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The emergence of scaling in transport through interconnected systems is a consequence of the topological
structure of the network and the physical mechanisms underlying the transport dynamics. We study transport
by advection and diffusion in scale-free and Erdős-Rényi networks. Velocity distributions derived from a flow
potential exhibit power-law scaling with exponent ���+1, where � is the exponent of network connectivity.
Using stochastic particle simulations, we find anomalous �nonlinear� scaling of the mean-square displacement
with time. We show the connection with existing descriptions of anomalous transport in disordered systems,
and explain the mean transport behavior from the coupled nature of particle jump lengths and transition times.
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An overarching challenge in network science is the study
of the dynamics of processes that take place on complex
networks, which describe the topology of many intercon-
nected systems in nature and society �1–5�. Network theory
provides a framework to understand—and possibly optimize
and control—dynamic phenomena as diverse as data ex-
change �6�, epidemics and spreading of mobile agents �7�,
fluxes in metabolic networks �8,9�, or the spatial dynamics of
humans and goods through transportation systems �10,11�.

Recent work has led to fundamental advances in our un-
derstanding of flow and transport properties of complex net-
works. These include the analysis of the conductance be-
tween two arbitrarily chosen nodes in scale-free or Erdős and
Rényi �E-R� networks �12�—an analysis that has been ex-
tended to the case of multiple sources and sinks �13,14� and
to weighted networks �15�. The dynamics of spreading
through scale-free networks have been studied by means of
diffusive random walks �9,16–19�, which have led to scalings
for the mean first passage time �MFPT� in terms of network
centrality �16� and modularity �9�. Studies to date leave
open, however, the question of how directional bias impacts
transport. Bias or drift occurs naturally in many network sys-
tems, including advection from a flow potential �12�, agent
spreading in topologies with sources and sinks, such as util-
ity networks �20� and freely diffusing molecules in tissue
�21�, and tracer diffusion in suspensions of swimming micro-
organisms �22�.

Here, we study the scaling properties of physical transport
in scale-free and Erdős-Rényi networks. The fundamental
question is whether the topology of the network, the under-
lying physical mechanisms, or both, control the scaling prop-
erties of transport in complex networks. Transport is physical
in the sense that, as observed in most natural settings, the
spreading process is conservative and driven by the interplay
between advection—which derives from a flow potential—
and diffusion, which we model through random walks. We
show that advection leads to anomalous �non-Fickian� trans-
port, as evidenced by the nonlinear time scaling of the mean-
square displacement �MSD� of tracer particles migrating
through the network. The simulation results suggest that a
mean-field theory such as continuous time random walk

�CTRW�, which describes transport from a joint probability
distribution of particle jump lengths and transition times
�23–26�, may be used to capture the average transport behav-
ior. We show that coupling between space and time �27,28� is
essential to describe advective transport in a complex net-
work.

We construct scale-free networks, characterized by a
power-law connectivity distribution, P�k��k−�, where k is
the number of links attached to a node and � is the charac-
teristic exponent of the network, with 2���4.8. We gener-
ate graphs following the Molloy-Reed scheme �29�. Given
the size of the network �N nodes�, the degree exponent �,
and fixing the minimum degree to be kmin=2, we use the
relations from Aiello et al. �30� to obtain the degree sequence
from a power-law distribution. We then produce a list of ki
copies of each node i and attach links between nodes by
randomly pairing up elements of this list until none remain.
We disallow double links, as well as self-linked nodes. This
algorithm generates networks of excellent accuracy for arbi-
trary exponents � even for relatively small network sizes. We
generate an Erdős-Rényi network by attaching a link to each
pair of nodes with probability p=0.01. We assume for sim-
plicity that the nodes in our model network are uniformly
spaced in the unit square �Fig. 1�. The positioning of nodes
on a square lattice is an idealization of networks with spatial

*juanes@mit.edu

P=1 P=0

x

y

O
U
TF
LO

W

IN
FL
O
W

FIG. 1. �Color online� Schematic representation of our model
network. Nodes are distributed uniformly on the unit square. Their
connectivity �represented by node diameter� follows a power-law
distribution. Flow through the network derives from a potential P
that varies between 1 �left boundary� and 0 �right boundary�.
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embedding that exhibit power-law connectivity, including
power and distribution networks �20� and transportation and
biological systems �31�. Networks embedded in metric
spaces often exhibit a decay of nodal connectivity with dis-
tance �32,33�—we have not included this distance-dependent
connectivity in our study which therefore allows for long-
ranged links.

