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Public policy and individual incentives determine the patterns of human

mobility through transportation networks. In the event of a health emer-

gency, the pursuit of maximum social or individual utility may lead to

conflicting objectives in the routing strategies of network users. Individuals

tend to avoid exposure so as to minimize the risk of contagion, whereas pol-

icymakers aim at coordinated behaviour that maximizes the social welfare.

Here, we study agent-driven contagion dynamics through transportation

networks, coupled to the adoption of either selfish- or policy-driven

rerouting strategies. In analogy with the concept of price of anarchy in

transportation networks subject to congestion, we show that maximizing

individual utility leads to a loss of welfare for the social group, measured

here by the total population infected after an epidemic outbreak.
1. Introduction
Users of transportation networks adapt their routing strategies in response to

public health emergencies. Changes in the patterns of individual mobility [1–3]

are elicited by awareness of the presence of the disease in nearby areas, or imposed

by the decisions of policymakers. In an abstract sense, rational travellers adjust their

paths to maximize an individual utility function, which depends on travel time

and perceived exposure to contagion risk. By contrast, policymakers attempt to

enforce coordinated routing strategies that maximize the social welfare. Policy-

driven routing, which is part of the so-called non-pharmaceutical interventions,

may significantly reduce the frequency of infectious contacts, containing the trans-

mission of diseases such as influenza [4]. Among other factors, the societal utility

function includes measures of the total number of affected individuals, the spatial

footprint of the infection, the costs of prophylaxis, vaccination and treatment, and

the public perception of risk and comfort. The spread of the disease and the adop-

tion of self-initiated or coordinated rerouting strategies are strongly coupled.

Intuitively, the patterns of mobility through commuting networks modify the

dynamics of the contagion process [5]. Conversely, the dynamics of the disease

affect the public perception of the emergency, and determine both the difficulties

of implementing the policy and the individual incentives to reduce the risk of

being exposed to the disease.

Research on the efficiency of transportation networks subject to congestion

demonstrates that routing strategies aimed at maximizing individual utility

often lead to a loss of welfare for the social group as a whole [6–8]. Humans

tend to follow shortest-path routes that formally minimize their travel times,

but these selfish strategies may not yield the social optimum, in the sense that

the average travel time increases (Pigou’s example [6]). Selfish routing also

leads to the counterintuitive effect that network improvements may degrade net-

work performance (Braess’ paradox [6]). These and other paradoxical scenarios

raise a social dilemma between the pursuit of maximum individual utility and

the search for social welfare. Within the framework of game theory, the best

options for individual users yield a Nash equilibrium, not necessarily a social

optimum [7,9,10]. The ratio of the total cost of the Nash equilibrium to the

total cost of the social optimum is commonly referred to as the price of anarchy

[10,11], indicating the inefficiency of decentralization [6,7], and the loss of social

welfare due to the selfish behaviour of agents in the system.
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Figure 1. Pictorial illustration of the network model. (a) The three routing strategies studied in the model. An individual who is not aware of the disease travels to
the destination through the shortest path. An aware individual that follows the coordinated routing and is located at an infected node is banned from visiting
healthy nodes, and follows an ‘infected path’. An aware individual that adopts a selfish routing travels to its final destination following a ‘healthy path’. (b) The two
contagion processes in the network—disease spreading and adoption of rerouting behaviour. The disease propagates via individual exchanges between the nodes
(curved arrows), whereas awareness is adopted by non-aware nodes through topological diffusion (straight arrows). (Online version in colour.)
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Here, we extend the concept of price of anarchy to

mobility-driven contagion dynamics. We study the influence

of rerouting, elicited by individual awareness or imposed by

public policy, on the dynamics of contagion through transpor-

tation networks. We assume that when individuals are aware

of the outbreak and allowed to choose their route from origin

to destination, they tend to avoid traversing areas where the dis-

ease has been detected. Policymakers, by contrast, strive to

enforce coordinated mobility patterns where individuals are

segregated according to their health state, thus minimizing the

number of infectious contacts. We measure social welfare

through the density of infected populations, and define the

price of anarchy as the loss of welfare due to selfish rerouting,

compared with the policy-driven coordination.

The spread of individual awareness and the adoption of

policy emerge as central drivers of behavioural change. The

role of awareness, understood as knowledge that individuals

are willing to act upon [12], has been previously studied in

the context of network science, both as a mechanism that

reduces susceptibility, and therefore infection rates [12,13–16],

and as the trigger of self-initiated behavioural changes [17].

Meloni et al. [17] analysed the impact of selfish rerouting on

mobility-driven epidemic spreading. In their model, individ-

uals, with a certain probability, avoid traversing infected

areas rather than following the shortest path to their destina-

tion. Their numerical simulations suggest that individual

behavioural changes aimed at slowing down and containing

the epidemic may give rise to the opposite effect. In particular,

they show simulations where the invasion threshold does not

seem to change in spite of rerouting, and the size of the

outbreak depends non-monotonically on the traffic through

the system; for low traffic, rerouting has a positive effect on

the global outbreak, whereas for high traffic, it increases the

number of affected nodes.

