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Summary
Streamline methods have received renewed interest over the past
decade as an attractive alternative to traditional finite-difference
(FD) simulation. They have been applied successfully to a wide
range of problems including production optimization, history
matching, and upscaling. Streamline methods are also being ex-
tended to provide an efficient and accurate tool for compositional
reservoir simulation. One of the key components in a streamline
method is the streamline tracing algorithm. Traditionally, stream-
lines have been traced on regular Cartesian grids using Pollock’s
method. Several extensions to distorted or unstructured rectangu-
lar, triangular, and polygonal grids have been proposed. All of
these formulations are, however, low-order schemes.

Here, we propose a unified formulation for high-order stream-
line tracing on unstructured quadrilateral and triangular grids,
based on the use of the stream function. Starting from the theory
of mixed finite-element methods (FEMs), we identify several
classes of velocity spaces that induce a stream function and are
therefore suitable for streamline tracing. In doing so, we provide a
theoretical justification for the low-order methods currently in use,
and we show how to extend them to achieve high-order accuracy.
Consequently, our streamline tracing algorithm is semi-analytical:
within each gridblock, the streamline is traced exactly. We give a
detailed description of the implementation of the algorithm, and
we provide a comparison of low- and high-order tracing methods
by means of representative numerical simulations on 2D hetero-
geneous media.

Introduction
Streamline simulation is now accepted as a practical tool for res-
ervoir simulation. It represents a fast alternative to the classical FD
or finite-volume (FV) methods. However, streamline simulation is
still a young technology and does not offer the same capabilities as
more traditional methods. Here, we investigate the extension of the
streamline method to simulate problems on unstructured or highly
distorted grids with full tensor permeability fields.

In streamline simulation, the flow problem (pressure equation)
and the transport problem (saturation equations) are solved se-
quentially in an operator-splitting fashion. The transport problem
is solved along the streamlines using a 1D formulation of the
transport equation expressed in terms of the time-of-flight variable
(Bradvedt et al. 1993; Batycky et al. 1997; King and Datta-Gupta
1998). A background simulation grid is used to solve the flow
problem and trace the streamlines. Therefore, extension of the
streamline method to general triangular or quadrilateral grids
hinges on the ability to: (1) properly discretize the pressure equa-
tion, and (2) accurately trace the streamlines on these advanced grids.

These two problems are linked. The key link between discreti-
zation and streamline tracing resides in the velocity field descrip-
tion. To each discretization corresponds a particular form of ve-
locity field, and the streamline tracing algorithm has to be adapted
to each type of velocity field.

Pollock (1988) derived a streamline tracing method based on a
particle tracking concept designed for an FD method on Cartesian
quadrilateral grids. The FD method is conservative at the element

level: the elements are mass-balance control volumes and there-
fore, the fluxes at the faces of the elements are continuous. It is
possible to use these fluxes to reconstruct the velocity field inside
each element and then integrate the streamline. Pollock’s algo-
rithm is semianalytical: given the interpolated velocity field inside
each element, the streamline is traced exactly.

Cordes and Kinzelbach (1992) studied the problem of stream-
line tracing for FEMs. In FEMs, the pressure nodes are located at
the vertices of the simulation grid, also called the primal grid.
Mass balance is enforced around each node using a control volume
construction. The pressure nodes lie at the center of these polygo-
nal control volumes that form a dual grid. The velocity field pro-
vided by the FEM on the primal grid is then post-processed to
obtain continuous fluxes at the faces of the control volumes. The
control volumes are then decomposed into triangles, on which the
streamlines are traced.

Prévost et al. (2001) proposed another flux recovery technique,
decomposing the control volumes of the FEM discretization into
quadrilaterals. Pollock’s algorithm, extended to distorted quadri-
laterals, is then used to trace streamlines on each quadrilateral
composing the control volume. Prévost et al. also extended the
method for use with multipoint flux approximation (MPFA) (Aa-
vatsmark 2002), an extension of the classical two-point flux FV
method used in the reservoir simulation community.

As noticed by Hægland (2003), Matringe and Gerritsen (2004),
and Jimenez et al. (2005), these tracing algorithms can yield in-
accurate or unphysical results in terms of streamline location, time-
of-flight, and/or arc-length.

