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and coarsening

A. Alizadeh Pahlavan1, L. Cueto-Felgueroso1, A. E. Hosoi1,
G. H. McKinley1 and R. Juanes1,†

1Massachusetts Institute of Technology, Cambridge, MA 02139, USA

(Received 11 August 2017; revised 10 January 2018; accepted 18 March 2018)

A uniform nanometric thin liquid film on a solid substrate can become unstable due
to the action of van der Waals (vdW) forces. The instability leads to dewetting of
the uniform film and the formation of drops. To minimize the total free energy of
the system, these drops coarsen over time until one single drop remains. Here, using
a thermodynamically consistent framework, we derive a new model for thin films
in partial wetting with a free energy that resembles the Cahn–Hilliard form with
a height-dependent surface tension that leads to a generalized disjoining pressure,
and revisit the dewetting problem. Using both linear stability analysis and nonlinear
simulations we show that the new model predicts a slightly smaller critical instability
wavelength and a significantly (up to six-fold) faster growth rate than the classical
model in the spinodal regime; this faster growth rate brings the theoretical predictions
closer to published experimental observations. During coarsening at intermediate
times, the dynamics become self-similar and model-independent; we therefore observe
the same scalings in both the classical (with and without thermal noise) and new
models. Both models also lead to a mean-field Lifshitz–Slyozov–Wagner (LSW)-type
droplet-size distribution at intermediate times for small drop sizes. We, however,
observe a skewed drop-size distribution for larger drops in the new model; while the
tail of the distribution follows a Smoluchowski equation, it is not associated with a
coalescence-dominated coarsening, calling into question the association made in some
earlier experiments. Our observations point to the importance of the height dependence
of surface tension in the early and late stages of dewetting of nanometric films and
motivate new high-resolution experimental observations to guide the development of
improved models of interfacial flows at the nanoscale.

Key words: contact lines, interfacial flows (free surface), thin films

1. Introduction
Understanding the underlying physics of how fluids coat solid substrates has

been a long-standing quest in fluid dynamics (Blake & Ruschak 1979; Ruschak
1985; Quéré 1999; Weinstein & Ruschak 2004; Snoeijer & Andreotti 2013). With
the advent of micro and nanoscale lithography techniques enabling manipulation at
increasingly small scales (Xia & Whitesides 1998; Gates et al. 2005; Qin, Xia &

† Email address for correspondence: juanes@mit.edu
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Whitesides 2010), and with applications ranging from micro/nanofluidics to additive
manufacturing (Stone, Stroock, & Ajdari 2004; Schoch, Han & Renaud 2008; Wijshoff
2010; Kumar 2015), questions arise regarding the relevant description of fluid physics
at the nanoscale and the validity of continuum modelling at such small scales (Squires
& Quake 2005; Bocquet & Charlaix 2010; Colin, Squires & Bocquet 2012; Bocquet
& Tabeling 2014; Lohse & Zhang 2015). As the thickness of a liquid film on a solid
substrate becomes smaller than approximately 100 nm, the atoms at the liquid–solid
and liquid–gas interfaces start interacting with each other, giving rise to additional
intermolecular forces that need to be considered in continuum modelling (Rauscher
& Dietrich 2008; Bonn et al. 2009; Israelachvili 2011).

A uniform nanometric thin liquid film on a solid substrate can become unstable due
to these intermolecular forces. The instability leads to dewetting of the film and the
formation of drops. Both liquid and solid-state dewetting at the nanoscale are relevant
in many phenomena (Blossey 2012; Gentili et al. 2012; Thompson 2012; Mukherjee
& Sharma 2015; Pierre-Louis 2016) such as pumping liquids using nanowires (Huang
et al. 2013), patterning via self-assembly (Gau et al. 1999; Higgins & Jones 2000;
Lopes & Jaeger 2001; Huang et al. 2005; Segalman 2005; van Hameren et al. 2006;
Pokroy et al. 2009; Fowlkes et al. 2011; Han & Lin 2012; Thiele 2014; Kong et al.
2015, 2016; Wu et al. 2015), synthesis of core–shell nanoparticle arrays (McKeown
et al. 2015), droplet generation (Yamamoto et al. 2015; Keiser et al. 2017), needle
growth (Yu, Bulović & Hosoi 2013), understanding slip and rheology of nanometric
films (Herminghaus, Seemann & Jacobs 2002; Fetzer et al. 2005, 2007a; Bäumchen &
Jacobs 2010; Bäumchen et al. 2012; Bäumchen et al. 2014; McGraw et al. 2014), tear
film dynamics (Braun 2012), film flow in heat pipes (Kundan et al. 2017), Rayleigh–
Plateau instability of nanowires or liquids in nanochannels (Molares et al. 2004; Chen,
Zhang & Russell 2007), or stability of bubbles/drops in micro/nanochannels (Huerre
et al. 2015; Hammoud et al. 2017).

Reiter (1992, 1993) was the first to experimentally characterize the dewetting of
a nanometric polymer film on a solid substrate. He observed that, initially, some
holes form with a seemingly characteristic wavelength between them; these holes
then expand with a ridge formed at the receding front; these ridges ultimately meet
and form a network of polygonal patterns. The ridges later collapse due to the
Rayleigh–Plateau instability, forming small droplets of approximately uniform size.
On a much longer time scale still, these droplets can coarsen to ultimately form a
single drop; the time scale associated with this last stage, however, is very long and
not readily accessible within typical experiments.

The theory for instability of thin liquid films under the influence of intermolecular
forces far predates the experimental observations, dating back to Vrij (1966), Sheludko
(1967), Ruckenstein & Jain (1974), Williams & Davis (1982), Wyart & Daillant
(1990), Brochard-Wyart, Martin & Redon (1993), Sharma & Reiter (1996), Sharma
& Khanna (1998) and Oron (2000). The Navier–Stokes equations describing the
fluid motion can be greatly simplified using the long-wave/lubrication approximation
when the characteristic lateral length of the flow is much larger than its characteristic
height, an approach that has its origins in the work of Reynolds to describe the
pressure distribution for slider bearings (Reynolds 1886). For ultrathin liquid films,
an additional disjoining pressure term arises due to the intermolecular interactions
between the solid–liquid and liquid–gas interfaces.

Assuming a particular form for the intermolecular forces, one can use linear
stability analysis of the thin-film equation to arrive at a prediction for the scaling
of the wavelength of the instability and its growth rate as a function of the initial
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uniform film thickness (Oron, Davis & Bankoff 1997; Craster & Matar 2009); this
regime predicted by the linear theory is known as the spinodal regime. In apolar
systems, typically van der Waals (vdW) forces are the main long-range attractive
interactions, scaling with the film thickness as ∼1/h2, leading to a scaling of ∼h2

and ∼1/h5 for the most unstable wavelength and fastest growth rate, respectively.
These scalings therefore serve as a qualitative benchmark for the experiments to
determine if they are within the spinodal regime. Making quantitative predictions,
however, requires prescribing the exact form of the interface potential.

The observations by Reiter (1992, 1993) led to a wave of experimental studies
focusing on dewetting of thin liquid films. Jacobs, Herminghaus & Mecke (1998)
showed that the holes observed in the experiments of Reiter (1992, 1993) have a
Poisson distribution, a signature of the nucleation regime, and that the scaling of
the film-rupture time as a function of film thickness did not match the theoretical
predictions of the spinodal regime; films in the nucleation regime are linearly stable,
yet instabilities can still grow due to the presence of defects on the substrate or in
the film itself (Jacobs et al. 1998). The first observations of the spinodal regime were
reported by Bischof et al. (1996) and Herminghaus et al. (1998) using thin gold films
on quartz substrates, where the correlations between the holes was rigorously shown
using Minkowski functionals (Mecke 1998; Mantz, Jacobs & Mecke 2008).

The presence of residual stresses in thin polymer films can further complicate the
dewetting process; Reiter et al. (2005) observed dewetting through nucleation for
large film thicknesses, where the film is expected to be linearly stable. They realized
that the number of holes is a strong function of the ageing time of the polymer
before the temperature is raised above the glass transition temperature to perform
the experiments; they further speculated that the reason behind this observation could
be that during the spin-coating process, the solvent evaporates quickly, leaving the
polymer chains in non-equilibrium configurations leading to a residual stress in
the film, which can be responsible for the unexpected instability of the films. The
observations by Reiter et al. (2005) therefore point to the need for extreme caution
in conducting and interpreting experiments on thin films in spinodal and nucleation
regimes (Stange, Evans & Hendrickson 1997; Thiele, Mertig & Pompe 1998; Xie
et al. 1998; Segalman & Green 1999; Meredith et al. 2000; Bollinne et al. 2003;
Sharma 2003; Nguyen et al. 2014).

Seemann, Herminghaus & Jacobs (2001a) conducted a series of well-controlled
experiments using polystyrene films spin-cast on silicon (Si) wafers. They demonstrated
that by tuning the thickness of the silicon oxide coating of the Si wafer, they could
alter the interface potential and classify three categories of instabilities: (1) spinodal
dewetting for linearly unstable regions, (2) thermal nucleation at the edge of the
linearly unstable region, where thermal fluctuations can overcome the energy barrier
leading to dewetting, and (3) heterogeneous nucleation within the linearly stable
region, where defects on the substrate or in the film give rise to the appearance of
holes and instabilities. The spinodal regime is easily distinguishable as it gives rise
to a well-defined characteristic wavelength of instability, from which the interface
potential can be reconstructed. The key feature distinguishing regimes 2 and 3 is
that holes continuously appear throughout the experiment in the thermal nucleation
regime, whereas they all form within a limited time window in the heterogeneous
nucleation regime.

Becker et al. (2003) observed good agreement between experimental observations
and theoretical predictions, with the caveat that experiments showed a faster
rupture time. To explain the time-scale mismatch between theory and experiments,
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Mecke & Rauscher (2005), Grün, Mecke & Rauscher (2006) and Fetzer et al. (2007b)
suggested that accounting for thermal fluctuations is necessary. They showed that
thermal noise at the typical temperatures used in the experiments can speed up
the initial rupture process, thereby bringing the theoretical predictions closer to the
experimental observations.

Here, we revisit the theory of thin liquid films in partial wetting and show that the
intermolecular forces in thin films give rise to a height-dependent surface tension. We
show that the free energy of the system can be cast in the following form:

Γ =

∫ (
f (h)+

1
2
κ(h)(hx)

2

)
dx, (1.1)

which resembles the Cahn–Hilliard framework for phase separation in binary alloys
(Cahn & Hilliard 1958; Langer 1971), an idea that dates back to van der Waals
(Rowlinson 1979; Rowlinson & Widom 2013). Here, f (h) is the bulk free energy
and κ(h) is a height-dependent surface tension term; this feature has important
consequences for stability of liquid films, leading to a slightly smaller wavelength
of instability and a faster rupture rate than the classical theory (by up to six times),
bringing the theory closer to the experimental observations, and suggesting that the
height dependence of surface tension could play a role along with the presence of
thermal noise.