An open problem is whether the propagation of aware-

ness or policy adoption may enhance or mitigate the impact

of an epidemic, in the context of mobility-driven contagion,

and considering different rerouting strategies. At the origin

of our study is the hypothesis that state-dependent routing

behaviour, elicited by propagating awareness, exerts a

powerful feedback on the contagion process, potentially

impacting the invasion threshold and controlling the density

of infected populations at long times. The policy question we

want to address is whether the authorities should act to
strictly enforce coordinated mobility strategies in the event

of an outbreak, or individuals may be allowed to reroute

freely without significant losses in social welfare. We test

our hypothesis, and discuss its policy implications, through

mean-field theories and Monte Carlo simulations on

synthetic and data-driven network models.
2. Results
We assume that disease spreading and the propagation of

behavioural changes share a common substrate—a commuting

or mobility network—which we model as a heterogeneous,

uncorrelated network [18,19]. The nodes of the network

represent populated areas, and the links indicate mobility

between populations. The spread of the infection is driven by

the mobility of individuals along the links connecting nodes.

Individuals travel from an origin node towards a destination

node, choosing their path according to a certain routing strategy

(figure 1).

2.1. Infection models
The mathematical epidemiology usually lies on the most

simplistic compartmental models of susceptible–infected–

recovered (SIR) and susceptible–infected–susceptible (SIS).

The SIR model framework is appropriate for infectious diseases

that confer lifelong immunity, such as measles or whooping

cough [20,21], influenza-like illness or the severe acute respi-

ratory syndrome [22–24]. The SIS model is predominantly

used for sexually transmitted diseases, such as chlamydia or

gonorrhoea, where repeat infections are common [25], as well

as for rotaviruses and many bacterial diseases [26].

Here, we are interested in the mechanisms that allow for

the spread of the disease, irrespective of the long-term

dynamics; that is, whether it will reach an equilibrium ende-

mic state (SIS) or die out after an acute infection peak (SIR).

We want to study the conditions by which the disease

spreads through the network. In that sense, we are interested

only in the early-time onset dynamics. From the perspective

of the early-time behaviour, the time and spatial scales of

the SIS and SIR models are similar.

We are interested in the mechanisms that allow for

the spread of the disease in the first place rather than in the

long-term equilibrium. In particular, we emphasize how
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the spreading process is influenced—enhanced or abated—

by mobility and behavioural factors. From a long-term, or

equilibrium, perspective, some diseases reach an equilibrium

endemic state within the population, whereas other infectious

processes die out after an acute infection peak. The former are

better modelled by the SIS model, whereas the latter are

better described by the SIR. If one adopts the goal of under-

standing the early process of disease spreading, either to

reach an endemic state or to decay, we believe that it is less

important to assume a specific late-time fate of the disease.

Hence, we choose to work the minimalistic SIS model

which allows for a more detailed analytical study of the

epidemic thresholds, but we also show that our conclusions

are relevant for diseases better described by the SIR model.
erface
10:20130495
2.2. Classical metapopulation models
The traditional approach to model disease spreading coupled

to human mobility relies on metapopulation—or bosonic—

models [17,27–30]. In metapopulation networks, each node

has an associated subpopulation of individuals. Infections,

modelled as reaction processes, take place as a result of the

interaction between individuals inside the subpopulations.

For the sake of simplicity, it is customary to neglect the

influence of internal heterogeneities, assuming full mixing,

that is, that all individuals can come in contact with all other

individuals. The infection spreads through the network

driven by the mobility of individuals, which travel to other

subpopulations in the network. In metapopulation networks,

the modeller can incorporate a high level of detail in the speci-

fication of both the patterns of individual mobility and the type

of infection/reaction process. It is also possible to include

behavioural changes elicited by feedback [17]. The main disad-

vantage of these sophisticated models is that, when they are

coupled to other processes that share the same substrate,

such as the spread of awareness about the disease, it is very

difficult to develop analytical results to quantify and rational-

ize the results observed through numerical simulation.

We use a conceptual model of traffic-driven epidemics,

originally proposed by Meloni et al. [31]. As we show later,

the model captures the relevant features of mobility-driven

disease spreading, coupled to awareness and behavioural

changes, in the sense that the results are statistically equival-

ent to those obtained with a detailed metapopulation model.

The advantage is that the simplicity of our model allows us to

derive analytical predictions, with reinforce and justify the

conclusions derived from simulation.
2.3. A conceptual, simplified model
In our model, the nodes can be in the different compartments

of the infection model, and the infection spreads from node to

node in the system through the exchange of individuals. The

model is fermionic, in the sense that the state of the node is an

aggregate variable representing the state of its population.

