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When a liquid touches a solid surface, it spreads to minimize the system’s energy. The classic thin-film
model describes the spreading as an interplay between gravity, capillarity, and viscous forces, but it cannot
see an end to this process as it does not account for the nonhydrodynamic liquid-solid interactions. While
these interactions are important only close to the contact line, where the liquid, solid, and gas meet, they
have macroscopic implications: in the partial-wetting regime, a liquid puddle ultimately stops spreading.
We show that by incorporating these intermolecular interactions, the free energy of the system at
equilibrium can be cast in a Cahn-Hilliard framework with a height-dependent interfacial tension. Using
this free energy, we derive a mesoscopic thin-film model that describes the statics and dynamics of liquid
spreading in the partial-wetting regime. The height dependence of the interfacial tension introduces a
localized apparent slip in the contact-line region and leads to compactly supported spreading states. In our
model, the contact-line dynamics emerge naturally as part of the solution and are therefore nonlocally
coupled to the bulk flow. Surprisingly, we find that even in the gravity-dominated regime, the dynamic
contact angle follows the Cox-Voinov law.
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Pour a glass of water on a table; what happens? It spreads
for a while and stops. This process seems simple enough to
be described by a reduced-order model, and indeed the
classic thin-film model is a step in this direction [1]. This
model can be derived from the Stokes equations using the
lubrication approximation, but it contains no information
about the interactions between the liquid and the under-
lying solid surface. While these interactions are of non-
hydrodynamic origin and only become significant at
heights less than ∼100 nm [2], they have pronounced
macroscopic implications: the classic model, which does
not incorporate these intermolecular interactions, predicts
that the liquid never stops spreading, in stark contrast to the
basic observation of a static puddle that forms in the partial-
wetting regime.
A liquid is said to be partially wetting to a surface when it

forms a contact angle in the range of 0 < θY ≤ π=2 at
equilibrium. This equilibrium contact angle is well
described by the Young equation, cos θY ¼ ðγsg − γslÞ=γ,
where γsg, γsl and γ are solid-gas, solid-liquid, and liquid-
gas interfacial energies [3]. To extend the classical descrip-
tion to the partial-wetting regime, one can supplement it
with nonhydrodynamic interactions as a boundary con-
dition at the contact line [1,4]. When capillary forces are the
dominant driving mechanism, the dynamic contact angle,
θd, follows the Cox-Voinov law, θ3d ¼ θ3Y þ 9Ca ln ðlM=lμÞ
[4–6], where Ca ¼ ηU=γ is the capillary number with
liquid viscosity η and contact-line velocity U; lM and lμ are
characteristic macroscopic and microscopic length scales in
the problem. Despite its success in matching experimental
data, invoking this boundary condition does not address the

question of how the nonhydrodynamic forces determine the
emerging dynamics at the macroscopic scale.
Here, we work within the long-wave approximation to

derive a generalized mesoscopic thin-film equation that
captures the dynamics of the moving contact line self-
consistently as part of the solution, making it nonlocally
coupled to the rest of the system. Within the framework of
nonequilibrium thermodynamics, a conservation equation
for the height of the liquid film h can be written as [7]

∂h
∂t ¼ ∇ ·

�
MðhÞ∇

�
δΓ
δh

��
; ð1Þ

where MðhÞ is the mobility, Γ is the free energy, and
δΓ=δh ¼ ∂Γ=∂h −∇ · ½∂Γ=∂ð∇hÞ� is the variational
derivative of the free energy with respect to height. We
start by deriving the free energy Γ of a nonvolatile liquid
puddle on a solid surface. At equilibrium, the variation of
the free energy is zero, δΓ ¼ 0. Writing the free energy as
Γ ¼ R

Φðh;∇hÞdX and using the calculus of variations, we
arrive at the following two equations for the specific free
energy Φ [8,9]:

∂Φ
∂h −∇ ·

� ∂Φ
∂∇h

�
¼ 0; ð2Þ

�
Φ −∇h ·

� ∂Φ
∂∇h

��
h¼0

¼ 0; ð3Þ

known as the Euler-Lagrange and augmented Young
equations, respectively. Equation (2) determines the shape
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of the liquid surface at equilibrium and reduces to the
Young-Laplace equation in the simplest form, while Eq. (3)
serves as the boundary condition at the contact line.
Macroscopic contributions taken into account, we can

write the free energy asΦðh;∇hÞ≡ΦMðh;∇hÞ¼1=2ρgh2þ
ðγsl−γsgÞþγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð∇hÞ2p

, in which ρ is the liquid density
and g is the gravitational acceleration. The classic thin-film
model can be recovered by putting the macroscopic free
energy into the conservation equation (1). Substituting ΦM
into the augmented Young equation, we recover the Young
equation [3]. An often-overlooked constraint on the free
energy is that as the height of the liquid film goes to zero, one
should recover the solid-gas interfacial energy, limh→0Φ ¼ 0
[3,10]. It is straightforward to see that the only way to
satisfy this constraint with the macroscopic free energy is to
have γ þ γsl ¼ γsg, corresponding to the complete-wetting
regime.
Microscopic intermolecular forces close to the contact

line must therefore be considered to arrive at a self-
consistent description of the free energy for partial-wetting
systems. These interactions are commonly known as sur-
face forces [11] or disjoining or conjoining pressure [2].
Taking the intermolecular forces ΦμðhÞ into account,
we can write the free energy as Φðh;∇hÞ≡
ΦMðh;∇hÞ þ ΦμðhÞ. Substituting into the augmented
Young equation, we arrive at what is commonly known
as the Derjaguin-Frumkin equation, cos θY ¼ cos θμþ
Φμð0Þ=γ, relating the Young contact angle to the surface
forces [8]. The Young angle is defined at the macro scale,
whereas θμ is the microscopic contact angle [3,8,12], which
needs to be zero for the free energy to be continuous. The
combination of a nonzero Young contact angle and a zero
microscopic contact angle indicates the existence of an
ultrathin liquid film around the main drop, the so-called
pseudo-partial-wetting regime [10,13]. While precursor
films are commonly observed in the complete-wetting
regime [14], they are not observed in nonvolatile partial-
wetting liquids [6,10,13]. We therefore need a description
of the system’s free energy that allows for nonzero micro-
scopic contact angles.
Traditionally, surface forces are expressed as a function

of film height only since they are derived for parallel liquid-
solid interfaces [1,2]. Close to the contact line, however, the
liquid and solid interfaces are not parallel and one should
account for the interface slope to arrive at a proper
description of the intermolecular forces [15,16]. The free
energy should therefore be written as Φðh;∇hÞ≡
ΦMðh;∇hÞ þ Φμðh;∇hÞ. Consistent with the derivations
of Ref. [16] and using the long-wave approximation,
we propose decomposing the surface forces as
Φμðh;∇hÞ ¼ ϕμ;1ðhÞ þ ϕμ;2ðhÞð∇hÞ2=2. Substituting the
free energy, Φ, into the augmented Young equation and
requiring the continuity of the free energy, it is straightfor-
ward to show that all constraints are satisfied without

imposing any a priori conditions on θμ if ϕμ;1ð0Þ ¼ S and
ϕμ;2ð0Þ ¼ −γ, where S ¼ γsg − γsl − γ is the spreading
coefficient [10]. The microscopic contact angle therefore
emerges naturally as part of the solution, consistent with the
predictions of nonlocal density functional theory [17]. We
can therefore write the free energy as