Within the framework of non-equilibrium thermodynamics (Hohenberg & Halperin
1977; Cross & Hohenberg 1993; Bray 2002), our model in non-dimensional form can
be written succinctly as follows (Pahlavan et al. 2015):

∂h
∂t
=
∂

∂x

(
M

∂

∂x

(
δΓ

δh

))
, (1.2)

with the mobility M, and the pressure defined as the variational derivative of the free
energy as P̃= δΓ /δh= df /dh−

√
κ∂/∂x(

√
κ∂h/∂x); here, h represents the height of

the liquid film, κ is the height-dependent surface tension, and f is the bulk free energy.
Our model leads to a generalized form of the disjoining pressure defined as:

Φ(h, hx, hxx)=
dφµ,1

dh
+
√
φµ,2

∂

∂x

(√
φµ,2

∂h
∂x

)
, (1.3)

with φµ,1(h) and φµ,2(h) as components of the vdW force. As indicated in (1.3), this
generalized disjoining pressure depends not only on the film height, but also on its
slope and curvature. This model allows describing the spreading and dewetting of
drops and thin films in the true partial-wetting regime (Brochard-Wyart et al. 1991;
de Gennes, Brochard-Wyart & Quéré 2004) without the need to invoke a precursor
film (Pahlavan et al. 2015).

Using the new thin-film model, we revisit the instability and dewetting of a
partially wetting thin liquid film on a solid substrate. We first analyse the equilibrium
film and droplet solutions predicted by this model and contrast it with the classical
model, showing that in our model the equilibrium droplets exhibit compact support
and show a non-zero equilibrium angle at the contact line, whereas the classical
thin-film model cannot admit solutions with compact support and the equilibrium
droplet only asymptotically meets the substrate through a precursor film (Brenner
& Bertozzi 1993). Analysing the stability of uniform film solutions, we show that
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the new model predicts a faster growth rate and smaller wavelength of instability
in the spinodal regime than the classical model. Upon dewetting, the newly formed
liquid droplets arrive at a metastable state; they are connected by ultrathin fluid films
of non-zero thickness and slowly coarsen to lower the energy of the system; this
coarsening process, however, occurs on very long time scales as the dynamics is
now mainly driven by drainage through the ultrathin films and the mobility scales
as ∼h3, leading to very small rates of mass transfer between the droplets. We show
that the coarsening process arrives at a self-similar intermediate-asymptotic behaviour
(Barenblatt 1996), which is independent of the details of the contact-line models and
even in the presence of thermal fluctuations matches the existing predictions for the
classical thin-film model (Glasner & Witelski 2003; Gratton & Witelski 2008, 2009).
We, however, observe a skewed drop-size distribution for larger drops in the new
model; while the long-tailed distribution follows a Smoluchowski equation, it is not
associated with a coalescence-dominated coarsening process, calling into question
the association made between coalescence and skewed drop-size distribution in some
earlier experiments.

2. Thin-film model in partial wetting
2.1. Free energy at equilibrium: emergence of Cahn–Hilliard framework with

height-dependent surface tension
Consider a nanometric thin liquid film sitting on a solid substrate, as shown in figure 1.
When the film is perturbed, it can become unstable if the solid prefers to be in contact
with the gas phase; in this configuration the uniform film has the lowest interfacial
area, so dewetting lowers the bulk energy of the system at the expense of increasing
its interfacial energy. We can write the energy of a half drop in one dimension as

Γ =

∫ x0

0
φ(h, hx) dx, (2.1)

where φ is the free energy density, x= 0 marks the centre of the drop and x= x0 is
where the liquid, solid and gas meet, i.e. the contact line. At equilibrium, the variation
of the free energy is zero, i.e. δΓ = 0:

δ

(∫ x0

0
(φ(h, hx)− Ph) dx

)
= 0, (2.2)

where the operator δ indicates variation of the functional and the Lagrange multiplier
P is introduced to enforce mass conservation. Expanding the above equation leads to∫ x0

0

(
∂φ

∂h
− P

)
δh dx+

∫ x0

0

∂φ

∂hx
δhx dx+ φ|x0δx0 = 0. (2.3)

Using integration by parts, we can rewrite the second integral in (2.3), leading to

δ

∫ x0

0
(φ(h, hx)− Ph) dx =

∫ x0

0

[
∂φ

∂h
−

d
dx

(
∂φ

∂hx

)
− P

]
δh dx

+

(
∂φ

∂hx

)
δh
∣∣∣∣x0

0

+ φ|x0δx0 = 0. (2.4)
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Gas

Liquid

Solid

FIGURE 1. (Colour online) Schematic of a liquid film on a solid substrate; films with a
height less than approximately 100 nm can become unstable to infinitesimal perturbations
if the liquid does not completely wet the substrate; in such situations, the instabilities grow
and the film dewets from the substrate, forming small droplets that can then coarsen to
form larger drops; the shape of the small drops is governed mainly by surface tension,
leading to a spherical cap shape with a macroscopic Young contact angle θY ; deviations
from the spherical cap shape can occur due to the intermolecular forces very close to
the contact line. If the height of the drop becomes comparable to the capillary length
lγ =
√
γ /(ρg), gravitational force becomes important, levelling the drop and forming a

puddle shape; gravity sets the upper limit h∗ = 2lγ sin (θY/2) for the puddle height.

We can further use the Taylor expansion for the boundary terms and write δh|x0 =

−δx0(∂h/∂x)|x0 .
At equilibrium, the integrand as well as the boundary terms need to be indepen-

dently zero. The integrand represents the Euler–Lagrange equation (Yeh, Newman &
Radke 1999; Starov, Velarde & Radke 2007; Arfken, Weber & Harris 2013)[

∂φ

∂h
−

d
dx

(
∂φ

∂hx

)]
= P. (2.5)

The boundary condition at x= x0 then becomes

−hx

(
∂φ

∂hx

)∣∣∣∣
x0

+ φ|x0 = 0. (2.6)

This equation is known as the transversality condition or the Augmented Young
equation. Note that the boundary terms at x= 0 automatically cancel out due to the
symmetry conditions.

We therefore have two constraints on the free energy as we approach the contact
line: (1) it should satisfy the Augmented Young equation (2.6), and (2) it should
recover the solid–gas free energy at the contact line to allow for a continuous variation
of the energy. Our objective therefore is to find the functional form of the free
energy, whose minimizer at equilibrium satisfies these two conditions. Considering
the macroscopic contributions to the free energy, i.e. gravity and interfacial energies,
we can write the free energy as

ΓM =

∫ x0

0

(
1
2
ρgh2
+ (γsl − γsg)+ γ

√
1+ h2

x

)
dx, (2.7)

where ρgh2/2 represents the gravitational potential energy, γsl and γsg represent the
solid–liquid and solid–gas interfacial energies, and the term γ

√
1+ h2

x represents
the liquid–gas interfacial energy contribution. Neglecting gravity, the Euler–Lagrange
equation (2.5) will simplify to the usual Laplace equation for the pressure jump
across an interface. We can now proceed to check whether the macroscopic free
energy density satisfies the two constraints given above for equilibrium.
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As the film height goes to zero, φ must be equal to the solid–gas interfacial energy;
in the above representation of the free energy, we have subtracted this contribution, so
we require φ(h = 0) = 0. Therefore, as we move close to the contact line, we have
(γsl− γsg)+ γ

√
1+ h2

x|x0 = 0. Here we consider the true partial-wetting regime, where
a droplet is surrounded by a dry solid substrate. The same arguments can be applied
for the case of pseudopartial wetting, where the droplet is surrounded by a precursor
film of height hf ; in this case, the height at the contact line goes to hf instead of zero.

The Augmented Young equation further requires the following:

−hx

(
γ

hx√
1+ h2

x

)∣∣∣∣∣
x0

+ γ

√
1+ h2

x

∣∣∣∣
x0

+ (γsl − γsg)= 0. (2.8)

Note that this equation can be simplified to give us the Young equation, i.e. (γsl −

γsg)+ (γ /
√

1+ h2
x)|x0 = 0, which in turn simplifies to γ cos θY = (γsg − γsl), where θY

is the macroscopic Young contact angle (Young 1805).
Putting the Augmented Young equation and the continuity constraint together leads

to the following conclusion: (
γ

h2
x√

1+ h2
x

)∣∣∣∣∣
x0

= 0. (2.9)

The only way for this equation to be satisfied is if hx(x0) = 0; if we substitute
hx(x0) = 0 back in the Augmented Young equation, we arrive at (γsl − γsg) + γ = 0;
using the Young equation, this leads to γ (1− cos θY)= 0, indicating that θY = 0. In
other words, the liquid needs to completely wet the surface for the constraints on
the free energy to be satisfied. An alternative way of arriving at this conclusion is to
consider a uniform flat film; the energy of this film is then written as

∫
((1/2)ρgh2

+

(γsl − γsg)+ γ ) dx; as we thin down the film and its height goes to zero, we need to
recover the solid–gas interfacial energy, therefore we require (γsl− γsg)+ γ = 0, which
leads to the same result.

The macroscopic contributions to the free energy are therefore insufficient to model
the partial-wetting regime; we need to incorporate the physics at the nanoscale close
to the contact line. As the height of the liquid film becomes small, the liquid–solid
and liquid–gas interfaces start to interact with each other, leading to an additional
contribution in the free energy, commonly known as the disjoining pressure (de
Gennes 1985). We can therefore write the free energy in the following form:

Γ = ΓM + Γµ =

∫ x0

0

(
1
2
ρgh2
+ (γsl − γsg)+ γ

√
1+ h2

x + φµ(h)
)

dx, (2.10)

where φµ(h) represents the intermolecular interactions close to the contact line. We
now can check whether this form of the free energy satisfies the continuity constraint
and the Augmented Young equation. The continuity of the free energy dictates

(γsl − γsg)+ γ

√
1+ h2

x

∣∣∣∣
x0

+ φµ(h= 0)= 0. (2.11)

The Augmented Young equation leads to the following:

−hx

(
γ

hx√
1+ h2

x

)∣∣∣∣∣
x0

+ γ

√
1+ h2

x

∣∣∣∣
x0

+ (γsl − γsg)+ φµ(h= 0)= 0. (2.12)
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This equation represents the so-called Derjaguin–Frumkin equation (Starov et al.
2007), relating the Young angle to the microscopic forces close to the contact line:
γ cos θY = γ cos θµ + φµ(h = 0), where θµ represents the microscopic angle at the
contact line and we have used hx|x0 = tan θµ and the Young equation γsg−γsl=γ cos θY
(Yeh et al. 1999; Starov et al. 2007; Starov 2010). The above two constraints on
continuity of the energy and the augmented Young equation lead to hx(x0) = 0, or
θµ = 0. Putting hx(x0) = 0 back into either of the above equations leads to φµ(h =
0)= S , where S ≡ γsg − γsl − γ is known as the spreading parameter. Therefore, we
arrive at the conclusion that while the macroscopic Young angle (θY) can be non-
zero, the microscopic angle at the contact line (θµ) needs to be zero to satisfy the
energetic constraints; this regime is commonly known as pseudopartial wetting, where
a macroscopic liquid drop is surrounded by a microscopic precursor film (Heslot et al.
1990; Brochard-Wyart et al. 1991; Sharma 1993b). To describe the true partial-wetting
regime, in which a liquid droplet sits on a dry surface without a precursor film (de
Gennes et al. 2004), additional physics is needed.