The mobility of individuals aims at representing the traffic

heterogeneity in the system, but individuals do not have a

particular state. Instead, they adopt the compartmental state

of the nodes they traverse. While this description is not

aimed at reproducing the detailed dynamics of human

travel and recovery from infection, it is designed to capture

the statistical signature of the coupled mobility-infection

system. Furthermore, it allows us to make progress in the
analytical description of the awareness-infection dynamics

through the heterogeneous mean-field theory.

The compartmental dynamics of the contagion process is

given by the SIS model, where nodes in the network, at any

given time, may be either infected or susceptible to the infec-

tion. A susceptible node becomes infected with rate b—the

infection rate—when it receives an individual from an

infected node. Thus, the larger the number of individuals a

healthy node receives from infected nodes, the higher the

probability for that node to become infected. An infected

node recovers from the infection, becoming susceptible

again, with rate m—the recovery rate. We assume that indi-

viduals adopt the health state of the nodes they visit,

regardless of their state at the origin or previous legs of

their trip. The total number of individuals in the system is

lN, where N is the total number of nodes in the network

and l parametrizes the intensity of traffic through the

system [31] (see Methods). The SIS model leads to a station-

ary endemic state in the limit of long times and system size

[32]; we use the density of infected nodes at steady state as

a measure of the intensity of the outbreak.

The role of network topology on epidemic spreading has

attracted much attention [28,29,31,33]. Various studies have

demonstrated the impact of connectivity through the statis-

tics of the nodal degree—number of links of a node, k—and

various measures of betweenness and centrality [30,32,

34–36]. We jointly quantify the impact of network topology

and routing strategies on the structure of traffic using the con-

cept of algorithmic betweenness of a node i, bi
alg, which is the

fraction of individual trajectories that traverse that node,

bi
alg ¼ Bi

alg/SjB
j
alg; where Bi

alg is the number of individuals

node i receives [17,31,37]. This quantity is to be understood

as a time average.

2.4. Behavioural changes: awareness, rerouting
and policy

In addition to health state, we assign a state of awareness

to each node. Awareness spreads through the network as a

simple diffusive process [33] and, similar to the infection pro-

cess, individuals adopt the awareness state of the nodes they

traverse. Commuters leaving a non-aware node follow the

shortest path between their origin and destination nodes, thus

minimizing the number of steps along their path. Commuters

leaving aware nodes change their routing strategy; we consider

a self-initiated routing behaviour, and a policy-driven, or

coordinated, strategy. In the selfish rerouting strategy, aware

individuals favour routes that avoid infected nodes, irrespective

of their own state. In the policy-driven strategy, individuals

coordinate their mobility patterns to minimize the global

impact of the outbreak. A natural strategy to reach the social

optimum is the segregation of travellers according to their

health state. Thus, healthy individuals follow routes along

which they have minimal exposure to the disease, whereas

infected individuals are banned from visiting healthy nodes.

It is important to emphasize the limits of policy-driven

strategies. Because there are costs associated with implement-

ing the policy, it may not be feasible to enforce it, in spite of

its potential benefits. Those costs are both material, due to

the resources that need to be deployed for the policy to be suc-

cessful, and in the form of loss of freedom for the individuals.

We assume a canonical, perhaps unrealistic policy, where the

coordinated action is a nearly-optimal strategy. The role of
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this idealized coordinated action is to use it as a reference to

define the price of anarchy, even if this strategy may be too

costly in practice.

We implement the different routing strategies through a

cost-function approach. At a given time, individuals move

from the node they are located at to a neighbour node, in

such a way that a certain cost-function is minimized. In the

selfish case, we adopt the cost-function proposed in [17],

Cj ¼ 2Xj þ hdj, where Xj is either 21 if node j is infected,

or þ1 if it is susceptible. The term hdj is introduced to enforce

the choice of shortest-path routes when two destinations are

possible according to health state. Hence, h�1 is a small posi-

tive number, and dj is equal to 21 if j is one step closer to

the destination, 0 if the node j is at the same distance to the

destination as node i is, and þ1 otherwise. In the coordinated

strategy, we propose the following cost-function:

Cj ¼
Xj þ hdj; if i is infected,
�Xj þ hdj; if i is susceptible.

�

In the case of an SIR type of infection, in both strategies, indi-

viduals located at recovered nodes move through the shortest

path to their destination.

In our model, rerouting is a stochastic process: we define the

degree of awareness of an aware node i, vi(t), as the probability

that an individual inside that node abandons the shortest path

and adopts either the selfish or coordinated strategies.

2.5. Mean-field equations
In the heterogeneous mean-field (HMF) approach [29,31,

33,37], nodes with the same number of links—or degree

k—are deemed statistically identical. Hence, we may replace

nodal variables by degree-aggregates, and seek balance

laws for the evolution of the density of nodes of a given

degree that are, e.g. infected or aware. This modelling frame-

work has been successfully applied to describe a wide variety

of dynamical processes in complex networks, from epidemic

spreading [33] and activator–inhibitor systems [38], to

coupled oscillators [39] and voter models [40]. Assuming

that there are no topological or dynamic correlations in our

system, the HMF approach offers a clear framework to

derive analytical expressions for the epidemic threshold in

network models of contagion [29,31–33].