The objective of this paper is to develop an accurate streamline
tracing method for mixed finite-element and multipoint-flux ap-
proximations. To do so, we first develop the method using the
mathematical framework of the mixed FEM (MFEM). We then
extend the algorithm to MPFA, exploiting the link between both
discretization methods. Our streamline tracing method does not
use any flux-recovery technique: the fluxes obtained from MFEM
and MPFA satisfy a discrete mass-balance condition at the element
level. The algorithm can handle unstructured grids formed by gen-
eral triangles or quadrilaterals and offers two possible orders of
accuracy. The lowest-order accurate version of our algorithm cor-
responds to the commonly used streamline-tracing methods on
these grids: the streamline is a straight line on a triangular element
and reduces to Pollock’s method on Cartesian quadrilateral grids.
The algorithm is, for now, limited to 2D grids, but its extension to
three dimensions is discussed.

In this paper, we start by recalling the main features of MFEM.
We then introduce the mathematical framework necessary to un-
derstand streamline tracing issues including the functional spaces
defining the velocity fields. In view of their specific properties,
these spaces are particularly well suited for streamline tracing. In
a second part, the streamline tracing algorithm itself is proposed,
and its implementation for both triangular and quadrilateral grids is
described in detail. Next, we extend the method to MPFA discreti-
zations. We subsequently show results of our tracing algorithm on
triangular and quadrilateral grids populated with heterogeneous
permeability fields. Finally, we give some conclusions and de-
scribe ongoing work and future directions.

MFE Approximation
Mathematical Model. We use a prototype of the pressure equa-
tion in reservoir simulation models. The mathematical model en-
compasses Darcy’s law (Eq. 1) and mass conservation (Eq. 2):
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K−1u + �p = 0 in �, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)

� � u = f in �. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

In Eqs. 1 and 2, u is the Darcy velocity, p is the pressure, K a full
tensor permeability, f is the source term (e.g., injection and pro-
duction wells), and � is the domain of interest. This system of
equations must be supplemented with appropriate boundary con-
ditions. For expositional simplicity, we assume no-flow boundary
conditions throughout:

u � n = 0 in �

where � is the boundary of the domain, and n is the outward unit
normal vector. The essence of the MFEM is to solve for pressure
and velocity simultaneously. The starting point for the MFEM is
the weak form of the problem:

�
�

v � K−1u d� − �
�

� � vp d� = 0, . . . . . . . . . . . . . . . . . . . . (3)

�
�

q� � u d� = �
�

qf d�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)

In Eqs. 3 and 4, v is the velocity test function and q is the pressure
test function.

Discretization. To discretize the continuum problem given by
Eqs. 3 and 4, two types of shape functions are used: one for the
pressure and one for the velocity. It is well known that not all
combinations of pressure and velocity interpolation yield a con-
vergent approximation (Brezzi and Fortin 1991). We are interested
in numerical approximations in which the pressure unknowns are
located at the center of each element and the flux unknowns, used
to interpolate the velocity field, are on the element edges. The
elements are the control volumes on which the mass-balance con-
dition is enforced. Fig. 1 represents the locations of the unknowns
on the reference elements for the lowest-order approximation used
in this paper.

The pressure and velocity fields are interpolated from the pres-
sure and flux unknowns using the shape functions

u = �
i=1

Nedges

UiNi
u, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)

p = �
j=1

Nelements

PjNj
p, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)

where u and p are the global velocity and pressure fields, Ni
u, Nj

p

are the velocity and pressure shape functions, and Ui, Pj are the
flux and pressure unknowns.

The discretization of the system yields an indefinite linear sys-
tem of the form

�A − Bt

B 0 ��U

P� = �RU

RP�, . . . . . . . . . . . . . . . . . . . . . . . . . (7)

where U and P are the vectors of unknown fluxes and pressures,
RU and RP are the flux and pressure right-side vectors, A is a
square matrix of size Nedges×Nedges, and B is a matrix of size

Nelements×Nedges. Because of the indefinite character of the system,
an augmented Lagrangian method known as Uzawa’s algorithm
(Fortin and Glowinski 1983) is used to solve the problem.

The MFEM just described is mass conservative at the element
level: the mass-balance condition is enforced on each control vol-
ume on which the rock properties are defined. Therefore, in the
absence of sources and sinks, the MFEM fluxes yield a diver-
gence-free velocity field; that is, the sum of the fluxes over all the
element faces is identically zero.