Surface tension at a liquid–gas interface arises due to the collective interactions
between the liquid and gas molecules (Israelachvili 2011; Marchand et al. 2011). In
the case of a uniform thin liquid film of nanometric thickness on a solid substrate,
where liquid–gas and liquid–solid interfaces come very close to each other, the
collective interactions also give rise to an excess free energy in addition to the
interfacial tensions. For a nearly uniform thin film, this excess energy simply
depends on the height of the film as represented by φµ(h) (Israelachvili 2011).
Close to the contact line, however, the interfaces are not parallel, and therefore the
collective intermolecular interactions between solid, liquid and gas molecules lead to
a slope-dependent excess free energy, i.e. φµ(h, hx) for a liquid wedge sitting on a
solid substrate (Hocking 1993; Wu & Wong 2004; Dai, Leal & Redondo 2008). Using
density functional theory, this excess free energy can be represented as a non-local
integral of all the interactions (Keller & Merchant 1991; Merchant & Keller 1992;
Getta & Dietrich 1998; Snoeijer & Andreotti 2008); however, here we use a simplified
local approximation of the excess free energy, which has been shown to agree well
with the non-local formulations (Bauer & Dietrich 1999; Bonn et al. 2009). We can
therefore write the free energy as

Γ =

∫ x0

0

(
1
2
ρgh2
+ (γsl − γsg)+ γ

√
1+ h2

x + φµ(h, hx)

)
dx. (2.13)

Continuity of the free energy leads to the following constraint at the contact line:

(γsl − γsg)+ γ

√
1+ h2

x

∣∣∣∣
x0

+ φµ(h, hx)|x0 = 0. (2.14)

The augmented Young equation further becomes

−hx

(
γ

hx√
1+ h2

x

+
∂φµ

∂hx

)∣∣∣∣∣
x0

+ γ

√
1+ h2

x

∣∣∣∣
x0

+ (γsl − γsg)+ φµ(h, hx)|x0 = 0.

(2.15)

Based on the derivations of Dai et al. (2008), we propose to decompose the vdW
interactions, φµ(h, hx), into two parts: a height-dependent part, and a slope-dependent
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part: φµ= (φµ,1(h)+φµ,2(h))−φµ,2(h)
√

1+ (hx)2; using the long-wave approximation,
this form further simplifies to φµ = φµ,1(h)− (1/2)φµ,2(h)(hx)

2; note that for parallel
interfaces, hx = 0, we recover the original height-dependent potential. An alternative
way to arrive at the proposed form for the vdW forces is based on simple symmetry
arguments: φµ cannot be linearly dependent on hx as it should have the same sign
everywhere around the droplet; therefore it must be a function of even powers of hx,
leading, in the simplest case, to the proposed gradient-squared form above.

The augmented Young equation can thus be written as

−hx

(
(γ − φµ,2)

hx√
1+ h2

x

)∣∣∣∣∣
x0

+ γ

√
1+ h2

x

∣∣∣∣
x0

+ (γsl − γsg)+ φµ(h, hx)|x0 = 0.

(2.16)

Simplifying this equation leads to the following relation: γ cos θY = [γ − φµ,2
(h = 0)] cos θµ + [φµ,1(h = 0) + φµ,2(h = 0)]. Combining the augmented Young
equation (2.16) and the continuity constraint (2.14) leads to the following condition
at the contact line: (

(γ − φµ,2)
h2

x√
1+ h2

x

)∣∣∣∣∣
x0

= 0. (2.17)

To satisfy this condition at the contact line, we either need to have hx(x0) = 0,
leading to a zero microscopic angle as before, or φµ,2(h = 0) = γ , which does not
constrain the value of the microscopic contact angle; this allows the microscopic angle
to naturally arise as part of the solution; this outcome is consistent with the predictions
of non-local density functional theory (Snoeijer & Andreotti 2008). The augmented
Young equation (2.16) simplifies to γ cos θY = φµ,1(h= 0)+ γ ; having φµ,1(h= 0)=S
therefore leads to the Young equation γ cos θY = γsg − γsl.

Allowing for slope dependence of the vdW forces therefore leads to a form of the
free energy that satisfies all the constraints of the partial-wetting regime. Using the
long-wave approximation, i.e.

√
1+ (hx)2 ≈ 1 + (1/2)(hx)

2, the total Helmholtz free
energy can be written as

Γ =

∫ x0

0

(
f (h)+

1
2
κ(h)(hx)

2

)
dx, (2.18)

which, interestingly, resembles the Cahn–Hilliard formulation (Cahn & Hilliard 1958).
The free energy here is divided into a bulk contribution, f (h) = (1/2)ρgh2

− S +
φµ,1(h), and an interfacial contribution with a height-dependent interfacial tension,
κ(h) = γ − φµ,2(h). The above constraints on φµ,1 and φµ,2, therefore, lead to
f (h = 0) = 0 and κ(h = 0) = 0, which allow for compactly supported droplets
sitting on a dry solid substrate (Benzi et al. 2011; Cueto-Felgueroso & Juanes
2012; Pahlavan et al. 2015). Note that the height-dependent interfacial term leads
to a new nonlinear term of the Kadar–Parisi–Zhang (KPZ) type (Kardar, Parisi &
Zhang 1986); similar forms have also been recently proposed in the context of
active suspensions (Stenhammar et al. 2013; Wittkowski et al. 2014). The idea of
an order-parameter-dependent interfacial tension has been proposed in the context of
binary alloys (Cahn 1961) and polymer blends (de Gennes 1980), and the dependence
of surface tension on height has also been recently proposed in the context of
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Thin films in partial wetting: stability, dewetting and coarsening 651

capillary waves on thin liquid films (MacDowell, Benet & Katcho 2013; MacDowell
et al. 2014). In the context of moving contact lines, Shikhmurzaev (1997, 2007) has
proposed that the idea of a dynamic surface tension close to the contact line can
resolve the moving contact-line singularity and lead to a natural emergence of the
dynamic contact angle (Sibley et al. 2015); both these features are also reproduced
in our model (Pahlavan et al. 2015).

2.2. Thin-film model: generalized disjoining pressure
Having defined the free energy, we can write the evolution equation for the height
of the liquid film in the form of a mass-conservative gradient flow as (Hohenberg &
Halperin 1977; Cross & Hohenberg 1993; Bray 2002)

∂h
∂t
=
∂

∂x

(
M

∂

∂x

(
δΓ

δh

))
, (2.19)

where M represents the mobility, and the variational derivative of the free energy
is defined as δΓ /δh = ∂Γ /∂h − ∂/∂x[∂Γ /∂(hx)] (Anderson, McFadden & Wheeler
1998).

An alternative way to arrive at the same thin-film model is to start from the Navier–
Stokes equations of motion and simplify them using the lubrication approximation:

ρ

(
∂u
∂t
+ u · ∇u

)
=−∇P+∇ · T − ρgez, (2.20)

in which ρ is the liquid density, u = (u, w) is the velocity field, P is the isotropic
liquid pressure, T is the stress tensor, and the last term in the equation represents
the gravitational force. The stress tensor can be further decomposed into two parts,
T = τ +M , where τ is the deviatoric stress and M represents the stress due to external
body forces, taken to be zero in this work.

We non-dimensionalize the equations in the following way: x̃= x/L, z̃= z/H, h̃=
h/H, ũ= u/U, w̃= w/(εU), t̃ = t/(µL4/γH3), P̃= P/(γH/L2) and τ̃ = τ/(γH2/L3),
where ε=H/L, and H and L represent a characteristic height and length, respectively.
This leads to three dimensionless groups, Re= ρUH/µ, C̃a=Ca/ε3 with Ca=µU/γ ,
and Bo= (L/lγ )2, with lγ =

√
γ /ρg as the capillary length.

The above equations of motion then need to be supplemented by boundary
conditions at the wall and at the liquid–gas interface. At the wall, we impose a Navier
slip boundary condition: ũ|z̃=0 = β∂ ũ/∂ z̃|z̃=0, where β = b/H is the non-dimensional
slip or extrapolation length (Granick, Zhu & Lee 2003; Neto et al. 2005; Lauga,
Brenner & Stone 2007); we also assume no penetration at the wall: w̃|z̃=0 = 0.
At the liquid–gas interface, one must satisfy the kinematic boundary condition
w̃s = (1/C̃a)∂ h̃/∂ t̃ + ũs∂ h̃/∂ x̃, where ũs and w̃s are the velocity components at the
interface. The stress boundary condition at the interface can be written as

([P]I − [T ]) · n= (γK+Φ)n, (2.21)

where [−] represents the jump across the interface, n= (−hx, 1)/
√

1+ h2
x is the unit

vector normal to the interface, t = (1, hx)/
√

1+ h2
x is the unit vector tangent to the

interface, K=−∇s ·n= hxx/(1+ h2
x)

3/2 represents the curvature with ∇s= (I −n⊗n) ·
∇. The jump in the liquid pressure and stress across the interface is represented by the
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terms on the right-hand side of the equation: the first term gives the Laplace pressure
jump due to the interface curvature, Φ arises due to the intermolecular interactions
between the solid–liquid and liquid–gas interfaces and only becomes relevant when
these two interfaces are closer than a few nanometres (Bonn et al. 2009; Israelachvili
2011).

Using the above non-dimensionalization and long-wave approximation, ε� 1, and
negligible inertia, εRe � 1, and surface tension-dominated flow, C̃a = O(1), the x-
momentum equation reduces to 0=−∂P̃/∂ x̃+ ∂τ̃zx/∂ z̃. Further, assuming ε3Re�1, the
z-momentum equation further simplifies to 0=−Bo− ∂P̃/∂ z̃. The slip and kinematic
boundary conditions remain unchanged under the lubrication approximation. The stress
boundary condition, however, simplifies further; the tangential component becomes
[τ̃zx] = 0 and the normal component reduces to [P̃] =−h̃x̃x̃ + Φ̃. The deviatoric stress
is a function of the strain rate ε = (∇u+∇uT)/2, and for a Newtonian liquid can be
simply written as τij = µ(∂ui/∂xj + ∂uj/∂xi). Using this definition and integrating the
z-momentum equation, and then applying the normal stress boundary condition, we
can write the liquid pressure as follows: P̃= Bo(h̃− z̃)− h̃x̃x̃ + Φ̃.

Integrating the continuity equation and using the kinematic boundary condition, we
arrive at (1/C̃a)∂ h̃/∂ t̃+ ∂/∂ x̃

∫ h̃
0 ũ dz̃= 0.