Consider the evolution of the relative density of infected
nodes, rk(t), as well as the relative density of aware nodes,

raw
k ðtÞ, with degree k. The mean-field evolution equations

for the two spreading processes are

@rkðtÞ
@t
¼ �mrkðtÞ þ blNbk

algð1� rkðtÞÞFðtÞ ð2:1Þ

and

@raw
k ðtÞ
@t

¼ �mawraw
k ðtÞ þ bawkð1� raw

k ðtÞÞCðtÞ: ð2:2Þ

The first terms on the right-hand side represent recovery
from infection and loss of awareness, respectively, whereas the

second terms model activation. The activation term of the infec-

tion process reflects the probability that a node of degree

k belongs to the healthy class, (1 2 rk), and is infected with

rate b when it receives an individual from an infected node,

hence the factor blNbk
alg. The probability that an individual tra-

vels through a link that points to an infected node, F, has

contributions from the aware individuals, as well as from the

non-aware ones. The activation term for the awareness process
quantifies the probability that non-aware nodes, ð1� raw
k Þ,

become aware via a neighbour node. The probability of this

event is proportional to the adoption rate baw, the number of

neighbours, k and the probability that a given link points to an

infected node, C. The structure of the probabilities F and C is

key for the dynamics of the coupled system (2.1)–(2.2), and

determines the critical parameter values beyond which an

outbreak propagates through the network: the invasion

thresholds. The above mean-field representation assumes that

the time scales of the epidemic process, the mobility of individ-

uals and the spread of awareness are the same. More precisely,

we assume that the characteristic time scale for all these processes

is one day.
2.6. Invasion thresholds
We assume that the awareness process (equation (2.2)) is

independent from the infection process, so the classical

results for diffusive processes in networks apply [33]. For

an uncorrelated network, C takes the form C ¼ ðSk0k0Pðk0Þ
raw

k0 Þ/kkl, and the invasion threshold is simply baw
c ¼ kkl/kk2l

[33], where k � l denotes averaging over all the nodes in the net-

work. When the adoption rate, baw, is larger than this critical

value, the spreading of awareness causes an endemic state in

the system, with a non-zero fraction of aware nodes at

steady state. Topological heterogeneities reduce the critical

value of the awareness activation rate; in particular, it has

been shown that the threshold vanishes for infinite size,

scale-free networks with degree exponent 2 � g � 3 [32,41].

One of the central contributions of this study is the deri-

vation of the invasion threshold for the infection process,

which is subject to strong feedback from the spread of aware-

ness. In the case of selfish rerouting, the probability F can

be written as

F � 1

kbalgl

X
k0

Pðk0Þbk0
algrk0 ð1� raw

k0 Þ þ ð1� vÞraw
k0 þ

vraw
k0

1� rk0

� �
:

ð2:3Þ

The first term inside the brackets models the influence of indi-

viduals that travel from the non-aware nodes, whereas the

second models the non-rerouting individuals that travel

from aware nodes and the third one the rerouting individ-

uals. Imposing stationarity in equation (2.1), we arrive at

the epidemic threshold condition,

b . bc
null ¼

kbalgl
kb2

algl
m

lN
: ð2:4Þ

Remarkably, the critical infection rate does not depend on

the dynamics of the adoption process; more precisely, the

threshold is independent from the degree of awareness, v,

and from the density of aware nodes in the system, raw.

Coordinated rerouting changes the structure of F. Our

numerical simulations suggest that, in the policy-driven

case, the contribution from the aware individuals is much

smaller than that from non-aware ones. Intuitively, infected

individuals that adopt the policy travel along paths of

infected nodes, vastly reducing the frequency of infectious

contacts. Hence, considering only the contribution of the

non-aware individuals, the probability F reads

F � 1

kbalgl

X
k0

Pðk0Þbk0
algrk0 [(1� raw

k0 )þ ð1� vÞraw
k0 ]: ð2:5Þ
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Figure 2. Phase diagram of the coupled contagion processes at steady state. The phase diagram for the prevalence of the two spreading processes in the case of
(a) coordinated and (b) selfish awareness. The diagram is divided in four regions: (N) Neither disease spreading, nor awareness adoption, cause an outbreak in the
system. (D) The prevalence of the disease causes an endemic state, while awareness dies out exponentially fast. (A) There is an endemic state of awareness in
the system at equilibrium, whereas the disease dies out exponentially fast. (A – D) Both awareness and disease spread through the system and reach endemic states.
The mean-field assumption predicts that the invasion threshold changes in the presence of coordinated awareness in the system, but it remains unchanged in the case
of selfish awareness. With black, we denote the absorbing phase and with red the active phase for the disease spreading. The boundary curve between the region A
and A – D in (a) represents the epidemic threshold condition. For a given network topology and a set of parameters, it is given by equation (2.6). (Online version in colour.)
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This form of F leads to the invasion threshold

b . bc ¼
kbalgl

kb2
algl� vkb2

alglv

m

lN
; ð2:6Þ

where kb2
alglv ¼ Sk0Pðk0Þðbk0

algÞ
2
raw

k0 denotes the second moment

of the algorithmic betweenness over the aware nodes in the

system.