Γ ¼
Z �

fðhÞ þ κðhÞ ð∇hÞ
2

2

�
dX: ð4Þ

This free energy expression resembles the Cahn-Hilliard
formulation [18], in which the free energy can be decom-
posed into bulk fðhÞ ¼ ρgh2=2 − S þ ϕμ;1ðhÞ and inter-
facial κðhÞð∇hÞ2=2 contributions, where κðhÞ¼γþϕμ;2ðhÞ
can be interpreted as a height-dependent interfacial tension.
A nonlinear Kardar-Parisi-Zhang–type term can be gen-
erated using this free energy [19]. The constraints on
ϕμ;1ð0Þ and ϕμ;2ð0Þ imply that fð0Þ ¼ 0 and κð0Þ ¼ 0.
Vanishing of the interfacial tension as the film height tends
to zero is required to arrive at compactly supported
spreading states [20], and our derived form of the free
energy naturally meets this requirement. Another constraint
on ϕμ;1ðhÞ can be incorporated through a tangent con-
struction on the bulk free energy, which ensures that the
two coexisting phases at equilibrium have the same
chemical potential [21], i.e., df=dhjh¼0 ¼ df=dhjh¼h� ¼
ρgh� (Fig. 1), where h� ¼ 2lγ sin ðθY=2Þ is the height of the
liquid puddle that is set by a balance between gravity and
surface tension, and lγ ¼

ffiffiffiffiffiffiffiffiffiffi
γ=ρg

p
is the capillary length

[10]. To describe the functional form of ϕμðhÞ, we use a
surface force that consists of long-ranged attractive van der
Waals forces and short-ranged repulsive forces, similar to
an integrated Lennard-Jones potential [2]. Other combina-
tions can also be used [22,23]. We therefore write

FIG. 1 (color online). Schematic of the tangent construction on
the bulk free energy, fðhÞ, leading to the coexistence of wet,
h ¼ h�, and dry, h ¼ 0, states. In the absence of intermolecular
forces, the bulk free energy does not reduce to the solid-
gas interfacial energy as h → 0 unless S ¼ 0, which implies
complete wetting [10].
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ϕμ;iðhÞ ¼ αi½ð1 þ βiÞd20=ðh þ d0Þ2 − βid80=ðh þ d0Þ8�,
where d0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=6πγ

p
≈ 0.2 nm is a molecular length

scale, with A being the Hamaker constant [2,10]. The
coefficients α1 ¼ S, β1 ¼ ð1 − d0=h�Þ=3 and α2 ¼ −γ,
β2 ¼ 1=3 are determined through imposing the constraints
on ϕμ;ið0Þ, the tangent construction, and requiring a non-
zero slope at the contact line. The denominator has been
regularized by adding d0, allowing us to recover the solid-
liquid interfacial energy when the film height is zero
[10,16,22].
Substituting the derived free energy from Eq. (4)

back into the conservation equation (1) and nondimension-
alizing the parameters as ~h ¼ h=h�, ~x ¼ x=Rf, ~t ¼
t=ð3μR2

f=ρgh
3�Þ, ~f ¼ f=ρgh2�, ~κ ¼ κ=γ and dropping the

tilde for convenience, the generalized thin-film equation
takes the form

∂h
∂t ¼ ∇ ·

�
MðhÞ∇

�
df
dh

−
1

Bo

ffiffiffiffiffiffiffiffiffi
κðhÞ

p ∇ · ð
ffiffiffiffiffiffiffiffiffi
κðhÞ

p ∇hÞ
��

;

ð5Þ

in which Bo ¼ R2
f=l

2
γ is the Bond number, where Rf is the

characteristic lateral length of the liquid, taken to be its final
equilibrium radius. Vanishing of the interfacial tension κðhÞ
at the contact line indicates that the order of the equation is
reduced by one, pointing to a singular perturbation prob-
lem. This picture is consistent with the description sug-
gested by de Gennes [24], indicating the dominance of
intermolecular forces very close to the contact line, leading
to a natural cutoff scale that removes the moving-contact-
line singularity.
Starting with the Stokes equation, using the lubrication

approximation, and assuming no slip at the wall and zero
shear stress at the liquid-gas interface, τ ¼ 0 (neglecting the
viscosity of the gaseous phase), the mobility in Eq. (1) is
easily derived to be MðhÞ ¼ h3. The no-slip boundary
condition, however, will lead to the moving-contact-line
singularity [25]. To resolve the singularity, the Navier slip
boundary condition is generally used, introducing a slip
velocity proportional to the shear stress in the liquid
adjacent to the wall, us ¼ bs∇u [26], where bs is the slip
length, which depends on the liquid-solid interaction [27].
The slip condition leads to a mobility of the form
MðhÞ ¼ h3 þ 3bsh2. In immiscible flows, however, slip
is localized to the contact-line region [28,29] and, to match
the observations of molecular simulations, ad hoc functions
with decaying slip away from the contact line have been
proposed [30].
The free energy derived in Eq. (4) incorporates a height-