Replacing the x-velocity component in the above equation we therefore arrive at the
evolution equation for the height of the film:

∂ h̃
∂ t̃
=
∂

∂ x̃

{[
h̃3

3
+ βh̃2

]
∂P̃
∂ x̃

}
. (2.22)

Comparing (2.22) above and (2.19) in the main manuscript, it is evident that they
are equivalent if P̃ = δΓ̃ /δh̃ = df̃ /dh̃ −

√
κ̃(∂/∂ x̃)(

√
κ̃ h̃x̃), where Γ̃ = Γ /(γH2/L2),

f̃ = f /(γH2/L2), and κ̃ = κ/γ ; we therefore find the disjoining pressure to be

Φ̃(h̃, h̃x̃, h̃x̃x̃)=
dφ̃µ,1

dh̃
+

√
φ̃µ,2

∂

∂ x̃

(√
φ̃µ,2h̃x̃

)
, (2.23)

where φ̃µ,1 = φµ,1/(γH2/L2) and φ̃µ,2 = φµ,2/γ , and Φ̃ is a generalized disjoining
pressure that depends not only on the film height, but also on its slope and curvature.
Similar ideas for a generalized disjoining pressure have been proposed in the past: by
integrating the intermolecular interactions in a liquid wedge, Miller & Ruckenstein
(1974), Hocking (1993) and Indeikina & Chang (1999) derived a slope-dependent
disjoining pressure, which was later generalized by Wu & Wong (2004), who
incorporated the interactions with the molecules of the gas phase and showed
that it leads to the appearance of a higher-order curvature term in the disjoining
pressure. Snoeijer & Andreotti (2008) compared these results with the predictions
of Keller & Merchant (1991) and Merchant & Keller (1992), and showed that the
disjoining pressures do not recover the correct macroscopic Young contact angle.
Dai et al. (2008) later showed that the form derived by Wu & Wong (2004) does
not recover the classical Lifshitz formulation (Dzyaloshinskii, Lifshitz & Pitaevskii
1961) in the limit of parallel interfaces, and derived a new consistent form for the
disjoining pressure. The functional form of disjoining pressure we have proposed here
in (2.23) resembles that of Dai et al. (2008), and simplifies to a height-dependent
form for parallel interfaces, recovering the classical height-dependent Lifshitz theory
for parallel interfaces.
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Information about the detailed form of the disjoining pressure becomes essential
in studying many phenomena such as moving contact lines (Gogotsi et al. 2001;
Sibley, Savva & Kalliadasis 2012; Sibley et al. 2015), the final stages of coalescence
of drops (Yiantsios & Davis 1991; Leal 2004; Zeng et al. 2007; Li 2016) or in
applications such as solidification (Tao, Yeckel & Derby 2016). Here, we further
show the consequences of the form of the disjoining pressure on the instability and
dewetting of thin liquid films in the partial-wetting regime.

3. Equilibrium solutions
Here, we review the analysis of Bertozzi, Grün & Witelski (2001), Glasner

& Witelski (2003) and Gratton & Witelski (2008) for equilibrium solutions of
the thin-film equation. We use the following form of the disjoining pressure for
parallel interfaces, consisting of the ‘non-retarded’ attractive vdW interactions and a
short-ranged repulsive term: Π(h) = dφµ,1/dh = A/(h + d0)

3(1 − (hf + d0)/(h + d0)),
with d0=

√
A/6πγ ≈ 0.2 nm representing the Born repulsion length (Sharma 1993a,b;

de Gennes et al. 2004; Dai et al. 2008; Israelachvili 2011; Pahlavan et al. 2015);
this form of disjoining pressure is regularized to allow for the film heights to go to
zero.

Here, A represents the Hamaker constant, and hf represents the equilibrium or
precursor film thickness. In our model, the height dependence of surface tension
does allow the droplets to have a compact support without a precursor film, i.e.
hf = 0 (Pahlavan et al. 2015) (see figure 3b). However, for the purpose of the present
study, we focus on thin films with a surrounding precursor film of non-zero height
(hf > 0) since we are interested in modelling dewetting and coarsening phenomena,
and our objective is to compare the results of the new model with the existing results
on the classical model with a constant surface tension; this regime is commonly
known as pseudopartial wetting (Brochard-Wyart et al. 1991). We can simplify
the form of the disjoining pressure by shifting the heights by d0, i.e. h̄ = h + d0,
which leads to Π(h) = A/h3(1 − hf /h), where we have dropped the overbars for
convenience of notation. Since both components of the disjoining pressure arise from
the same source (intermolecular interactions between the interfaces), we believe
it is reasonable to assume they would follow the same scalings; we therefore
define φµ,2(h)= γφµ,1(h)/φµ,1(hf ), leading to κ(h)= γ (1− φµ,1(h)/φµ,1(hf )), thereby
κ(hf )= 0. We take A=−6h2

f S , which leads to φµ,1(hf )= S .
With the above definition of the disjoining pressure, we can now write the bulk free

energy as follows:

f̃ (h̃)=
1
2

Bo h̃2
−
δ2

h̃2

(
1
2
−
δ

3h̃

)
+

1
6
, (3.1)

where δ = hf /H is the non-dimensional precursor film height, and we have chosen
L2/H2

= γ h2
f /A= 1/(6(1− cos θY)).

At equilibrium, the thin-film equation (2.19) simplifies to

P̃=
δΓ̃

δh̃
=

df̃

dh̃
−

√

κ̃
d
dx̃

(
√

κ̃
dh̃
dx̃

)
, (3.2)

where P̃ is a constant pressure; the fixed points of the above equation are the solutions
of P̃ = df̃ /dh̃. The typical form of the dimensionless free energy f̃ (h̃) is shown in
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FIGURE 2. (Colour online) (a) The bulk free energy f̃ (h̃) given by (3.1) with Bo= 2.2×
10−10 and δ = 0.1 (solid line). The blue dashed line shows the Maxwell double-tangent
construction, which is tangent to the bulk free energy at h̃∗m, the precursor film thickness,
and at h̃∗α , the puddle height. The inset shows a zoomed-in view of the bulk free energy
for small heights. Here, an arbitrary line with slope P̃∗ < P̃< P̃peak is tangent to the free
energy at h̃m and intersects it at h̃max (blue dashed line). (b) The bulk free energy redrawn
on a semilog scale. While vdW forces act at nanoscale, gravity only becomes relevant on
the millimetre scale; this 6 orders of magnitude separation of scales is shown here. Note
that the tangent lines become curved in this semilog representation. (c) The bulk pressure
defined as df̃ /dh̃. Droplet solutions exist for P̃∗ < P̃ < P̃peak, where a typical constant
pressure line (P̃ = const.) intersects the curve at three fixed points corresponding to the
three branches h̃m, h̃c and h̃α , as indicated. Uniform films on the h̃c branch are linearly
unstable since their corresponding d2 f̃ /dh̃2 < 0. The h̃max branch shows the maximum
height of the droplet solutions surrounded by a corresponding film of thickness h̃m; these
are solutions homoclinic to h̃m, where a line with slope P̃ is tangent to the bulk free
energy at h̃m and intersects it at h̃max (the blue dashed tangent line). In the limit of
very large drops (i.e. puddles) h̃m and h̃max approach h̃∗m and h̃∗α , respectively, and we
recover the common tangent line with slope P̃∗ (the blue dashed tangent line) (see also
Brochard-Wyart et al. 1991; de Gennes et al. 2004; Gratton & Witelski 2008).

figure 2. Within the range P̃node < P̃ < P̃peak, we can find three fixed points. Using
a singular perturbation analysis in the limit δ→ 0, we find these points to be: h̃m =

δ+ δ2P+ δ3(4P2
−Bo)+O(δ4), h̃c=P−1/3δ2/3

− (1/3)δ+ 1/3(BoP−5/3
− 2/3P1/3)δ4/3

+

O(δ5/3) and h̃α = P/Bo − (Bo2/P3)δ2
+ (Bo3/P4)δ3

+ O(δ4), where, to leading order,
only the equilibrium film thickness is independent of the pressure. The fixed points
obtained here are not affected by the height dependence of the surface tension κ̃(h̃)
as they only depend on the bulk free energy (Gratton & Witelski 2008). The pressure
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FIGURE 3. (Colour online) Equilibrium droplet profiles for (a) constant (red dash-dotted
line) and height-dependent (solid blue line) surface tension models with a surrounding
precursor film, and (b) the height-dependent surface tension model with (green dash-dotted
line) and without (solid black line) a surrounding precursor film.

in the liquid phase, however, can be affected by the non-constant surface tension, as
we will show later; this pressure change will then affect the fixed points.

The heights h̃m and h̃α are saddle points, whereas h̃c is a centre (Gratton & Witelski
2008). In the range of P̃node < P̃ < P̃peak, we can find three types of solutions that
are bounded in height (Thiele et al. 2001b; Gratton 2008): localized hole/dimple
solutions that are homoclinic to h̃α in the range P̃node < P̃< P̃∗, droplet solutions that
are homoclinic to h̃m in the range P̃∗ < P̃< P̃peak, and heteroclinic orbits from h̃m to
h̃α at P̃= P̃∗. To obtain the maximum height of these droplets, we integrate (3.2) as
follows:

R(h̃)≡
1
2

κ̃(h̃)(dh̃
dx̃

)2
= f̃ (h̃)− f̃ (h̃m)− P̃(h̃− h̃m), (3.3)

where at the maximum height of the drop we have dh̃/dx̃ = 0, i.e. R(h̃max) = 0;
in the limit δ → 0, we can then obtain h̃max = (1/Bo)(P̃ −

√
P̃2 − Bo/3) +

(P̃/
√

P̃2 − Bo/3)δ+O(δ2), which is the branch shown in figure 2(c). As the pressure
decreases towards P̃∗, a saddle–saddle heterogeneous orbit appears between h̃m and
h̃α, and the h̃max branch intersects with the h̃α branch. At this point, we then obtain
P̃∗ =

√
Bo/3 + (Bo/2)δ + O(δ2); this critical value of pressure is the slope of the

Maxwell common tangent line (Rowlinson & Widom 2013) shown in figure 2 and
satisfies the following equations:

P̃∗ =
f̃ (h̃∗α)− f̃ (h̃∗m)

h̃∗α − h̃∗m
, (3.4a)

P̃∗ =
df̃

dh̃

∣∣∣∣∣
h̃∗m

=
df̃

dh̃

∣∣∣∣∣
h̃∗α

, (3.4b)

where h̃∗m and h̃∗α are the values of h̃m and h̃α as calculated at pressure P̃= P̃∗.
At P̃node and P̃peak, the h̃c branch merges with the other two branches and we

have d2 f̃ /dh̃2
= 0. Following the procedure above, in the limit of δ → 0 and
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using a singular perturbation analysis, we find the corresponding film heights:
h̃peak = (4/3)δ + (4/3)5(Bo/3)δ3

+ O(δ7) and h̃node = (3/Bo)1/4δ1/2
− (1/3)δ + O(δ2),

which lead to the following pressures: P̃peak = (27/256δ) + (4Bo/3)δ + O(δ3) and
P̃node = 4(Bo/3)3/4δ1/2

− (Bo/3)δ − 2/3(Bo/3)5/4δ3/2
+ O(δ2), which mark the upper

and lower boundaries of the pressure range for which equilibrium droplet solutions
exist. Note that the results we have obtained so far are only indirectly affected by
the height dependence of surface tension through the change of liquid pressure at
equilibrium, as we show later.