The above thresholds reveal a fundamental difference

between the selfish and policy-driven routing strategies: with

coordinated routing, awareness plays a central role in the

onset of the outbreak, whereas self-initiated changes do not

alter the threshold. The rich phase diagram of conceptual out-

comes for the system yields further intuition of the relevance of

policy action (figure 2). In the region where both policy and

the disease itself are able to spread through the network, a

more effective enforcement of the coordinated routing policy

increases the invasion threshold, rendering a system that is

more resistant against epidemic outbreaks (figure 2a). By con-

trast, even a broad-based adoption of self-initiated rerouting is

unable to increase the invasion threshold, implying that

decreasing individual contagion risk may not decrease the

societal risk (figure 2b). In the following sections, we provide

quantitative measures of these differences, through simulations

on synthetic and realistic mobility networks.
2.7. Monte Carlo simulations on synthetic networks
To investigate the intensity of the epidemic as a function of

network topology and model parameters, and to discuss

the price of anarchy when selfish routing is allowed, we per-

form Monte Carlo simulations on synthetic uncorrelated,

scale-free networks of N ¼ 5000 nodes (see Methods for

implementation details). We measure the density of infected

nodes at equilibrium, averaged over 100 realizations, both

for the case of coordinated action and selfish rerouting. We

consider networks with two different levels of node–degree

heterogeneity, g ¼ 2 and g ¼ 3.3.
We illustrate the importance of the spread of policy adop-

tion by first considering that all nodes in the network are

aware, and the degree of awareness v is constant. In this par-

ticular case, the invasion threshold (2.6) becomes

b .
kbalgl
kb2

algl
m

ð1� vÞblN
: ð2:7Þ

This prediction agrees nicely with our numerical simulations

(figure 3), which show a mild dependence on network topology.

Figure 4 summarizes the main theoretical contributions of

this study. We compare the analytical results derived using

the HMF approach with Monte Carlo simulations of the full

coupled model, with either policy-driven (figure 4a) or selfish

(figure 4b) rerouting. Our HMF theory accurately predicts

the different transitions observed in the numerical simulations,

confirming the conceptual phase diagram depicted in figure 2.

These numerical simulations allow us to quantify the price of
anarchy as the difference between the density of infected

nodes at equilibrium for the coordinated and selfish strategies

(figure 4c). The salient features of the behaviour of this system

arise from the strong nonlinearities induced by the coupling:

while the selfish rerouting seems to reduce the intensity of the

infection for mild diseases, it has a negative effect for more

aggressive diseases, causing a larger fraction of infected sub-

populations. The loss of welfare due to selfish rerouting,

compared with the policy-driven action, denotes the price of

anarchy during disease spreading in mobility networks

(figure 4c). The price of anarchy increases for more hetero-

geneous network substrates (smaller g), and as the

enforcement of policy increases (larger baw). It is also higher

for more aggressive diseases (larger b).

To test our hypothesis about the use of the SIS contagion

model, and the generality of the conclusions, we present

Monte Carlo simulations using the SIR compartmental model

(figure 5). The SIR model is more appropriate to describe Influ-

enza-like diseases (e.g. H1N1 [22,23]), and the severe acute

respiratory syndrome [24]. We first explore the early-time
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coordinated and selfish rerouting strategies. The results are averaged over 100 realizations. (Online version in colour.)
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onset dynamics for both SIR and SIS models (figure 5a), and we

conclude that at early times, time and spatial scales of both

models are similar. Furthermore, in figure 5b, we present the

global attack of an SIR outbreak (density of subpopulations

that experienced the infection) in a policy-driven scenario as

a function of the disease reaction rate and the adoption of

awareness rate. It is clear that similar conclusions for the

effect of a policy-driven action can also be drawn in the case

of an SIR infection model (see figure 4a).
2.8. Comparison between our conceptual model and a
classical metapopulation model

Using numerical simulations and simple theoretical argu-

ments, we compare the predictions of our conceptual model

with those of a more detailed metapopulation model, where

we introduce behavioural changes (see Methods). Because

the parameters used by these two models are different, so it

is not obvious in principle how these calculations should be

compared. We put forward a rescaling argument that allows

to quantify whether the two models yield the same behaviour

under equivalent infection rates and traffic density. Consider

the invasion threshold for the canonical metapopulation

model which, ignoring behavioural changes, can be expressed

as (see Methods):

ðR0 � 1Þ2

R0
.

kbalgl
kb2

algl
mm

p�VN
: ð2:8Þ

In expression (2.8), R0 ¼ bm/mm is the recovery rate of the meta-

population model, p is the rate of individual travel, N is the total

number of subpopulations in the system and �V is the average

number of individuals per node. Equations (2.4) and (2.8)

suggest that the conceptual and metapopulation models

should be compared by considering the traffic-weighted

infection ratesb�c ¼ bl andb�m ¼ ðR0 � 1Þ2/R0p�V, respectively.