Velocity Spaces. The global velocity field belongs to the space
(Brezzi and Fortin 1991)

H�div, ��: = �u |u ∈ �L2����2; � � u ∈ L2����, . . . . . . . . . . . (8)

where L2(�) is the space of square integrable functions on �. The
functional space H(div,�) is designed so that the normal compo-
nent of the velocity field exists on the boundary of the domain. The
integral of the normal trace of the velocity field along a boundary
is precisely the volumetric flux across this boundary. We thus
understand the importance of being able to construct a well-
defined normal trace of the velocity field.

We employ a conforming approximation; that is, we look for a
discrete velocity field in a finite-dimensional subspace of the in-
finite-dimensional space H(div,�). To force the global velocity
field to belong to H(div,�), the discrete approximation must sat-
isfy two conditions (Brezzi and Fortin 1991): (1) the velocity field
must belong to H(div,K) locally on each element K of �; and (2)
the trace of the normal component of the velocity must be con-
tinuous between adjacent elements.

The Space RT0
0. The simplest polynomial subspace conform-

ing in H(div,�) is the lowest-order Raviart-Thomas (1977) space,
RT0(K). We are interested in the restriction of RT0(K) to functions
of zero divergence:

RT0
0�K�: = �u |u ∈ RT0�K�; � � u = 0�. . . . . . . . . . . . . . . . . . . . (9)

Velocity fields in RT0(K) are described by a constant trace along
element edges, as shown in Fig. 2. Therefore, knowledge of the
fluxes across each of the edges of an element is sufficient to fully
describe an RT0 velocity field. Thus, three degrees of freedom are
needed to describe RT0 on triangles and four on quadrilaterals.
Because of the divergence-free constraint, the dimension of RT0

0

is further reduced by one:

dim�RT0
0�K�� = 3 − 1 = 2 for a triangular element,

dim�RT0
0�K�� = 4 − 1 = 3 for a quadrilateral element.

The Space BDM1
0. A higher-order description of the velocity

field can be obtained by using a linear velocity profile along ele-
ment edges, as shown in Fig. 3.

Fig. 1—Location of MFEM unknowns on the reference elements:
pressure (P) and fluxes (U1, U2, U3, U4).

Fig. 2—Velocity profile across element edges in an RT0 velocity
field (constant trace of the velocity along the edges).
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The polynomial space conforming in H(div,�) that corresponds
to a velocity field with a linear variation of the trace along the
element edges is the Brezzi-Douglas-Marini (1985) space of order
1, BDM1(K). Once again, because we are considering incompress-
ible flow, we further restrict this space by enforcing the diver-
gence-free condition on the velocity field. We thus define

BDM1
0�K�: = �u |u ∈ BDM1�K�; � � u = 0 �, . . . . . . . . . . . . (10)

the restriction of BDM1(K) to fields of zero divergence. To fully
describe this space, two unknowns per edge are necessary and the
divergence free condition reduces the dimension by one unknown, so

dim�BDM1
0�K�� = 5 for a triangular element,

dim�BDM1
0�K�� = 7 for a quadrilateral element.

The order of accuracy of the velocity field has to be compatible
with the order of accuracy of the pressure field in order to obtain
a convergent scheme. The numerical approximation must satisfy
the Babuška-Brezzi condition (Brezzi and Fortin 1991). Because
of our piecewise constant pressure description, the order of accu-
racy of the velocity field is limited. To our knowledge, there is no
polynomial space more accurate than BDM1

0(K) and conforming
in H(div,�) that is compatible with a piecewise constant pres-
sure field.

Existence of a Stream Function. The stream function � is the
imaginary part of the complex potential. For 2D problems, the
stream function can be linked to the velocity field through

ux =
��

�y
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11)

uy = −
��

�x
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12)

where ux and uy are the x- and y-components of the velocity. The
stream function has the property of being constant along a stream-
line—a property we exploit in the streamline tracing algorithm
described in the next section.

A large class of mixed finite-element spaces that induce a
stream function has been identified (Juanes and Matringe 2007).
The RT0

0 and BDM1
0 spaces belong to this class and are therefore

particularly well suited for streamline tracing.