The droplet solutions of (3.2) can be divided into three regions: (i) core, (ii)
contact line and (iii) equilibrium film. Here, we focus on the limit of small drops,
where gravity can be neglected (Bo→ 0). In the core (region (i)), away from the
contact line and in the absence of intermolecular forces, surface tension is the
dominant force, and equation (3.2) simplifies to P̃ = −h̃x̃x̃, leading to a parabolic
profile, h̃core = (1/2)P̃(w̃2

− x̃2), where w̃ is the effective width of the droplet. The
maximum height of the core region at its centre x̃ = 0 is therefore h̃max = P̃w̃2/2.
Before, we derived the maximum height of the droplet in the presence of gravity
and intermolecular forces. In the limit of zero Bond number, we can then show
h̃max = 1/(6P̃) + δ + O(δ2); equating this to the maximum height of the parabolic
core, we find the effective width of the drop to leading order: w̃ = 1/(

√
3P̃). In

the second region (region (ii)), i.e. the region near the contact line, the drop profile
asymptotically matches the droplet core to the equilibrium film outside. In this region,
we use the following transformation h̃(x̃) = δH̃(x̃) with x̃ = −w̃ + δz̃, and defining
f̃ (h̃)≡ F̃(H̃) we rescale (3.2) to leading order as follows:

dF̃

dH̃
−

(
1−

F̃(H̃)

F̃(1)

)
H̃z̃z̃ +

1
2F̃(1)

dF̃

dH̃
H̃2

z̃ = 0, (3.5)

where we have used the definition κ̃ = 1− F̃(H̃)/F̃(1), which appears in the second
term. This equation can be integrated to obtain H̃2

z̃ /2=−F̃(1), relating the slope of
the profile in the contact-line region to the intermolecular forces. Consistent with
the experimental observations (Pompe & Herminghaus 2000) and density functional
calculations (Snoeijer & Andreotti 2008), the height dependence of surface tension
leads to a non-zero contact angle at the contact line. In this model the droplet
width is a finite value that can be unambiguously defined, where the droplet meets
the surrounding wet or dry surface at a non-zero angle (figure 3b). This is in
clear contrast with the classical model with a constant surface tension, κ̃ = 1, for
which we obtain H̃2

z̃ /2= F̃(H̃)− F̃(1), leading to a zero contact angle as the droplet
asymptotically meets the precursor film, i.e. H̃→ 1 (figure 3a). In the classical model,
only the macroscopic contact angle far away from the contact line can be non-zero;
we therefore need to take the limit of H̃→∞, where F̃(H̃)→ 0, recovering the result
H̃2

z̃ /2=−F̃(1). Using the dimensional version of this result leads to h2
x/2=A/(6γ h2

f ),
which simplifies to h2

x/2 = (1 − cos θY) using the definition A = −6h2
f S; in the

limit of small contact angles (θY � 1), we can therefore relate the droplet slope to
the Young contact angle: hx ≈ θY .

Figure 4 shows the variation of some of the droplet features as a function of
its equilibrium pressure (or size) for both the classical model (with constant surface
tension) and our model (with a height-dependent surface tension). The first observation
is that the difference between the two models is most pronounced for very small
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FIGURE 4. (Colour online) The variation of equilibrium droplet features with the liquid
pressure in the droplet. The symbols show the result of numerical simulations with a
constant surface tension (red diamonds), and a height-dependent surface tension (blue
circles). The dash-dotted lines represent the theoretical predictions for small droplets, and
the vertical dashed lines correspond to the P̃peak beyond which no droplet solutions exist.
(a) The equilibrium contact angle defined at the inflection point of the droplet profile; the
dash-dotted line represents the Young contact angle. The inset shows two typical droplet
profiles of equal mass (but different equilibrium pressure, with the new model leading
to smaller liquid pressures) for the constant surface tension (red dash-dotted line) and
height-dependent surface tension (blue solid line) models. (b) Droplet width defined as
the distance from centre of the drop to its edge at h̃peak. The dash-dotted line represents
w̃= 1/(

√
3P̃). In the constant surface tension case, the droplet core asymptotically meets

the equilibrium film, leading to a larger effective width. (c) Maximum droplet height.
The dash-dotted line represents h̃max = 1/(6P̃) + δ + O(δ2). The height dependence of
surface tension results in lower equilibrium pressures, which in turn lead to larger h̃max
values in the small droplets. (d) Equilibrium film thickness. The dash-dotted line represents
h̃m = δ + δ

2P+ δ3(4P2
− Bo).

droplets, where their entire profile is influenced by the intermolecular forces; as
the droplets become larger, intermolecular forces can only be felt very close to the
contact line, and the difference between the two models is limited to the vicinity of
this region and less relevant to macroscopic features such as width, maximum height,
or even equilibrium film thickness, which is now determined by balancing the Laplace
pressure due to the curvature of the core region of the drops. The equilibrium contact
angle also becomes size-dependent for very small droplets (figure 4a), where the entire
droplet geometry is influenced by the intermolecular forces; this dependence, however,
is not due to the line tension effect, which would be relevant for axisymmetric drops
(Amirfazli & Neumann 2004; Schimmele, Napiorkowski & Dietrich 2007; Weijs
et al. 2011; Giro et al. 2017). The second observation is that for small droplets, the
height-dependent surface tension model always leads to more localized profiles with
larger contact angle and smaller effective width; for equal droplet mass, the height
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dependence of surface tension leads to a lower equilibrium pressure, which according
to the tangent construction shown in figure 2 leads to a larger maximum height (h̃max)
and smaller equilibrium film thickness (h̃m).

All the simulations in this paper are performed assuming an equilibrium film
thickness of hf = 1 nm, and characteristic height H = 10 nm, which is the typical
range of dominance of vdW forces, leading to a non-dimensional equilibrium film
height of δ = hf /H = 0.1, and Bo = (L/lγ )2 = 2.2 × 10−10, i.e. negligible gravity
(capillary length lγ = 1.5 mm); while the influence of gravity in thin films is in
principle insignificant, ignoring its role can lead to unphysical predictions (Thiele
et al. 2001b).

4. Stability of uniform films
Here, we analyse the stability of uniform film solutions of (3.2) to infinitesimal

and finite perturbations. Consider a uniform film of thickness h̃0 that is perturbed
infinitesimally by a superposition of Fourier modes as h̃= h̃0+ ε exp (β t̃+ iqx̃), where
β is the growth rate of the instability, q = 2π/λ is the wavenumber, and ε � 1.
Substituting this decomposition into (2.19) and linearizing it to O(ε), we find

β = h̃3
0 q2(q0 − κ̃(h̃0)q2), (4.1)

where q0 = −d2 f̃ /dh̃2
|h̃0

. A uniform film becomes unstable if the growth rate is

positive β > 0, or q0 > κ̃(h̃0)q2. This implies that wavenumbers q <
√

q0/κ̃(h̃0), or

equivalently wavelengths λ > λc = 2π

√
κ̃(h̃0)/q0, will be unstable; surface tension

damps the shorter-wavelength deformations. The curve q0 = 0 separates the linearly
stable and unstable regions, as shown in figure 5; the instability phase diagram can
be represented in the phase space of the initial uniform film thickness h̃0 versus the
equilibrium film thickness δ = hf /H (Diez & Kondic 2007) or h̃0 versus Bo (Thiele
et al. 2001b). The curve q0= 0 represents the boundary of the spinodal region in the
free energy, where the second derivative of the bulk free energy becomes negative,
d2 f̃ /dh̃2

|h̃0
< 0. This region is bounded by the heights h̃peak and h̃node, as shown in

figure 2. The region between these heights and the film heights corresponding to the
tangent construction is called the binodal region, where the uniform wetted liquid
films are not linearly unstable, but they can be nonlinearly unstable, i.e. if perturbed
by a sufficiently large finite-amplitude perturbation they can evolve to find a lower
energy state. The boundaries of the binodal region are set by h̃∗m and h̃∗α, as shown in
figure 2. The lower and upper branches all meet at a critical point, where the bulk
free energy transitions from a double-well to a single-well structure; at the critical
point, we have d2 f̃ /dh̃2

= 0, and d3 f̃ /dh̃3
= 0, leading to h̃= (5/3)δ, δcr ≈ 1.9× 104,

and Bocr ≈ 7.85. To find the fastest-growing mode, we take dβ/dq= 0, which leads
to the following expressions for the most unstable wavelength

λm =
√

2λc = 2π

√√√√ 2κ̃(h̃0)

−d2 f̃ /dh̃2|h̃0

, (4.2)

and its corresponding maximum growth rate

βm =
h̃3

0

4κ̃(h̃0)

(
d2 f̃

dh̃2

∣∣∣∣∣
h̃0

)2

. (4.3)
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FIGURE 5. (Colour online) Stability phase diagram showing the regions where the uniform
film is linearly unstable, metastable (nonlinearly unstable), and absolutely stable. (a)
Shows the phase diagram as a function of the initial film height, h̃0 = h0/H, and the
equilibrium film thickness, δ = hf /H. The full black solid line represents the marginal
stability curve, where the instability growth rate, β is zero (i.e. q0 = −d2 f̃ /dh̃2

|h̃0
= 0);

inside the curve, the film is linearly unstable to infinitesimal perturbations, whereas outside
it is linearly stable; the lower branch of the marginal stability curve is coincident with
h̃peak, whereas the upper branch represents h̃node. The blue dashed line represents the curve
of absolute stability; outside this curve, all films are absolutely stable, whereas inside it
uniform films can become unstable due to finite perturbations, i.e. they are nonlinearly
unstable. The upper and lower branches of the absolute stability curve represent the h̃∗α
and h̃∗m lines; these are the points tangent to the Maxwell double-tangent construction. In
other words, while the curve of marginal stability represents the spinodal region, where
d2 f̃ /dh̃2

|h̃0
6 0, the curve of absolute stability represents the binodal or coexistence curve.

The upper and lower branches meet at the critical point, where we have d2 f̃ /dh̃2
= 0, and

d3 f̃ /dh̃3
= 0, leading to h̃= (5/3)δ and δcr ≈ 1.9× 104, where (as shown in the inset) a

transition from a double-well to a single-well structure occurs in the free energy. The
dashed blue line in the inset represents the tangent construction. (b) Shows the phase
diagram as a function of the initial film thickness, h̃0, and the Bond number Bo. The
same transition from a double-well to a single-well structure is observed at a critical Bond
number of Bocr ≈ 7.85 where the upper and lower branches of the stability curves meet.

We observe that both the instability wavelength and growth rate are affected by the
height dependence of the surface tension. We can denote the corresponding predictions
of the classical model by λm,κc = 2π

√
1/q0 and βm,κc = (h̃3

0/4)q
2
0, where the subscript

κc represents constant surface tension. The new model therefore predicts a smaller

instability wavelength, λm/λm,κc =

√
κ̃(h̃0) 6 1, and a faster growth rate βm/βm,κc =

1/κ̃(h̃0) > 1, as shown in figure 6. For very large initial thicknesses, the effect of
height dependence of surface tension becomes insignificant and both models predict
the same scaling for the maximum growth rate βm ∼ h̃−5

0 (figure 6b), showing that it
drastically reduces as the film thickness increases. The height dependence of surface
tension, however, leads to a larger growth rate for small film thicknesses, predicting
that the instability grows faster. The largest βm corresponds to h̃0 = (28/15)δ for the
classical model and h̃0≈1.7δ for the new model. Both models predict a similar scaling
for the most unstable wavelength at large thicknesses λm∼ h̃2

0 (figure 6c), whereas for
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FIGURE 6. (Colour online) Linear stability analysis results. (a) Dispersion curve showing
the instability growth rate β versus the wavenumber q for a film of thickness h̃0 = 4δ.
All curves labelled with κc and κ(h) represent the classical model with a constant surface
tension and the new model with a height-dependent surface tension, respectively. The new
model results in a shift to larger values for both the maximum growth rate βm and its
corresponding wavenumber, leading to a smaller wavelength of instability λm. (b) Scaling
of the maximum growth rate with the thickness of the initial uniform film h̃0. The vertical
dashed line (4/3)δ represents the lower limit of linear instability. (c) Wavelength of the
instability corresponding to the most unstable mode. (d) Ratio of predicted growth rate
and instability wavelength between the new model and the classical model. It is apparent
that the maximum ratio corresponds to the smallest film thickness h̃0 = (4/3)δ where the
film is linearly unstable; below the height of h̃0= (4/3)δ the film becomes linearly stable
and the surface tension keeps decreasing until it reaches a value of zero for h̃0 = δ.