We take this scaling relationship one step further, and use

it to investigate whether the theoretical results derived for our

conceptual model are also representative in the case of coor-

dinated, policy-driven behaviour in a metapopulation model.
Using the expression for the invasion threshold in the concep-

tual model, equation (2.6), and introducing the effective

infection rate of the metapopulation model, we arrive at the

invasion threshold:

ðR0 � 1Þ2

R0
.

kbalgl
kb2

algl� vkb2
alglv

mm

p�VN
: ð2:9Þ

To test this theory, we plot the intensity of the infection com-

puted using the conceptual and metapopulation models for

various parameter values, and rescale the axes according to

the above effective infection rates (figure 6). Qualitatively,

the two models seem to be equivalent in their predictions

of the role of coordinated action on disease spreading.

Their quantitative match is also remarkable, in particular

the fact that, under the suggested rescaling, the invasion

threshold derived for our conceptual model seems to capture

the transition in the metapopulation model as well. We con-

clude that the two models are basically equivalent from a

statistical viewpoint.

2.9. Data-driven simulations
We apply our methodology to a more realistic scenario where

the substrate for the spreading processes is the commuting net-

work of the United States. The nodes in the network represent

the 3141 counties in the contiguous US, and the links between

nodes represent daily commuting fluxes. We perform Monte

Carlo simulations, with commuters distributed among the

different counties according to traffic (see Methods). Epidemic

spreading in the USA commuting network is mainly driven by

high traffic disorder, which leads to very heterogeneous

spreading patterns. In figure 7 (inset), we show a sample

realization of our model, where we observe the spreading pat-

terns of infection and awareness, respectively, for both the

selfish and coordinated rerouting strategies, two weeks after

an outbreak at NYC county.

The propagation of a disease depends strongly on the

position of the initial seeding, due to traffic and topology het-

erogeneities [30,36]. The different system responses to an

outbreak suggests that policy decisions need to account for
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county, in the presence of selfish and coordinated awareness. Dark red colours denote high densities of infection, krl. We average over 100 mobility and disease
realizations. We use total traffic parameter l ¼ 5, reproductive numbers, R0 ¼ 2, Raw

0 ¼ 1:25 and recovery rates, m ¼ maw ¼ 1 day�1. We further assume that
individuals spend 1/3 days (eight working hours) at the final destination before returning back home, and 1/24 days (1 h) at each of the intermediate counties. We
set the degree of awareness to v ¼ 0.8 for both the coordinated and selfish rerouting strategies.
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the properties of the network as a whole, but also about the

specific local transmission mechanisms and mobility pat-

terns. We compute the price of anarchy for an infection

starting at each one of the 2654 counties in the Eastern part

of the contiguous US (figure 5). Owing to traffic disorder,

we observe strong spatial heterogeneity in the price of anar-

chy values, depending on the origin of the outbreak.

Individuals living near the major interstate highways of the

East Coast (I-80 from New York City to San Francisco, CA;
I-85 from Petersburg, VA to Montgomery, AL; and I-95

from the Canadian Border to Miami, FL) have the incentive

of a fast commute to neighbouring counties. As a conse-

quence, counties surrounding those commuting corridors

have, in general, a larger proportion of commuters compared

with other regions in the USA. By contrast, the POA for epi-

demic spreading in areas of low commute flux is small, and

therefore imposing policy-initiated action does not render

substantial benefits for the containment of the epidemic.
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3. Discussion
Feedbacks between human behaviour, policy action and

the dynamics of contagion through mobility networks

shape the footprint of infectious outbreaks, alter the disease

transmission mechanisms and determine the suitability of

policies aimed at abating the epidemic by reducing the

frequency of infectious contacts. In this study, we test the

hypothesis that rerouting behaviour, elicited by propagating

awareness, can fundamentally change the patterns of disease

spreading through mobility networks, both in terms of the

invasion threshold and the total intensity of the outbreak.

Our theoretical and simulation results support this hypoth-

esis, and reveal a rich phase diagram of potential outcomes

depending on the rerouting strategy and the dynamics of

contagion and awareness.

Consistent with previous simulation studies on self-

initiated behavioural responses in mobility-driven contagion,

we find that selfish rerouting does not change the invasion

threshold. As we report here, this is true even when the epi-

demic process is coupled to the spreading of awareness. From

a policy perspective, this result suggests that individual

efforts to avoid infectious contacts may not help the social

welfare; in fact, the density of infected populations at

steady state is higher in the case of selfish rerouting than in

the base scenario of shortest-path routing. By contrast,

policy-driven coordination, which strives to mitigate the epi-

demic at the societal level, increases the invasion threshold

and decreases the intensity of the infection. The price of anar-

chy, which we quantify through numerical simulations,

reveals the essential differences between the selfish and coor-

dinated strategies in terms of their impact on the spreading of

the epidemics.