Flow through the network is driven by a scalar �potential�
field and satisfies conservation of mass. At every node i we
impose � juij =0, where uij is the flux through the link con-
necting nodes i and j. The fluxes are given by

uij = − �ij
Pi − Pj

dij
, �1�

where Pi and Pj are the flow potentials at nodes i and j,
respectively, and dij is the Euclidean distance between the
two nodes. This problem is exactly analogous to the electric
conductance model of �12–15�, except that in our model the
relation between velocity and potential difference is modu-
lated by the inverse of link length. Here, we assume that the
conductivity is the same for all links and takes a value �ij
=1. To elucidate the essential mechanisms governing trans-
port, we study a simple setting of flow from left to right by
fixing the potential P=1 at the inflow nodes �left boundary�,
and P=0 at the outflow nodes �right boundary�. Flow is con-
fined between the top and bottom boundaries. Inserting the
flux equation �Eq. �1�� into the mass conservation condition
at each node, and imposing the boundary conditions, leads to
a linear system of algebraic equations to be solved for the
flow potential at the nodes, �Pj	, which are stationary and do
not evolve in time. This system of equations is solved with a
direct solution method such as Gaussian elimination.

For different values of the degree exponent �, the distri-
butions of nodal potential collapse in the range P
� �0.4,0.6� �Fig. 2�a��. Within this range, the flow potential
seems to be normally distributed �dashed line�. The velocity
at the links, u, follows a distribution that exhibits a power-
law tail �Fig. 2�b��. In the range �� �2,3.2�, the exponent of
the velocity power-law distribution is well approximated as
���+1 �Fig. 2�b�, inset�. As a consequence of this behavior,

a slower decay in network connectivity �smaller �� results in
increased probability of observing large velocities at the
links. Interestingly, the flow potential distribution for a ran-
dom �Erdős-Rényi� network has a very different shape from
that of scale-free networks, yet it also leads to a power-law
tail distribution of the link velocities. Note that for a regular
lattice, the distribution of flow potentials is uniform, and the
distribution of velocities is a double Dirac delta function.

We investigate the scaling properties of transport in scale-
free networks through stochastic particle simulations. This
allows us to explore the transition between the purely diffu-
sive and advective regimes. Particles move along the links of
the network according to the local advective velocity field
obtained from the steady-state potential solution, together
with an additional random diffusive component sampled
from a Gaussian distribution:

XN+1 = XN + �XN, �2�

�XN = uij�t + 
2D�t� , �3�

XN+1 � 0, �4�

where X denotes the coordinate along the link, D is the dif-
fusion coefficient, and �=N�0,1�. At t=0, we inject particles
at random at the inflow nodes. A particle located at node i at
a given time step chooses one of the outgoing links to “walk”
on it. Link selection is performed at random, with probability
that is linearly proportional to the magnitude of the link ve-
locity. The term outgoing refers here to links with velocity
vectors pointing from the initial position of the particle �node
i�, to the destination connected nodes. Constraint Eq. �4�
forces particles walking on a link ij to stay on it until they
reach the destination node j. Particles are removed when
they reach the outflow nodes.