Streamline Tracing Method
Most streamline tracing algorithms are based on particle-tracking
concepts. The streamline is traced by following a particle of fluid
in time. Because of the discretization of the domain into elements,
the velocity field is defined elementwise and not globally. It is
therefore natural to trace a streamline by segments, each segment
corresponding to an underlying element.

Our algorithm uses this concept. The streamline tracing proce-
dure can be summarized as follows:

• Start at a “launching” point in the domain. The launching
point defines in space and time the fluid particle that will be followed.

• Find the element this launching point belongs to.
• Trace the streamline downstream toward a sink (producing

well). The fluid particle is followed forward in time. We visit
sequentially all elements crossed by the streamline:

� Trace the streamline downstream in the current element from
the entry point.

� Store the exit point of the streamline.
� Move to the next downstream element.
� Continue until a sink is reached.
• Trace the streamline toward a source (injection well). The

fluid particle is followed backward in time.
� Trace the streamline upstream in the current element from the

entry point.
� Store the exit point.
� Move to the next upstream element.
� Continue until a source is reached.

The streamlines are stored only by placing in memory the
points of intersection of the streamline with the simulation grid.
The time-of-flight and arc-length of the streamline in each element
are also stored. In the streamline method, these variables are used
in the solution of the transport problem.

Streamline Tracing Within an Element. The differences be-
tween most streamline tracing algorithms lie in the way the stream-
lines are traced within each element. Some methods, like Pol-
lock’s, use an interpolation of the velocity field from the fluxes at
the edges of the element. The exit point is then obtained analyti-
cally. Alternatively, one can use a numerical timestepping tech-
nique (Runge-Kutta or similar) to follow the particle in time within
each element.

We take a different approach. We exploit the fact that the
velocity fields from the MFEM induce a stream function. Because
the stream function is constant along a streamline, the equation
defining a streamline that passes through a point (xo,yo) is

�K�x, y� = �K�xo, yo�, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (13)

where �K is the stream function in an element K. As a result, the
problem of tracing a streamline is simplified from the solution of
an ordinary differential equation to an algebraic equation. For
practical purposes, only the exit point at a given element is needed.
Because the stream function has an analytical expression, an effi-
cient Newton method can be used to solve the algebraic equation
to machine precision. Therefore, the tracing algorithm proposed
here provides an exact streamline or, more precisely, exact stream-
line locations at the interfaces between elements of the simula-
tion grid.

The actual tracing is performed on the reference element (see
Fig. 1). This is done for two reasons. First, the analytical expres-
sions of the velocity field and the stream function are known on
reference space rather than on physical space. Second, the location
of the edges of the element is fixed and independent of the actual
position and distortion of the element on the simulation grid.

The procedure is as follows: given an entry point on the refer-
ence element, the exit point is computed on the reference element
by solving Eq. 13. This location will be used as the entry point for
the adjacent element. It can be mapped onto physical space by a
linear transformation (for triangular elements) or a bilinear trans-
formation (for quadrilateral elements). Inverting the mapping for
quadrilateral grids is more involved (Haegland 2003), but this is
required at most once for each streamline, only to define the start-
ing point if the launching location is defined in physical space.

Depending on the functional form of the stream function, Eq.
13 may lead to multiple solutions on the boundary of a given
element. It can be shown that this situation is never encountered
for stream functions derived from RT0

0 velocity fields, but it does
indeed occur for BDM1

0 velocity fields. However, a simple logic
based on comparing the direction of the velocity at each of the

Fig. 3—Velocity profile across element edges in a BDM1 velocity
field (linear variation of the trace of the velocity along the edges).
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potential solutions with the direction at the entry point allows one
to identify the exit point uniquely.