These results pose a social dilemma, where policymakers

and social agents need to find a balance between the pursuit

of individual utility and the preservation of social welfare. In

this study, we show that the price of anarchy is related to the

nature of the disease, the topology of the network substrate

and the resources deployed to enforce adoption of coordi-

nated action. Such a quantitative analysis should provide

valuable predictions to inform policy decisions about

whether coordinated rerouting should be strongly enforced,

or self-initiated behaviour is allowed. Our map of the price

of anarchy in the Eastern part of the United States illustrates

this dilemma and suggests strategies for the deployment of

measures intended to contain an outbreak. The price of anar-

chy to epidemic spreading exhibits strong heterogeneity,

controlled by the proximity to major commuting corridors

such as the interstate highways. This categorical identification

of population centres, ranked by their price of anarchy, may

provide disease-control authorities with a priori information

of the benefits of implementing mobility restrictions in the

event of an outbreak.
4. Methods
4.1. Numerical simulations of the conceptual model on

synthetic networks
We consider scale-free graphs generated by the uncorrelated con-

figuration model [42] with power law degree distribution P(k) �
k2g and 2 � k �

ffiffiffiffi
N
p

. A number of lN individuals are initially

placed in the system randomly and uniformly. Individuals
move through the shortest paths to randomly chosen desti-

nations with velocity of one node-to-node jump per time step.

Once the mobility process reaches equilibrium, we infect ran-

domly 1% of the nodes. We assume that these initially selected

nodes are also aware of the disease. Individuals inside aware

nodes are forced to travel through the system according to the

coordinated or selfish routine strategies by minimizing the corre-

sponding cost-functions, taking into account the value of the

degree of awareness v. We implement both the SIS and SIR com-

partmental models. In the SIS model, a node can be either

susceptible to the disease or infected. An infected node becomes

healthy with a recovery rate m. For the sake of simplicity and

without loss of generality, we set m ¼ 1. A susceptible node

becomes infected with probability Pinf ¼ 1� ð1� bdtÞnI , where

b is the infection rate and y I is the number of individuals the

node receives from an infected node in the time interval (t,t þ
dt). In the SIR model, a node can be in three discrete states: sus-

ceptible to the disease, infected, or recovered/immune. An

infected node recovers and becomes immunized with a recovery

rate m. At the same time, a susceptible node becomes infected

with probability Pinf, as described above. Synchronously, we

model the diffusion of awareness as an additional contagion pro-

cess in the system. An aware subpopulation forgets about the

information with rate maw, which we set equal to 1. On the

other hand, a non-aware node adopts the information with prob-

ability Paw
adp ¼ 1� ð1� bawdtÞkaw , where baw is the rate of

spreading of awareness, and kaw is the number of aware neigh-

bours. When the system reaches equilibrium, we compute the

density of infected nodes, r. We average our results over 100

model realizations.

4.2. Numerical implementation of
metapopulation model

We consider scale-free metapopulation networks of size N gener-

ated by the uncorrelated configuration model [33] with degree

distribution exponent g. The population of each node i is

assigned randomly according to Vi ≃�Vbi/kbl, where bi is the

betweenness centrality of the node and �V is the average

number of individuals per node in the system. The mobility of

the individuals is defined as follow: at every time step, each of

the Vi individuals of subpopulation i starts a trip with probability

p. We assume that the destinations j are randomly chosen pro-

portionally to their population. Individuals then move along

the shortest paths to their destination nodes with velocity one

jump per time step. After the mobility model reaches equili-

brium, we infect a small number of individuals. Specifically,

we randomly choose a small fraction of subpopulations (less

than 1%) and within these subpopulations we infect 1% of the

individuals. In each node i, an SIS dynamics takes place over a

well-mixed population Vi(t). A susceptible individual becomes

infected with probability 1� ð1� bmdt/ViÞIi , and an infected

individual recovers with probability mmdt, where bm and mm

are the disease reaction and recovery rates and Ii the number of

infected individuals inside i. Synchronously, we model the diffu-

sion of awareness as an additional contagion process in the

system. An aware subpopulation forgets about the information

with rate maw. On the other hand, a non-aware node j adopts

the information with probability 1� ð1� bawdtÞk
aw
j , where baw

is the rate of spreading of awareness, and kaw
j is the number of

aware neighbours. We assume that the set of nodes with initially

infected individuals are also aware of the disease. An individual

inside an aware node with probability v (the degree of aware-

ness) reroutes from the shortest path to the destination and

moves according to the policy-driven strategy as described in

the main text. When the system reaches equilibrium, we compute

the density of infected nodes, r, assuming that a node i is infected

if Ii/Vi . 1%. We average our results over 50 realizations.
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4.3. Global invasion threshold in metapopulation model
We consider a metapopulation network of size N and degree dis-