The key parameter in this stochastic process is the ratio
between advective and diffusive jump lengths, A= ū�t


2D�t
,

where ū is the characteristic velocity at the links. This com-
putational quantity plays the role of the Péclet number �Pe

= ūd̄ /D� in physical fluid flow, where d̄ is the characteristic
length of the links. The purely advective and diffusive limits
correspond to A→� and A=0, respectively. A second com-

putational parameter is 	= ū�t / �Ad̄�, which measures the ef-
fect of the boundary constraint Eq. �4�. By fixing the value of
	, we impose a constant ratio between the number of advec-
tive jumps affected by the constraint, and the average num-
ber of jumps needed for a particle to move from one node to
another. This permits a rigorous interpretation of the results
from particle tracking simulations. We analyze the Euclidean
MSD, also known as dispersion, or variance of the particle
plume, in the direction of the mean flow: �
x2�t��= �x2�t��
− �x�t��2, where � · � denotes averaging over all the particles.

In the advective limit �A�1, 	�1�, the MSD follows a
power law at early times, �
x2�t��� t, and then saturates
due to finite size effects �Fig. 3, inset�. We compute the scal-
ing exponent  in the preasymptotic regime for scale-free
networks with different exponents �, as well as for an E-R
network. Our simulations show that advection-dominated
transport on scale-free networks is anomalous and exhibits
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FIG. 2. �Color online� �a� Pressure distributions, ��P�, for
scale-free networks with different degree exponents, �, as well as
for an E-R network. The dashed line is a Gaussian fit with mean

P̄=0.5 and standard deviation �P�0.08. We use networks of size
N=8100 nodes, and the results are averaged over 250 realizations.
�b� Velocity distributions, ��u�, for different network types. Inset:
exponent � of the velocity distribution power-law tail plotted
against the connectivity exponent �� �2,3.2�; shown also is a least-
squares linear interpolation �= �0.99�0.02��+ �1.03�0.05�.
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superdiffusive behavior, �1 �Fig. 3�. The exponent  in-
creases monotonically with �. For large �, it asymptotically
reaches the ballistic limit, =2.

The scaling properties of transport in scale-free networks
depend on the relative dominance between advective and
diffusive mechanisms �Fig. 4�. We perform simulations vary-
ing the ratio between the advective and diffusive jump
lengths by controlling the value of parameter A. For small
values of A, transport is governed by diffusion, while for
large values advection dominates. The scaling exponent of
the MSD increases monotonically with A. This implies a
transition from the normal scaling �=1� of purely diffusive
transport, to anomalous scaling ��1� in the advection-
dominated limit. The asymptotic value of  as A→� is con-
trolled by the topology of the network �Fig. 3�.

The observed scaling can be understood within the CTRW
framework �23,24,34�. The problem setup is essentially one-
dimensional �1D� because flow is from left to right, so the
key question is to ascertain how the topology of the network
affects spreading in the direction of mean flow. CTRW as-
sumes that the statistics of particle spreading can be fully
characterized by a joint probability distribution, ��� ,��, of
particle jump lengths, �, and waiting time between jumps, �,
whose marginal distributions ���� and w���, respectively,
can be derived by integration. It is well understood that
broad distributions of jump lengths or transition times may
lead to anomalous transport �23,24,34�. To test the ability of
CTRW to describe transport in scale-free networks, we per-