Computation of the Time-of-Flight. Mapping the elements from
physical space to a reference element and the use of the stream
function allows one to efficiently compute the streamline and, in
particular, the exact exit point. However, one crucial ingredient of
streamline simulation is the accurate calculation of the time-of-
flight along a streamline:

� = �
SL

1

|u�s� | ds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (14)

where s represents the arc-length along the streamline SL. For
consistency with the rest of the streamline tracing framework, one
must be able to evaluate the integral in Eq. 14 in reference space.
The correct transformation of velocity from the reference space (x̂)
to the physical space (x) is given by the Piola transform (Brezzi
and Fortin 1991):

u�x� =
1

J
J�x̂�û�x̂�, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (15)

where û is the velocity at point x̂ in reference space and u is the
velocity in physical space at the mapped location x; J is the
Jacobian matrix of the transformation from reference to physical
space; and J is the determinant of the Jacobian. Simply substitut-
ing the velocity u by its inverse Piola transform û in Eq. 15 yields
an incorrect time-of-flight. The exact expression of the time-of-
flight as an integral on reference space is given by (Juanes and
Matringe 2007):

� = �
SL

1

| û�ŝ� | J�ŝ�dŝ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16)

It is worthwhile noticing at this point that the isoparametric
mapping is affine for triangular elements. The Jacobian is therefore
constant and can be taken out of the integral. For quadrilateral
elements, however, the Jacobian varies inside the element. Prévost
et al. (2001) used the value of the Jacobian at the center of the
element as an approximation, but Hægland (2003) showed how
this choice could lead to erroneous results and recommended keep-
ing the Jacobian in the integral.

The time-of-flight cannot, in general, be integrated analytically
and one must resort to numerical quadrature.

Low-Order Tracing. In the previous sections, we described the
streamline tracing methodology for general triangular and quadri-
lateral grids. It is based on the use of the stream function induced
by mixed finite-element velocity fields on the reference element.
We now give the expressions of the velocity field and the stream
function for the lowest-order accurate streamline tracing method,
which uses the RT0

0 space. As explained earlier, RT0
0 defines

velocity fields whose normal component has constant trace along
the edges. Only one degree of freedom per edge—the overall flux
through the edge—is necessary to define an RT0

0 velocity field and
the corresponding stream function. We also recall that all edge
fluxes are not independent because they are subject to the zero
divergence condition.

Triangular Elements. The RT0
0 velocity field on triangular

elements has only two degrees of freedom. It is therefore a con-
stant velocity field:

�ux = a1

uy = a2

, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17)

where a1 and a2 are two constants. Direct integration of the above
velocity field yields the stream function:

��x, y� = −a2x + a1y. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (18)

Therefore, for a triangular RT0
0 element, the streamline is a

straight line. This corresponds to the classical low-order streamline

tracing method used by many authors (Durlofsky 1991; Cordes
and Kinzelback 1992; Mose et al. 1994; Prevost et al. 2001).

Quadrilateral Elements. The RT0
0 velocity field on quadrilat-

eral elements is

�ux = a1 + b1x

uy = a2 − b1y
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19)

This velocity field (Eq. 19) yields the bilinear stream function:

��x, y� = −a2x + a1y + b1xy. . . . . . . . . . . . . . . . . . . . . . . . . . . (20)

For Cartesian quadrilateral grids, the tracing algorithm based on
RT0 mixed finite-element functions reduces to the well-known
method proposed by Pollock (1988). For our reference element
shown in Fig. 1, Pollock proposed a linear interpolation of the
velocity field:

ux = −
U1

4
�1 − x� +

U2

4
�1 + x�,

uy = −
U3

4
�1 − y� +

U4

4
�1 + y�.

. . . . . . . . . . . . . . . . . . . . . . . . (21)

Because of the zero divergence constraint,

U1 + U2 + U3 + U4 = 0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (22)

one can establish a direct correspondence between Pollock’s ex-
pressions and the RT0

0 velocity field:

a1 =
U2 − U1

4

a2 =
U4 − U3

4

b1 =
U1 + U2

4
= −

U3 + U4

4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (23)

High-Order Tracing. To obtain higher-order accuracy, the veloc-
ity is described by a vector field that displays a linearly varying
flux across element edges. The description of such velocity fields
requires two unknowns per edge: the first provides the flux
through the face, and the second indicates the tilt of the velocity
profile around the mean velocity. This is accomplished by the use
of functions belonging to BDM1

0.
Triangular Elements. The BDM1

0 velocity field on triangular
elements is of the form

�ux = a1 + b1x + c1y

uy = a2 + b2x − b1y
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (24)

where a1, a2, b1, b2, and c1 are constants. An analytical expression
of the stream function can be derived from the velocity field in Eq.
24 (Juanes and Matringe 2007):