dependent interfacial tension κðhÞ. A gradient in the
interfacial tension leads to the Marangoni effect [31],
which causes a nonzero shear stress at the liquid-gas
interface, driving a net flow. Analogous to this effect,
the height dependence of the interfacial tension leads to a

nonzero interfacial shear stress at the liquid-gas interface,
τ þ λ2ðJ · tÞdκ=dh ¼ 0, where J ¼ ∇ðδΓ=δhÞ is propor-
tional to the flux, t is the unit vector tangent to the interface,
and λ is an effective slip length. The variation of the
interfacial tension is limited to the contact line region where
intermolecular forces dominate. Away from the contact line
(dκ=dh ¼ 0) or at equilibrium (J ¼ 0), the balance reduces
to the usual zero shear stress at the liquid-gas interface
(τ ¼ 0). Only during spreading does this nonzero
interfacial stress come into play—hence the name
“flow-induced Marangoni effect” [32]. Incorporating both
this shear stress at the liquid-gas interface and the Navier
slip boundary condition at the liquid-solid interface, we
can write the mobility in the most general form
as MðhÞ ¼ h3 þ 3½bs þ ðλ2=2Þdκ=dh�h2 þ 3bsλh. This
model bears similarities to the generalized Navier boundary
condition [29] and slip due to the gradient of chemical
potential close to the contact line [33]. Our proposed model
therefore addresses two main requirements regarding slip at
the contact line: (1) it is localized to the contact line region,
and (2) it depends on the nonhydrodynamic interactions
close to the contact line and introduces an energy scale
associated with the slip [6] (Fig. 2).
We solve Eq. (5) using standard finite differences [34]

and adaptive mesh refinement. The disparate length scales
involved in this problem make the numerical computations
prohibitively expensive. Since we are mainly interested in
the macroscopic predictions of our model, we regularize the
microscopic length d0 by multiplying it by a factor 104,
therefore magnifying the range of intermolecular forces
shown in Fig. 1 from the nano to the micro scale. For
simplicity, we set the Navier slip length to zero, bs ¼ 0, and
consider only the localized effective slip in the contact-line

FIG. 2 (color online). Comparison of the mobility with and
without slip [MðhÞ ¼ h3 , MðhÞ ¼ h3 þ 3bsh2, bs ¼
10d0 , MðhÞ ¼ h3 þ ð3=2Þλ2ðdκ=dhÞh2, λ ¼ 10d0, θY ¼
π=12 ]. While Navier slip is global, our proposed slip
model is localized to the contact-line region, where it dominates
the Navier slip, consistent with molecular simulations [28,29].
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region, λ ¼ 10d0 (Fig. 2). We take the capillary length to be
lγ ¼ 1.5 mm, which is typical of silicone oil.
We now address the original question of how a liquid

puddle spreads on a solid surface. We expect a partial-
wetting liquid to spread initially to minimize the system’s
free energy and to stop spreading when it reaches equi-
librium. For small liquid volumes, i.e., when Bo ⪅ 1,
capillarity is the dominant driving force, leading to
Tanner’s law for spreading, which predicts that the wetted
area, AðtÞ, will scale as t1=5 [35] (Fig. 3). As the volume of

the liquid increases, i.e., Bo ≫ 1, gravity becomes the
dominant driving force in the bulk while surface tension
effects remain limited to the vicinity of the moving contact
line [36–38]. Balancing the gravity and viscous forces
acting at the macroscopic scale, one arrives at a scaling of
t1=4 for the wetted area. In this regime, the spherical-cap
approximation is no longer valid, but similarity solutions
for the quasistatic spreading can still be obtained [37,38]. In
both the capillary- and the gravity-dominated regime, the
final approach to equilibrium is exponential [38,39],
deviating markedly from the quasistatic self-similar
power-law behavior. Our model predicts this final approach
to a compactly supported equilibrium state (Fig. 3).
While the macroscopic spreading rate is a good measure