smaller heights, where the effect of variability of surface tension becomes relevant, the
new model predicts smaller wavelengths. The minimum λm corresponds to h̃0= (5/3)δ
for the classical model and h̃0≈ 1.52δ for the new model. Note that these heights are
different from those concerning the maximum growth rate βm. Further, the instability
wavelength shows a much weaker dependence on the film thickness than the growth
rate (h̃2

0 versus h̃−5
0 ). Within the linearly unstable region, the new model predicts the

instability can grow up to six times faster than the predictions of the classical model
(figure 6d) while its corresponding instability wavelength can be less than half of that
in the classical model; the growth rate is therefore a more sensitive measure of the
height dependence of surface tension.
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FIGURE 7. (Colour online) 2D simulations of dewetting in the spinodal regime with
h̃0 = 2δ in a domain of size 10λm by 10λm; 2D profiles of h̃(x̃, ỹ) with contour
levels between h̃min and h̃max as specified are shown. (a) The classical thin-film equation
(h̃min = 1.99δ, 1.86δ, δ, δ, and h̃max = 2.02δ, 2.16δ, 4δ, 6.7δ, respectively). (b) The
stochastic thin-film equation (5.2) with constant surface tension at temperature T = 50 ◦C,
i.e. σ = 0.039 (h̃min = δ, and h̃max = 2.8δ, 4.3δ, 5.1δ, 7.5δ, respectively). (c) The new
model with height-dependent surface tension (h̃min = δ, and h̃max = 2.8δ, 4.3δ, 5.1δ, 7.5δ,
respectively). Both thermal fluctuations and height dependence of surface tension lead to
a faster dewetting process, bringing the theoretical predictions closer to the experimental
observations (Becker et al. 2003).

To go beyond the linear stability analysis, we conducted two-dimensional (2D)
numerical simulations in the spinodal regime to examine the dewetting rate and
morphologies obtained. Figure 7 shows that thermal fluctuations (see equation (5.2))
and height dependence of surface tension both lead to a faster initial dewetting.
Figure 8 shows the growth of perturbations in the nonlinear simulations of dewetting
using the different models. The linear stability analysis for this film thickness predicts
that the growth rate of the height-dependent surface tension model is twice as fast as
the classical model (βm/βm,κc = 2). From the nonlinear simulations we find that the
new model leads to a film rupture at t̃r1 ≈ 75, whereas the classical model leads to a
rupture time of t̃r3 ≈ 150, which is in agreement with the linear stability predictions.
Thermal fluctuations at T = 50 ◦C, i.e. σ = 0.039 (see equation (5.2)), lead to a
rupture around t̃r2 ≈ 125, which is faster than the classical model. Figure 9 shows a
more quantitative comparison of the rupture times between the classical model and
the other models. The speed up observed due to the thermal noise is independent of
the initial height of the film, whereas the height dependence of surface tension in
the new model leads to increasingly faster rupture as the initial film height decreases.
The prediction of a faster growth rate in our model deserves special attention. Earlier
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50 100 1500

10–5

10–1

10–3

FIGURE 8. (Colour online) The growth of perturbations in the spinodal regime (h̃0= 2δ as
in figure 7) for the classical model (solid red line), stochastic model (solid green line), and
height-dependent surface tension model (solid blue line) as obtained from the nonlinear
simulations. The imposed perturbations become damped at early times due to the surface
tension, but then start to grow exponentially (as shown by the dashed lines).

0.25 0.50

1

3

5

FIGURE 9. (Colour online) The ratio of the rupture times between the classical model
(tr,κc) and the classical model with thermal noise (green squares), the height-dependent
surface tension model without noise (blue circles) and the height-dependent surface tension
model with noise (cyan diamonds). Both the thermal noise and height dependence of
surface tension lead to a faster rupture time compared to the classical model. While the
effect of noise is almost independent of the initial film thickness (green squares), the
height dependence of surface tension leads to an increasingly faster ruptures as the film
thickness decreases (blue circles). This effect becomes even more amplified when thermal
noise is added to the new model (cyan diamonds). The solid line represents the ratio of
the growth rates between the classical and new model as predicted from the linear stability
analysis (see figure 6d).

studies have pointed to temporal inconsistencies between theoretical predictions and
experimental observations (Becker et al. 2003), with experiments showing a faster
initial dewetting process by more than a factor of two compared to the theoretical
predictions. Our new model therefore brings theoretical predictions closer to the
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earlier experimental observations. Our results in figure 9 further suggest that to
disentangle the roles played by the height dependence of surface tension and the
thermal noise, experiments with different initial heights need to be conducted.

5. Coarsening: self-similar intermediate asymptotics
5.1. Coarsening phase diagram

The drops formed after the dewetting process are in a metastable state; they can still
communicate through the ultrathin films connecting them and thus coarsen in time to
lower the overall energy of the system. Multiplying both sides of (2.19) by δΓ /δh̃,
integrating in space and using the no-flux boundary conditions, we can easily show
(see also Thiele et al. (2001b), Glasner & Witelski (2003)):

dΓ
dt̃
=−

∫
M
(
∂

∂ x̃

(
δΓ

δh̃

))2

dx̃ 6 0, (5.1)

demonstrating that the evolution governed by the thin-film equation leads to a
decreasing free energy and, therefore, a thermodynamically admissible system.

Figure 10 shows space–time diagrams of the dewetting of thin liquid films of
different thickness and their coarsening over time. The simulations presented here are
conducted on a large domain of size 100λm and the frames shown are a zoomed-in
view of a window of size 40λm; these simulations show the results corresponding to
the classical model with a constant surface tension; the results of the height-dependent
surface tension model are very similar. In all cases we start with a uniform film of
thickness h̃0 on which random perturbations of amplitude 10−4h̃0 are imposed. While
all the initial thicknesses are within the linearly unstable regime (see figure 5), they
lead to entirely different morphologies.

For small initial film height of h̃0 = 4δ, we observe the characteristics of the
spinodal dewetting, a term originally coined by Mitlin (1993) due to its similarity
to the spinodal decomposition in binary mixtures (Cahn 1961). In this regime, the
distance between the drops is the same as the most unstable wavelength, i.e. we get
≈100 drops in a domain of size 100λm (Diez & Kondic 2007). The coarsening here
proceeds through Ostwald ripening (Ostwald 1897), or collapse of smaller drops at
the expense of growth of larger ones (Glasner & Witelski 2003).

As the initial film height increases to h̃0 = 10δ, we can immediately see in
figure 10(b) that the number of drops formed upon dewetting and their spacing
no longer follows the predictions of the linear stability analysis, i.e. fewer drops
form and their spacing becomes random. This behaviour has signatures of nucleation
dewetting within the linearly unstable regime (Thiele, Velarde & Neuffer 2001a;
Thiele et al. 2001b; Diez & Kondic 2007) and shows a mixed-mode instability, i.e.
a behaviour in between spinodal and nucleation regimes. Such a transition has also
been reported in phase separation dynamics within the Cahn–Hilliard framework
(Novick-Cohen 1985). Figure 11 shows corresponding 2D simulations of dewetting in
this regime; in contrast with the spinodal regime, where holes appear around the same
time with a uniform spacing, here the nucleation process begins with formation of a
hole, which then laterally expands and forms a rim behind it (Seemann, Herminghaus
& Jacobs 2001b; Fetzer et al. 2005; Seemann et al. 2005; Bäumchen & Jacobs 2010;
Bäumchen et al. 2014). In this mixed-mode regime, the growth rate is still large
enough that shortly after growth of a hole, the depression behind the dewetting rim
can lead to rupture; this behaviour leads to the satellite-hole formation observed in
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(a) (b)

(c) (d )

0

0

FIGURE 10. Space–time diagrams showing the evolution of drop height of the classical
thin-film equation (constant surface tension); the results of the height-dependent case are
similar. The simulations are done in a domain of size 100λm and the frames shown here
show a zoom-in of a size 40λm. In all the cases, a line coming to an end indicates
an Ostwald-ripening event, in which a smaller drop feeds into larger neighbouring drops
through the ultrathin film that connects them. (a) h̃0 = 4δ, representing the classical
spinodal regime, where the number of drops is approximately set by the most unstable
wavelength λm (h̃max = 35δ). (b) h̃0 = 10δ representing a mixed-mode instability regime
in between spinodal and nucleation regimes; here, fewer drops than the spinodal regime
form and the distance between the formed drops seems to be random (h̃max = 100δ).
(c) h̃0 = 25δ, which is deep into the nucleation regime, showing the formation of very
few drops (h̃max = 700δ). (d) h̃0 = 4δ and including thermal fluctuations (T = 50 ◦C, i.e.
σ = 0.039) (h̃max = 25δ); thermal noise enhances the lateral motion of the drops; the
coarsening mechanism, however, still seems to be dominated by Ostwald ripening.

the experiments (Becker et al. 2003; Neto et al. 2003) and in the 2D simulations of
figure 11. Figure 12 illustrates this nucleation process in a space–time diagram of a
one-dimensional (1D) simulation of the height-dependent surface tension model with
h̃0 = 10δ.

As we keep increasing the initial film thickness further to h̃0= 25δ (figure 10c), we
move deeper into the nucleation regime, where fewer drops form; in this case five
drops formed in random locations in a domain of size 40λm. In the nucleation regime
two time scales compete: the time scale associated with the growth of linearly unstable
modes and the time scale associated with the dewetting front (Thiele et al. 2001a;
Diez & Kondic 2007; Snoeijer & Eggers 2010). As we showed before, the growth
rate of the most unstable mode βm scales as h̃−5

0 , leading to significant decreases in
the growth rate for thicker films, thereby favouring growth via nucleation.
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FIGURE 11. (Colour online) Nucleation dewetting for h̃0 = 10δ for the constant surface
tension model. In this regime, holes randomly appear and start expanding laterally, forming
a growing rim behind them (h̃max = 30δ, 54δ, 70δ, 120δ, respectively). The depression
behind the dewetting rim leads to the formation of satellite holes. The dewetting rims
subsequently become unstable and lead to fingering and pinch off to form droplets (see
Reiter & Sharma (2001), Bäumchen et al. (2014) for experimental details).

Since the dynamics of the coarsening process is slaved to the flux through the
ultrathin equilibrium films (h̃m ≈ δ) connecting the drops and the mobility scales
as h̃3, the coarsening dynamics are extremely slow. Two time scales are involved
in this process: a fast time scale over which individual coarsening events happen,
and a slow time scale between the individual events (Glasner & Witelski 2003). A
full numerical simulation of the thin-film equation therefore can be computationally
very expensive. Glasner & Witelski (2003) used the separation of time scales in
this problem to reduce the governing partial differential equation, equation (2.19), to
a system of ordinary differential equations for the droplet pressures and locations.
Coarsening can proceed via two general mechanisms: coalescence of droplets or
Ostwald ripening (Glasner & Witelski 2005). Their mathematical model allowed them
to simulate the coarsening of a very large number (O(105)) of drops. They observed
a scaling of N ∼ t̃−2/5 for the number of drops in time and also observed a transition
from Ostwald-ripening-dominated (capillary-driven drainage and collapse) coarsening
to coalescence-dominated coarsening as they increased the total mass of liquid in the
domain.