form 1D random walks by sampling the empirical joint dis-
tributions ��� ,�� recorded from our network simulations. In
the advection limit, the jump length can be represented by
the length of the link, d. Since the network is restricted to a
finite domain, d is bounded and is found to be well approxi-
mated by a Kumaraswamy distribution. In contrast—and due
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FIG. 4. �Color online� Purely diffusive transport �A�1� in
scale-free networks leads to linear scaling of the mean-square dis-
placement ��1�. As A increases, we observe a transition from
normal transport to anomalous transport, with scaling exponents, ,
that reach different asymptotic values in the superdiffusive regime,
depending on the network topology �Fig. 3�. We use networks with
N=8100 nodes, fixed 	=0.04, and 3000 particles. Simulation re-
sults are averaged over 100 realizations.
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FIG. 5. �Color online� �a� Marginal distribution of waiting times
for advection-dominated transport and different scale-free networks.
Insets: joint distribution ��d ,�� for two different scale-free net-
works ��=2.0 and 4.8�. Bright red color corresponds to high value
of ��d ,��. Link length and transition time exhibit strong coupling
for �=2.0, for which the joint distribution collapses around the
scaling ��d2. The results are for network size N=8100 nodes and
over 300 realizations. �b� MSD for coupled and unidirectional
CTRW, using data from different network types. Bottom-right inset:
MSD for coupled and uncoupled biased, 1D CTRW. Top-left inset:
MSD from network simulations compared with the results from 1D
coupled CTRW, and 1D RW with back-flow and linear interpolation
along the jumps. By backflow we mean that the velocity along links
in the network simulations is predominantly in the positive x direc-
tion, but the flow is “backward” for some links. The 1D random-
walk simulations with backflow are based on taking a fraction of
the jumps in the negative x direction, to better approximate the
actual 2D network simulations. In the classical CTRW framework,
particles are assumed to ‘wait’ at a given location until they jump to
a new one. By interpolation we mean that we post-compute the
MSD at a given time as if the particles had experienced a constant
velocity between jumps—a behavior that more closely resembles
the setting of the 2D particle tracking network simulations.
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FIG. 3. �Color online� The particle MSD follows a power law in
time during early times, before it is influenced by boundary effects
�inset�. The main plot shows the scaling exponent  of the particle
MSD, for advection-dominated transport �A�1� in scale-free net-
works, plotted against the connectivity degree exponent �. Trans-
port is anomalous and falls in the superdiffusive regime ��1�.
Shown also are the values of  for an E-R network—for which
transport is also superdiffusive—and a regular lattice–for which
transport is normal, =1. We use networks with N=8100 nodes and
set A=7 and 	=0.0014. We use 3000 particles and we average over
100 realizations. Within each realization, we construct the network,
solve the flow potential equation, and advance particles by advec-
tion and diffusion, according to the flow field from the potential
solution. This makes our model significantly more computationally
expensive than the diffusive random-walk algorithms of �17,18�, in
which a walker jumps directly from node to node. We have con-
firmed that our results are independent of network size for N
�6000.
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to the broad-ranged velocity distributions—the transition
times between connected nodes, �=d /u, exhibit a wide range
distribution with power-law tail, w�����−�1+�� �Fig. 5�a��,
where ��1.9 for all degree exponents �. In the case of de-
coupled CTRW ���� ,��=����w���� in an infinite lattice un-
der a bias, we would expect an asymptotic late-time scaling
of the MSD, �
x2�t��� t1.1 �24,26,35�, in contrast with the
observed scalings �Fig. 3� �36�. The lack of quantitative
agreement between decoupled CTRW and the scaling ob-
served in our network simulations highlights the importance
of the coupling between jump length and waiting time �Fig.
5�a�, insets� in the MSD, especially at early times �Fig. 5�b�,
bottom-right inset�. A 1D coupled CTRW qualitatively re-
covers the monotonic increasing trend of the scaling expo-
nent  as a function of � �Fig. 5�b��. Quantitative agreement
requires introducing additional information from the network
simulations, such as the possibility of backflow, and linear
interpolation of the particle positions between jumps �Fig.
5�b�, top-left inset�. The transition to normal transport for
small � �Fig. 3� is consistent with the convergence of the
joint distribution of jump lengths and transition times toward
the geometric limit ��d2 �Fig. 5�a�, top-left inset�. This un-

expected diffusionlike scaling, whose origin appears to lie in
the existence of very well connected nodes, is responsible for
bounding anomalous transport behavior.

The nonlinear scaling of spreading with time suggests that
transport processes in complex networks are much faster
than previously estimated using purely diffusive random
walk models that neglect advective fluxes. In the presence of
advection, the topology of the network plays a central role in
the spreading dynamics, while for diffusion-dominated pro-
cesses the scaling of spreading with time is independent of
network connectivity. Our interpretation in terms of transi-
tion times links transport in complex networks with well-
established models of effective transport through disordered
systems, and opens the door to aggregate conceptualizations
of biased transport processes in scale-free networks.
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