for examining the validity of our model, it is not very
sensitive to the contact-line dynamics, which arrest the
spreading drop as it approaches equilibrium. In the capil-
lary-dominated regime, the Cox-Voinov law describes the
dependence of the dynamic contact line on the spreading
rate [4–6]. Our model indeed displays an excellent agree-
ment with the Cox-Voinov law for different equilibrium
contact angles θY [Fig. 4(b)]. Consistent with earlier
observations [40], the dynamic contact angle exhibits a
dependence on the liquid volume. This dependence is
expected, as the macroscopic length lM in the Cox-Voinov
law is related to the radius of the drop [4,41], which scales
with its volume (Rf ∼ V1=3 in the capillary-dominated
regime and ∼ðV=h�Þ1=2 in the gravity-dominated regime).
The surprising observation, however, is that the Cox-
Voinov law provides an excellent description of the
dynamic contact angle even in the gravity-dominated
regime. This observation is supported by early experiments
in the complete-wetting regime [42]. The macroscopic

FIG. 3 (color online). The rate of spreading is influenced by the
volume of liquid. For small volumes (Bo ⪅ 1, ), capillary
forces are dominant and the drop takes the shape of a spherical
cap while viscosity resists the spreading, leading to Tanner’s law
A ∼ t1=5. For large volumes (Bo ≈ 360, ), gravity domi-
nates, leading to a t1=4 scaling; the liquid puddle takes the shape
of a pancake at equilibrium. Af is the final equilibrium area and
θY ¼ π=12.

FIG. 4 (color online). (a) The dynamic contact angle is defined at the inflection point of the drop profile (top panel), where its slope
(bottom panel) reaches a plateau [tan θ ¼ ðh�=RfÞðdh=drÞ]. (b) The dynamic contact angle, θd, follows the Cox-Voinov law
θ3d − θ3Y ¼ 9Ca ln ðlM=lμÞ, but increases with the volume of the liquid. (c) The nonlocal influence of bulk flow can be conflated into the
macroscopic length scale, lM, leading to a collapse of the dynamic contact angle data for the different volumes onto a single curve (the
solid line represents the Cox-Voinov law). The stars represent the classic experiments of Ref. [43] corresponding to the silicone oil-air
interface in a capillary tube (lM=lμ ≈ 1.25 × 103). The rescaled contact angle data from the model accounts for the fact that the
microscopic length scale lμ is magnified by 104 in the simulations: ðθ3d − θ3YÞr ¼ θ3d − θ3Y þ ð9 ln 104ÞCa. (Inset) An approximate fit
lM=lμ ¼ 4.8 × 104 × ½1 − expð−0.75Bo1=2Þ� is shown as the dashed line.
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length scale, lM, increases with volume and thus with the
Bond number, but saturates to a constant value (propor-
tional to the capillary length) beyond the transition from a
capillary-dominated to a gravity-dominated regime (at
Bo ≈ 30). Taking the effective slip length to be the micro-
scopic length scale lμ ¼ λ, we find the macroscopic length
scale lM by fitting the dynamic contact angle data to the
Cox-Voinov law (lM ≈ 100 μm in the gravity-dominated
regime). Taking the dependence of the macroscopic length
scale on the volume into account, we observe a remarkable
collapse of all of the dynamic contact angle data
corresponding to different volumes onto a single curve
[Fig. 4(c)].
In summary, we have shown that incorporating non-

hydrodynamic interactions between the liquid and solid in a
self-consistent manner leads to a free energy that can be
cast in a Cahn-Hilliard formulation with a height-dependent
interfacial tension. This height dependence allows com-
pactly supported spreading states with no precursor film
[20], in contrast to the classic thin-film model that does not
admit such solutions [44]. The height dependence of the
interfacial tension further introduces an effective slip that is
localized to the contact-line region, where it dominates the
Navier slip, consistent with the observations of molecular
simulations [28,29]. Our thin-film model predicts that the
dynamic contact angle will follow the Cox-Voinov law in
both the capillary-dominated and the gravity-dominated
regime. This feature illustrates the ability of our meso-
scopic model to capture nonlocal effects on the contact-line
dynamics, which exert a fundamental control on pattern
formation in immiscible porous media flows [45].
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