��x, y� = −a2x + a1y + b1xy −
b2

2
x2 +

c1

2
y2. . . . . . . . . . . . . . . (25)

Quadrilateral Elements. On quadrilateral elements, BDM1
0 is

the space of velocity fields of the form

�ux = a1 + b1x + c1y − rx2 − 2sxy

uy = a2 + b2x − b1y + 2rxy + sy2
, . . . . . . . . . . . . . . . . . . . . . (26)

where a1, a2, b1, b2, c1, s, and r are constants. Integrating the
velocity field yields (Juanes and Matringe 2007):

��x, y� = −a2x + a1y + b1xy −
b2

2
x2 +

c1

2
y2 − rx2y − sxy2.

. . . . . . . . . . . . . . . . . . . . . . . . . . (27)

Tracing Streamlines From an MPFA Solution
So far, the streamline tracing algorithm relies entirely on a mixed
finite-element discretization of the pressure equation. We have
seen, however, that for low-order tracing on Cartesian grids, the
proposed method is identical to Pollock’s method, which was de-
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signed for finite-difference schemes. In this section, we show that
our streamline tracing framework can be applied to more general
finite-volume discretizations. This opens the possibility for high-
order streamline tracing on solutions to the pressure equation ob-
tained with conventional reservoir simulators.

MPFA methods were introduced in reservoir simulation to
handle problems described with full tensor permeabilities on gen-
eral polygonal grids. The method takes its name from the stencil
used to evaluate the flux through the face of an element. The
simplest FV method, the two-point flux approximation, only con-
siders the pressure at two adjacent elements for the computation of
the flux through an edge.

In MPFA, the flux through an edge is computed using an ex-
tended stencil, and makes use of the pressures for all the elements
in contact with the edge. This extended stencil allows for a more
accurate computation of the flux when the grid is distorted and
permits the use of full tensor permeabilities. Although the precise
way in which these fluxes are computed is unimportant for our
purpose, it is important to note that MPFA computes two subfluxes
per edge. These subfluxes correspond to the fluxes through each
half-edge. The total flux through the edge is the sum of these
two subfluxes.

To use our streamline tracing algorithm, we have to relate the
MPFA quantities to the degrees of freedom of the mixed finite-
element formulation.

Low-Order Tracing. When using RT0 mixed finite elements, the
degrees of freedom correspond to the fluxes through the element
edges. Therefore, the MPFA total edge fluxes can be used directly
in our streamline tracing method as if they were RT0

0-MFEM fluxes.

High-Order Tracing. When using BDM1 mixed finite elements,
there are two degrees of freedom per edge: the first corresponds to
the total flux through the edge, and the second to a flux recircu-
lation responsible for the linear variation in the normal component
of the velocity along the edge. In an MPFA formulation, there are
also two degrees of freedom per edge, corresponding to the two
subfluxes. Fig. 4 illustrates what we are trying to achieve: recov-
ering a BDM1

0-MFEM type linear velocity profile from the two
MPFA subfluxes. The MPFA subfluxes are represented by the
solid line, the RT0

0-MFEM profile is in dotted-dashed, and the
BDM1

0-MFEM profile is the dashed line. Let us denote the de-
grees of freedom in the BDM1 MFEM by U and V, and the two
subfluxes in the MPFA formulation by f1 and f2. It is a simple

exercise to show (rigorously) that the BDM1 degrees of freedom
are related to the MPFA subfluxes as follows:

U = f1 + f2

V =
1

4
�f1 − f2�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (28)

We conclude that the proposed high-order tracing algorithm can
make direct use of an MPFA finite-volume solution to the pres-
sure equation.

Results
We test our streamline tracing algorithm using MFEM with RT0

and BDM1 spaces for the solution of the flow problem. The
streamlines are traced with the order of accuracy corresponding to
the discretization.

Quarter Five-Spot Model With Distorted Grids. We test and
compare the performance of low-order and high-order tracing on a
test case with isotropic, homogeneous permeability. The domain
corresponds to a quarter of a five-spot pattern with the injector at
the bottom left corner and the producer at the top right corner.