In contrast with the findings of Glasner & Witelski (2005), we do not observe such
a transition from Ostwald-ripening-dominated to coalescence-dominated coarsening
(figure 10). The change in the instability mode from spinodal to nucleation leads to
the formation of fewer drops as the total mass of the liquid in the domain increases,
i.e. as the initial film height increases: the large distance between the drops favours
coarsening through Ostwald ripening rather than coalescence. The reason Glasner
& Witelski (2005) observe such a transition is that they keep the number of drops
within a given domain fixed as they increase their mass; this naturally leads to wider
drops that progressively get closer to each other, therefore favouring coalescence.

5.2. Influence of thermal fluctuations
Some experiments on thin-film dewetting (Limary & Green 2002, 2003) and
nanoparticle growth in thin films (Meli & Green 2008; Woehl et al. 2014) have
reported a crossover from diffusion-dominated to coalescence-dominated behaviour.
A potential source of this transition could be thermal noise, which may play a
dominant role in thin-film systems (Mecke & Rauscher 2005; Grün et al. 2006;
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50

0

100

10 20

FIGURE 12. Space–time diagram of the nucleation process in the height-dependent surface
tension model with h̃0 = 10δ in a domain of size 20λm (each snapshot is shifted up by
10δ = 1). The lateral expansion of holes, growth of the rim behind the hole, and the
subsequent instability of the dip behind a growing rim can all be seen in this illustration.

Fetzer et al. 2007b; Willis & Freund 2009; Belardinelli et al. 2016; Diez, González
& Fernández 2016). To explore this possibility, we generalize the thin-film equation
(2.19) by incorporating thermal noise:

∂ h̃
∂ t̃
=
∂

∂ x̃

(
h̃3 ∂P̃
∂ x̃

)
+ σ

∂

∂ x̃
(h̃3/2ξ̃ (x̃, t̃)), (5.2)

in which P̃= df̃ /dh̃−
√
κ̃∂/∂ x̃(

√
κ̃∂ h̃/∂ x̃), with κ̃ = κ/γ and f̃ = f /(γH2/L2), where

H and L are characteristic height and length scales. The second term on the right-hand
side of the equation represents the thermal fluctuations (Davidovitch, Moro & Stone
2005; Mecke & Rauscher 2005; Grün et al. 2006) with σ =

√
kBT/γH2, where

kB is Boltzmann’s constant, T represents absolute temperature and ξ̃ represents a
spatiotemporal Gaussian white noise: 〈ξ̃〉 = 0 and 〈ξ̃ (x̃, t̃)ξ̃ (x̃′, t̃′)〉 = δ(x̃− x̃′)δ(t̃ − t̃′)
with δ as the Dirac delta function and 〈.〉 implying ensemble average over realizations
of the noise.

Introducing thermal noise to the system leads to enhanced lateral motion of the
drops, as seen in figure 10(d), and this can promote coalescence. Our simulations
for the stochastic thin-film equation (5.2) within the spinodal regime, however, show
the dominance of Ostwald ripening despite the enhanced lateral motion of the drops.
The crossover from the diffusion-dominated to coalescence-dominated behaviour
observed in the experiments (Limary & Green 2002, 2003) therefore could be a
consequence of the dimensionality of the problem, i.e. 2D in the experiments versus
1D in the simulations shown in figure 10. In two dimensions, each drop can be
surrounded and interact with multiple other drops, whereas in one dimension each
drop only interacts with its two neighbours. To investigate this, we have conducted
2D nonlinear simulations, which point to the dominance of coalescence events at short
times and Ostwald ripening at long times, as shown in figure 13, which corresponds
to the height-dependent surface tension model; similar results are obtained for both
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FIGURE 13. (Colour online) Two-dimensional simulations of coarsening dynamics at early
and late times for the height-dependent surface tension model with h̃0 = 2δ (h̃max =

8.5δ in the colourbar). At early times, coalescence events, as highlighted by the dashed
white circles, are dominant. At late times (once the metastable drops have formed),
however, Ostwald ripening, i.e. capillary drainage and collapse of drops, becomes the key
coarsening mechanism; note that this latter process is diffusion-dominated and therefore
much slower than coarsening through coalescence events.

the classical and stochastic models. Our observations are in agreement with the 2D
simulations of Glasner (2008) using a reduced-order model that suggest the dominance
of the coalescence mechanism.

5.3. Coarsening statistics

The statistics of the coarsening process for (i) the spinodal regime, h̃0 = 4δ (for
both constant and height-dependent surface tension models as well as the classical
stochastic thin-film equation with thermal noise) and (ii) for the mixed-mode
instability regime h̃0 = 10δ (for the constant surface tension model) are shown in
figure 14. In the spinodal regime, the number of drops follows the scaling N ∼ t̃−2/5

in time (figure 14a) as computed by Glasner & Witelski (2003); incorporating the
height dependence of surface tension does not alter this scaling. Introducing thermal
noise does not affect the scaling either – an observation that is consistent with recent
studies (Nesic et al. 2015). In the mixed-mode instability regime (h̃0 = 10δ), fewer
drops form, so our simulations have limited statistics and do not clearly reach the
self-similar intermediate regime (Gratton & Witelski 2009), but it seems that the
results for this case are also in general agreement with the t̃−2/5 scaling (figure 14a).
Due to mass conservation, it is easy to show that the mean width of drops should
then follow the scaling t̃1/5, as shown in figure 14(b). An interesting feature of the
variation of the mean width in time, particularly at late times, is the jumps observed
as smaller drops shrink and feed into the larger drops.

As argued above, the thin-film evolution equation predicts a monotonically
decreasing free energy for the system (equation (5.1)). We can further check this
by looking at the variation of the numerically calculated total energy of the system
Et ≡ Γ =

∫
f̃ (h̃) + (κ̃/2)(h̃x)

2 dx̃. In agreement with the predictions of Otto et al.
(2006), we find a t̃−1/5 scaling for the decrease of the free energy (figure 14c). An
interesting observation here is that for the thicker film of h̃0 = 10δ, we observe a
lower total free energy at early times that later converges to the t̃−1/5 scaling. To
understand the reason behind the difference at early times, it is instructive to look at
the typical variation of the different components of the free energy during the entire
dewetting process, as shown in figure 14(d). Here, Eb =

∫
f̃ (h̃) dx̃ is the bulk free
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FIGURE 14. (Colour online) Coarsening statistics; red circles and squares correspond to
the classical model with h̃0=4δ and h̃0=10δ, respectively; blue diamonds show the results
of the new model with h̃0 = 4δ; green stars correspond to the stochastic thin-film model
with h̃0 = 4δ. (a) Evolution of the number of drops in time shows the scaling t̃−2/5 as
suggested by Glasner & Witelski (2003). (b) Evolution of mean width of drops in time;
as expected from conservation of mass and the scaling of the number of drops in time,
the mean width scales as t̃1/5 in time. (c) Evolution of the total energy in time shows
a decrease in the energy with coarsening with a scaling of t̃−1/5, which is expected for
the 1D case (Otto, Rump & Slepcev 2006); the h̃0 = 10δ case results in fewer drops
upon dewetting, therefore the majority of the domain is covered by the equilibrium film,
which means the initial energy is lower than the h̃0= 4δ case; at long times the dynamics
becomes self-similar and both follow the same scaling. (d) Evolution of the bulk Eb,
interfacial Ei and total Et = Eb + Ei energies for a typical simulation (here h̃0 = 4δ and
height-dependent surface tension model); at short times, creation of drops increases the
interfacial energy, but the total energy is still lowered due to the reduction in the bulk
energy; at long times, as drops coarsen, both the bulk and interfacial energy contribution
decrease.

energy and Ei =
∫
(κ̃(h̃)/2)(h̃x)

2 dx̃ is the interfacial energy. As an initially uniform
film becomes unstable, it must increase the interfacial energy to dewet and create
droplets. This increase in the interfacial energy, however, is compensated by the
reduction in the bulk free energy as the ultrathin films connecting the drops are in
their near-equilibrium states. The drops connected by these ultrathin films, however,
are only metastable and, after a long intermediate plateau state, the system starts
lowering its total energy through coarsening, which lowers both the interfacial energy
as well as the bulk free energy due to the creation of new ultrathin films. With this
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observation in mind, we can now go back to figure 14(c); here, the thicker film
(h̃0 = 10δ) leads to the formation of fewer drops upon dewetting, meaning lower
interfacial and bulk free energies in the mixed-mode instability regime compared to
the spinodal regime (formation of fewer drops means a higher fraction of the total
surface is covered by the ultrathin films that have a lower bulk free energy). This is
why, right after dewetting, the thicker film case h̃0 = 10δ leads to a lower total free
energy compared to the h̃0 = 4δ case in the spinodal regime. At long times, however,
as the coarsening sets in, the dynamics become self-similar and the total system
energies per unit length of the substrate corresponding to the different regimes all
collapse on top of each other.

5.4. LSW mean-field description of coarsening: self-similar drop-size distribution
In the late stages of a first-order phase transition of a binary alloy mixture, Ostwald
ripening is quite common (Ostwald 1897; Siggia 1979; Voorhees 1985). The curvature
dependence of the chemical potential leads to a flow from higher-curvature regions
(smaller clusters) to lower-curvature regions (larger clusters). The result of this
coarsening is a decrease in the total interfacial energy of the system. Lifshitz
& Slyozov (1961) were the first to place experimental measurements of Ostwald
ripening within a consistent theoretical framework: they considered a spherical
cluster in a supersaturated solution and developed a mean-field description for the
evolution of the size of the cluster at long times, 〈r(t)〉 ∼ t1/3. This scaling is an
intermediate-asymptotic behaviour (Barenblatt 1996) for a quasi-steady system in
isolation, i.e. the interactions with other clusters are neglected, so it is expected
to hold in the limit of dilute solutions. Lifshitz & Slyozov (1961) originally
assumed the transport in the medium to be diffusion-dominated; later, Wagner (1961)
independently studied the Ostwald-ripening process and considered the case where
the attachment/detachment of particles from the clusters is the rate-limiting factor
and derived a scaling 〈r(t)〉 ∼ t1/2. Apart from the mode of mass transport considered,
the two theories are essentially the same and are known as the LSW model for
coarsening (Kahlweit 1975). An alternative generalized view of the same problem is
to consider all the clusters of size greater than rc∼ tβ to grow and all with a smaller
size to shrink, where β = 1/3 in the diffusion-dominated case and β = 1/2 in the
attachment/detachment-dominated case.