tribution P(k), where each node i represents a subpopulation

with Vi individuals. We set the population size proportional to

the topological betweenness. We assume the mobility process in

which each individual in a node i, with a probability p, travels to

a destination node j that is randomly selected with probability pro-

portional to its size Vj. Travellers reach their destinations following

the shortest path. A convenient representation of the system is pro-

vided through quantities defined in terms of the degree k. Lets

assume that a small set of initially infected subpopulations of

degree k, fD0
kg, is experiencing an outbreak with R0 ¼ bm/mm .

1, where bm and mm are the infection and recovery rates, res-

pectively. In the early stage of the process, the number of

subpopulations experiencing an outbreak is small, and the disease

spreading at the level of metapopulation system can be described

as a branching process, using a tree-like approximation relating the

infected subpopulations Dn
k at generation n to the infected sub-

populations Dn�1
k at generation n 2 1 [28,37]. The average

number of infected individuals at equilibrium in a subpopulation

k of population Vk is aVk, where a is a disease-dependent par-

ameter equal to a ¼ (R0 2 1)/R0 [43]. Each infected individual

stays in the infectious state for an average period m�1
m . Thus, the

total number of infected individuals circulating through the net-

work at the n 2 1 generation is wn�1 ¼ ð pa/mmÞSk0Dn�1
k0 Vk0 .

Those individuals can trigger the start of the epidemic in a sus-

ceptible subpopulation i with probability ½1� R
�gn�1

i
0 	, where gn�1

i
is the number of infectious individuals in generation n 2 1

that have visited the subpopulation. The number of infected indi-

viduals that will pass through a subpopulation of degree k will

be proportional to the algorithmic betweenness gn�1
k ¼ bk

algwn�1.

For the n-th generation, we have Dn
k ¼ Nkð1�Dn�1

k /NkÞ

½1� ðRgn�1
k

0 Þ�1	; where the second term on the right-hand side is

the probability that the subpopulation is not already seeded by

infected individuals, and the last term is the probability that

the new seeded population will experience an outbreak. At the

early times of the process and for R0 � 1, equation (2.8) can be

approximated by Dn
k ¼ ðR0 � 1Þð pa/mmÞNkbk

alg

P
k0 D

n�1
k0 Vk0 .

Considering at equilibrium Vk ¼ �Vbk
alg/kbalgl, where �V is the aver-

age population size and by defining Qn ¼ SkDn
k bk

alg, we have that

Qn ¼ ðR0 � 1Þð pa/mmÞ�VNðkb2
algl/kbalglÞQn�1. The above self-

consistent equation defines the global invasion threshold in

equation (2.8). This threshold condition unveils the influence of
the model parameters, as well as the mobility patterns, on the

spreading dynamics. The invasion threshold decreases with total

traffic, and the condition R0 . 1 for the global invasion is recov-

ered for high mobility rates. Furthermore, the threshold

condition depends on the routing protocol, through the first and

second moments of the algorithmic betweenness.
4.4. Data-driven simulations
Data on commuting trips between counties in the United States

are available online (http://www.census.gov/population/

www/cen2000/commuting/index.html). The files were com-

piled from Census 2000 responses to the long-form questions

on where individuals worked. The files provide data at the

county level for residents of the 50 states and the District of

Columbia (DC). The data contain information on 34 000 commu-

ters in N ¼ 3141 counties. We build the non-symmetric traffic

matrix F where its entry Fij denotes the number of individuals

travelling from county i to county j and, by considering only

commuting flow up to 25 miles outside the borders of each

county, we construct the immediate neighbour flux matrix Fim.

We initialize the system by randomly placing 5N individuals in

the system. The destination of an individual located at county i
is chosen randomly among the set neighbour counties f jg (i.e.

Fij . 0), with probability proportional to the flux Fij. Individuals

travel through the system following a ‘shortest path’ to their des-

tinations by maximizing the total traffic of the route segments,

SFim
kl . After this training period reaches equilibrium, we assign

‘home counties’ to individuals, and we add the additional mobi-

lity rule of recurrent patterns. We make sure that the distribution

of the population assigned after this initial training period corre-

lates well with the actual populations from the census dataset.

We then infect the county of consideration. We assume that

this initially selected county is also aware of the disease. With

probability v, individuals inside aware nodes reroute from the

‘shortest path’ to their destinations and follow either a policy-

driven or a selfish path. We implement the epidemic and aware-

ness spreading models as described for the synthetic network

simulations. We average our results over 50 model realizations.
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42. Catanzaro M, Boguñá M, Pastor-Satorras R. 2005
Generation of uncorrelated random scale-free
networks. Phys. Rev. E 71, 027103. (doi:10.1103/
PhysRevE.71.027103)
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