In Fig. 5, we show the streamlines traced with the RT0 (low-

Fig. 4—Velocity profiles from MPFA (thin red line), RT0
0-MFEM

(dotted-dashed red line), and BDM1
0-MFEM (dashed red line). Fig. 5—RT0

0 and BDM1
0 streamlines on quadrilateral grids.
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order) and BDM1 (high-order) methods on four different quadri-
lateral grids. The reference grid is a regular, Cartesian grid. The
second type of grid used is obtained by randomly moving the grid
nodes around their initial location on a Cartesian grid. The third
type is a chevron grid, with inclined edges forming an angle of 40°
with the vertical edges. The fourth type of grid is a highly skewed
grid that leads to very acute angles for some elements. The stream-
lines, shown in red, are launched from points located on the di-
agonal of the field and equally spaced.

The triangular grids in Fig. 6 are obtained by splitting in half
the quadrilaterals of the previous grids. The quadrilateral grids
contain 100 elements and the triangular grids contain 200 elements.

The main observation is that the high-order discretization and
tracing method based on BDM1 mixed finite elements produce
much better streamlines. While RT0 elements yield jagged and
heavily grid-dependent streamlines, BDM1 elements result in
smooth, physical streamlines which show very little sensitivity to
the simulation grid. This is, of course, a combined effect of higher-
order accuracy in the discretization and the streamline tracing.

Heterogeneous System With a Fully Unstructured Grid. As an
illustration of our streamline tracing capabilities, we show in
Fig. 7 the results of mixed finite-element simulations and stream-

line tracing on fully unstructured triangular meshes. The medium
contains two low-permeability flow barriers. All boundaries are
no-flow boundaries. An injector is located at the bottom left corner
and a producer at the top right corner of the domain. The stream-
lines are traced from the center of the field. The launching
locations are located on a vertical line between the two flow bar-
riers. Two grids of different resolution were used, to investigate
the behavior of the low-order and high-order methods as the grid
is refined.

Once again, the BDM1
0 results show smoother streamlines that

are less dependent on the grid, compared with those obtained
with RT0

0.

Conclusions
In this paper, we presented a unified framework for streamline
tracing on general triangular and quadrilateral grids. The method is
based on the use of the stream function to define the streamline
location. Given a velocity interpolation, the streamline is traced
exactly. One of the key steps is the identification of appropriate
velocity spaces that induce a stream function. Such velocity spaces
(RT0 and BDM1) are taken from the theory of MFEMs (Juanes
and Matringe 2007). In this way, we justify theoretically low-order
tracing algorithms currently in use (Pollock’s method), and we
show how to choose the velocity interpolation for higher-order
tracing.

Our numerical simulations illustrate the improvement in the
streamlines obtained with the high-order, BDM1-based method in
comparison with the low-order, RT0-based method.

In principle, the tracing algorithm relies on a mixed finite-
element solution of the pressure equation. However, it is important
to note that the streamline tracing framework can be used without
modification in conjunction with finite-volume solutions of the
pressure equation that use either a two-point flux (low-order trac-
ing) or a multipoint flux approximation (high-order tracing). A
comparison of low-order and high-order tracing in the context of
multipoint flux approximation schemes is currently being addressed.

Conceptually, the framework can be extended to 3D problems,
but the extension of the streamline tracing method itself requires
the derivation of dual stream functions for complicated velocity
fields. These derivations can be mathematically involved, and thus
the streamline tracing algorithm is not yet developed for 3D grids.

Nomenclature
A, B � matrices in linear system of the MFEM problem

f � source term
J � determinant of the Jacobian of the isoparametric

transformation

Fig. 6—RT0
0 and BDM1

0 streamlines on triangular grids.

Fig. 7—RT0
0 (left column) and BDM1

0 (right column) streamlines
on unstructured triangular grids with flow barriers.
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J � Jacobian matrix of the isoparametric transformation
K � permeability tensor
n � outward unit normal vector

Nedges � number of edges
Nelements � number of elements

Nj
p � pressure shape function of element j

Ni
u � velocity shape function of edge i
p � pressure

Pj � pressure at element j
P � vector of unknown pressures
q � pressure test function

RP, RU � pressure and flux right-side vectors
s � arc length
u � Darcy velocity

ux, uy � x- and y-components of the velocity field
Ui � flux through edge i
U � vector of unknown fluxes
v � velocity test function
� � boundary of the domain of simulation
� � time of flight

� � stream function
� � domain of simulation
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