ca,

Ca∗ ∼
h

64f (θ)(1+ h/a)l
, (4.4)

between flow-rate-independent and flow-rate-dependent pressure fluctuations (figure 3e).
The above argument suggests two interesting implications. First, one can potentially
infer the characteristic pore size of the material from the fluctuations of the pressure
signal in both viscous-dominated and capillary-dominated flow regimes. This is
especially useful when visualization of the flow in pore space is not possible, which
is the case in most porous materials. Second, the characteristic h, a and l used in
this study yield Ca∗ ≈ 10−3/f (θ), which reduces to Ca∗ ∼ 10−3 for drainage and
Ca∗∼ 10−4 for imbibition, in agreement with the data in figure 3(e). This means that
one should expect the transition from capillary-dominated to viscous-dominated flow
regimes at different Ca∗ in drainage and imbibition. The order of magnitude of f (θ)
was obtained by calculating 1pcrit for all pore throats at θ ∈ {46◦, 160◦} with the
quasi-static model (Primkulov et al. 2018) and taking an average of f (θ)= γ /a1pcrit
for each contact angle. Finally, the viscous pressure fluctuation component scales
as δpvisc ∼ µu, which is equivalent to δpvisc ∼ Ca when interfacial tension is kept
constant. This explains the slope of the viscous-dominated portion of the graph in
figure 3(e).

5. Conclusion

Overall, our moving-capacitor network model provides new fundamental insights
into the dynamics of immiscible fluid–fluid displacement in porous media for a wide
range of Ca and wettabilities. The model completes the picture of the displacement
by covering both high and low Ca, which allows one, for the first time, to reproduce
experimental observations of invading fluid patterns (Zhao et al. 2016), injection
pressure and front velocity in drainage (Måløy et al. 1992; Furuberg et al. 1996;
Moebius & Or 2012) and imbibition. Our observations and scaling arguments on the
transition from a viscous-dominated to a capillary-dominated flow regime suggest that
it is possible to infer the character of the multiphase-flow displacement purely from
the injection-pressure signal. This poses an exciting prospect for detailed experiments.

Supplementary movies

Supplementary movies are available at https://doi.org/10.1017/jfm.2019.554.
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