Theories of LSW type appear in many diverse phenomena, such as stability of
emulsions (Imhof & Pine 1997; Taylor 1998; Bibette, Calderon & Poulin 1999; Solans
et al. 2005; Gupta et al. 2016), droplet-size distribution in liquid jet fragmentation
(Eggers & Villermaux 2008), coarsening of granular clusters (Aranson & Tsimring
2006), phase separation in polymer blends (Geoghegan & Krausch 2003), growth
of silicone nanowires (Schmidt, Wittemann & Gösele 2010), quantum dots (Liu &
Risbud 1990), growth of nanoparticles in colloidal solutions (Talapin et al. 2001), and
grain growth in thin films (Thompson 1990), or even loss of electrocatalyst coating
in low-temperature fuel cells (Shao-Horn et al. 2007). There is a close connection
between the LSW theory and coarsening of drops connected by thin films. The
drops formed upon dewetting are in a metastable quasi-equilibrium configuration, so
one can treat a droplet connected to a near-equilibrium film in isolation from the
other drops. The transport through the surrounding thin film is diffusion-dominated,
since curvature becomes negligible in the film. Diffusion here is set by the interface
potential and mobility reaches a constant value set by the film thickness, so the
transport between droplets can formally be written as a diffusion equation similar to
the LSW theory.
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At long times, the clusters or drops follow a size distribution function F(r, t̃), or
equivalently F(m, t̃), where m=

∫ w̃
−w̃ h̃ dx̃ is the mass of a 1D drop, which satisfies the

following continuity equation (Voorhees 1985; Gratton & Witelski 2009):

∂F(m, t̃)
∂ t̃

+
∂

∂m
(F(m, t̃)v(m))= 0, (5.3)

where v(m)= dm/dt̃ determines the flux of particles. The number of drops can then
be related to the distribution function as N=

∫
∞

0 F(m, t̃) dm. The problem then reduces
to defining the flux v(m). Gratton & Witelski (2009) showed that an equivalent LSW
mean-field model can be defined for a system of drops, where a drop is considered
to be at a mean distance L̄(t̃) = L/N(t̃) from two neighbouring drops of mass m∗;
since the mass transport between the drops takes place through the ultrathin films
with nearly zero curvature connecting them, the transport through the films becomes
purely diffusive and its dynamics can be approximated as ∂ h̃/∂ t̃∼ ∂2/∂ x̃2(V(h̃)), where
dV/dh̃= h̃3 d2 f̃ /dh̃2 (Glasner & Witelski 2003). The mean flux between the drops can
then be approximated as v(m)= 2(V(m∗)− V(m))/L̄, where the mean-field potential
is defined as V(m∗(t̃))= (1/N)

∫
∞

0 V(m)F(m, t̃) dm. The non-locality in this mean-field
description comes from the mean quantities L̄ and m∗, both of which evolve in time.
At long times, we expect the distribution of the drop sizes to become self-similar, for
which we can postulate F(m, t̃) = g(m/m∗)/t̃α and m∗ = ct̃β . Using conservation of
mass, one then arrives at the following ODE for the self-similar distribution function
g(z) (Gratton & Witelski 2009):

dg
dz
=

(
27/2− 8z3/2

4z5/2 + 27z(1−
√

z)

)
g, (5.4)

where 0 6 z≡ (m/m∗)6 9/4, and the solution of the above equation can be obtained
in the analytical form to be g(z)= C(

√
ze2/(−3+2

√
z))/((3− 2

√
z)28/9(3+

√
z)17/9) with

C ≈ 70 as a normalization constant. From the conservation of mass, one can further
find m∗ ≈ 0.846m̄ (with m̄ = Mtot/N(t̃) being the total liquid mass divided by the
instantaneous number of drops), which separates growing and shrinking drops, i.e.
v(m∗) = 0. This mean-field treatment is expected to hold in the dilute limit, where
local interactions between drops can be neglected and each drop only interacts with
a background field.

The normalized distribution of the droplet mass (〈F(z, t̃)/N(t̃)〉 > with z = m/m∗)
in the self-similar intermediate regime, where the LSW model is applicable is shown
in figure 15. The results of the simulations closely follow (5.4) (solid line) for small
droplets. The close agreement we observe between the classical and new models,
as well as in the presence of thermal fluctuations, indicates that in the self-similar
coarsening regime the details of the thin-film interfacial dynamics are not critical. For
larger-size droplets, i.e. z> 1 (m>m∗), however, we do observe deviations from the
LSW model. While some deviations have also been observed by Gratton & Witelski
(2009) in their dynamical system treatment of coarsening, and it is a known issue in
the LSW model, there is a distinct skewness in the distribution of the droplets in the
new model. The long tail observed in the distribution of droplet sizes in our model
has also been reported in some experiments and Monte Carlo models of thin-film
coarsening (Lo & Skodje 2000; Limary & Green 2002, 2003; Green 2003; Meli &
Green 2008; Woehl et al. 2014) and is typically associated with coarsening through
coalescence. This type of drop-size distribution is modelled with the Smoluchowski
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10 2 3

z

0

1

FIGURE 15. (Colour online) Droplet mass distribution for the spinodal regime with h̃0 =

4δ obtained from ensemble averaging of 10 realizations in domains of size 250λm with
z=m/m∗; vertical lines show the error bars computed from the standard deviation of the
10 realizations; red squares represent classical model with a constant surface tension; green
diamonds represent the stochastic thin-film model; blue circles represent the new model
wth height-dependent surface tension; the solid line represents the mean-field LSW theory
(5.4); the dashed line represents the Smoluchowski distribution (5.5).

equation (Smoluchowski 1917; Sholl & Skodje 1996; Lo & Skodje 2000; Eggers &
Villermaux 2008):

g(z)=
(

dW(Wz)d(α+1−1/d)

Γ (α + 1)

)
e−(Wz)d , (5.5)

where W = Γ (α + 1+ 1/d)/Γ (α + 1) with Γ the gamma function, and d represents
the dimension of the system. When mass transport is dominated by diffusion around
the periphery of the droplet, α = 3/2; when diffusion away from the boundaries is
the dominant transport mechanism, α = 1; and when evaporation–condensation in the
periphery of the drops is the main transport avenue, α = 1/2 (Lo & Skodje 2000).
Here, we find the best fit for the tail of the distribution in a 1D system of droplets
is obtained for the periphery-diffusion-dominated case with α = 3/2. It is interesting,
however, that the change in the tail of the drop-size distribution in our model is not
associated with a change in the coarsening mechanism, i.e. Ostwald ripening remains
the dominant coarsening mechanism (figure 10); perhaps, it is the lower lateral motion
of the larger-size droplets that leads to the asymmetry in the distribution. While our
1D simulation results cannot be directly compared with the experiments, the long-
tailed distribution in our model calls into question whether the reported distributions
in the experiments are uniquely a signature of the coalescence-dominated coarsening,
and this motivates further detailed experimental observations.

6. Conclusions
We have shown, using a consistent thermodynamic framework, that the intermolec-

ular forces between liquid–gas and liquid–solid interfaces of a thin film in the
partial-wetting regime lead to an expression for the system free energy with a
height-dependent surface tension. In the long-wave approximation, this free energy
resembles the Cahn–Hilliard formulation for the free energy of binary alloys (Cahn
& Hilliard 1958). We have shown that this new form of free energy leads to a
generalized disjoining pressure that is consistent with recent calculations (Dai et al.
2008).
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Using our model, we have revisited the dewetting and coarsening of thin liquid
films on solid substrates in the partial-wetting regime. We have first shown that the
equilibrium droplet solutions obtained in the new model have compact support and
meet the contact line with a non-zero equilibrium angle, whereas equilibrium droplets
in the classical model only asymptotically meet the surrounding precursor film with a
zero angle. While the classical model cannot admit solutions without a precursor film
(Brenner & Bertozzi 1993), our model does not require the precursor film, allowing
us to recover the true partial-wetting regime (Brochard-Wyart et al. 1991).

Analysing the stability of uniform liquid films, we have shown that in the spinodal
dewetting regime, our model predicts a faster growth rate βm for the most unstable
mode, and a smaller corresponding instability wavelength λm than those predicted by
the classical model with a constant surface tension. While the instability wavelength
is only weakly dependent on the height dependence of the surface tension, we have
shown that the instability growth rate can be up to six times faster than the predictions
of the classical model. This faster growth rate brings the theoretical predictions closer
to the experimental observations (Becker et al. 2003).

Experimental observations by Limary & Green (2003) indicate a crossover in
the coarsening from Ostwald-ripening-dominated to coalescence-dominated as the
film thickness increases. They infer the coarsening mechanism from the droplet-size
distribution, i.e. they associate the Ostwald ripening and coalescence processes with
LSW-type and Smoluchowski-type distributions, respectively (Limary & Green 2002,
2003; Green 2003). Our nonlinear simulations of the dewetting and subsequent
coarsening on large domains L ∼ 100λm have shown that the coarsening process at
intermediate times becomes self-similar (Glasner & Witelski 2003) and independent
of the details of the models used, i.e. we observe the same scalings for the classical
model (with and without thermal noise) and in our new model with height-dependent
surface tension. We have shown that the crossover reported in the experiments cannot
be observed in 1D simulations of the thin-film equation. This is in contrast to
the predictions of Glasner & Witelski (2005), who used a reduced-order model of
thin-film equation and predicted a crossover. As the thickness of the initial uniform
film increases, the instability mechanism changes from spinodal (i.e. equally distanced
droplets after dewetting) to nucleation (i.e. randomly spaced droplets). This change
in the instability mechanism is a result of the competition of two time scales: the
growth rate of the instability, which scales as βm ∼ h̃−5

0 , versus the rate of lateral
expansion of dewetted holes (Thiele et al. 2001a; Diez & Kondic 2007). This change
of instability mechanism from spinodal to nucleation prevents the crossover from
Ostwald-ripening-dominated to coalescence-dominated coarsening. We have also
shown that while thermal noise enhances lateral motion of droplets, it does not
lead to a crossover in the coarsening mechanism. We therefore conclude that the
crossover observed in the experiments is a result of the 2D nature of the experiments
versus the initial 1D simulations presented here and in earlier studies. To investigate
this hypothesis, we have conducted 2D nonlinear simulations, which indeed indicate
the dominance of coalescence events at early times following the dewetting, and a
crossover to Ostwald ripening at late times in the coarsening process.

We also have shown that the droplet-size distribution in the self-similar coarsening
regime follows a LSW-type distribution (Lifshitz & Slyozov 1961; Wagner 1961;
Voorhees 1985; Gratton & Witelski 2009) and becomes model-independent, at least
for small droplets. For larger drops, we have found that the new model leads to
a long-tailed drop-size distribution, which follows the Smoluchowski equation (5.5)
in 1D for peripheral-diffusion-dominated transport. Our observation of a skewed
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distribution associated with an Ostwald-ripening-dominated coarsening calls into
question the associations made before between the long-tailed distribution and
coalescence-dominated coarsening in the earlier experiments (Limary & Green 2002,
2003; Green 2003), and motivates further detailed experimental observations.

An important open question is how to characterize the predicted height dependence
of surface tension in typical dewetting experiments. As we have shown, the charac-
teristic instability wavelength, which is most readily observed in the experiments, is
only weakly dependent on the height dependence of surface tension, and perhaps not
a reliable indicator. The instability growth rate, however, varies more significantly
due to the height dependence of surface tension, and could serve as a distinguishing
factor. Experimental measurements of growth rate are exceptionally challenging,
particularly in the spinodal regime and for very thin liquid films for which the height
dependence of surface tension becomes relevant. Further, the viscosity of thin polymer
films changes drastically from its bulk values due to a shift in the glass transition
temperature (Herminghaus, Jacobs & Seemann 2001), making it potentially difficult
to distinguish the consequences of the changes in surface tension from those of the
changes in viscosity. Spreading of droplets in the partial-wetting regime can therefore
serve as an alternative test for the height dependence of surface tension; we have
shown that our new model allows investigations of the spreading process without
the need for precursor films (Pahlavan et al. 2015). Visualization of the contact-line
motion at micro/nanoscales (Chen, Yu & Wang 2014; Qian, Park & Breuer 2015;
Deng et al. 2016; McGraw et al. 2016) could therefore lead the way in refining and
validating models for interfacial flows.
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