
J. Fluid Mech. (2011), vol. 688, pp. 321–351. c© Cambridge University Press 2011 321
doi:10.1017/jfm.2011.379

CO2 migration in saline aquifers. Part 2.
Capillary and solubility trapping

C. W. MacMinn1, M. L. Szulczewski2 and R. Juanes2†
1 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,

MA 02139, USA
2 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge,

MA 02139, USA

(Received 15 March 2011; revised 16 August 2011; accepted 6 September 2011;
first published online 28 October 2011)

The large-scale injection of carbon dioxide (CO2) into saline aquifers is a promising
tool for reducing atmospheric CO2 emissions to mitigate climate change. An accurate
assessment of the post-injection migration and trapping of the buoyant plume of
CO2 is essential for estimates of storage capacity and security, but these physical
processes are not fully understood. In Part 1 of this series, we presented a complete
solution to a theoretical model for the migration and capillary trapping of a plume
of CO2 in a confined, sloping aquifer with a natural groundwater through-flow. Here,
we incorporate solubility trapping, where CO2 from the buoyant plume dissolves
into the ambient brine via convective mixing. We develop semi-analytical solutions
to the model in two limiting cases: when the water beneath the plume saturates
with dissolved CO2 very slowly or very quickly (‘instantaneously’) relative to plume
motion. We show that solubility trapping can greatly slow the speed at which the
plume advances, and we derive an explicit analytical expression for the position
of the nose of the plume as a function of time. We then study the competition
between capillary and solubility trapping, and the impact of solubility trapping on the
storage efficiency, a macroscopic measure of plume migration. We show that solubility
trapping can increase the storage efficiency by several-fold, even when the fraction of
CO2 trapped by solubility trapping is small.
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1. Introduction
Mitigation of climate change will necessitate a reduction in atmospheric carbon

dioxide (CO2) emissions; however, electric power generation is a primary source of
CO2 emissions, and demand for electric power is expected to rise steadily for the
foreseeable future. The global transition to a low-carbon energy infrastructure will take
tens to hundreds of years. One promising tool for reducing CO2 emissions during this
transitional period is the large-scale injection of CO2 into deep saline aquifers (Bachu,
Gunter & Perkins 1994; Lackner 2003; Schrag 2007; Orr 2009).

At typical aquifer conditions, CO2 is less dense and less viscous than the ambient
groundwater, making it buoyant and mobile. As a result, a primary concern is the
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risk of leakage into shallow formations through a pre-existing well or fracture, or via
the activation of a fault. An accurate assessment of the post-injection migration and
trapping of the CO2 is essential for estimates of storage capacity and security, but
many of the relevant physical processes are not fully understood. In Part 1 of this
series (MacMinn, Szulczewski & Juanes 2010), we developed a complete solution to a
hyperbolic gravity current model for CO2 migration in a confined, tilted aquifer with
a natural groundwater through-flow. We included capillary trapping, where small blobs
of CO2 are immobilized by capillarity at the trailing edge of the plume, and also
the tongued end-of-injection plume shape. We showed that the migration behaviour
depends strongly on the mobility ratio, the amount of capillary trapping, and the
importance of aquifer slope relative to groundwater flow. We explored the effect of
these parameters on the overall storage efficiency, a measure of the fraction of the
aquifer pore space that can be used to store CO2, and we showed that the interplay
between groundwater flow and aquifer slope can change the storage efficiency by a
factor of two to five. In particular, we found that the maximum efficiency is achieved
in sloping aquifers with a moderate down-dip groundwater flow, conditions which are
known to occur in many continental sedimentary basins (Garven 1995).

We did not consider solubility trapping in Part 1, but CO2 is weakly soluble in
groundwater and both residual and mobile CO2 will dissolve slowly into the nearby
groundwater as the plume migrates. Dissolved CO2 is considered trapped because it is
no longer buoyant: water with dissolved CO2 is denser than either water or free-phase
CO2. As a result, the boundary layer of CO2-saturated groundwater near the mobile
plume is unstable, and this unstable density stratification eventually results in so-called
convective mixing, where fingers of dense, CO2-rich groundwater sink away from the
interface as fingers of fresh groundwater rise upward.

The convective-mixing instability has been studied in various contexts. For example,
Elder (1968) considered heat transfer in a porous medium heated from below, and
Wooding, Tyler & White (1997a) and Wooding et al. (1997b) considered salt transport
in a porous medium with a salt source at the top. The implications of this process for
geological CO2 storage were first pointed out by Weir, White & Kissling (1996) and
discussed by Lindeberg & Wessel-Berg (1997). Several studies have since investigated
the onset of the instability for a stationary layer of CO2 overlying water. Riaz
et al. (2006) performed a linear stability analysis, and used high-resolution numerical
simulations to study the early-time nonlinear development of the fingers. Ennis-King &
Paterson (2005) and Ennis-King, Preston & Paterson (2005) showed that permeability
anisotropy slows the onset of the instability, and Hidalgo & Carrera (2009) showed
that hydrodynamic dispersion can speed the onset of the instability. Rapaka et al.
(2008, 2009) studied the onset of the instability using non-modal stability theory, and
used these techniques to investigate onset in the context of anisotropic and layered
porous media. Slim & Ramakrishnan (2010) studied the onset of convective mixing in
an aquifer of finite thickness, and explored two different types of boundary condition
at the CO2–water interface. In all cases, the onset time for convective mixing was
found to be short relative to time scales of interest in geological CO2 storage.

Ennis-King & Paterson (2005) showed by a simple scaling analysis that convective
mixing dramatically increases the rate of solubility trapping compared to diffusive
transport, and noted that the small-scale features of convective mixing would probably
necessitate an upscaled model for solubility trapping at the basin scale. Pau et al.
(2010) and Neufeld et al. (2010) used high-resolution numerical simulations to study
macroscopic features of the convective-mixing process, showing that the time-averaged
rate of CO2 solubility trapping due to convective mixing is approximately constant.
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Kneafsey & Pruess (2010), Neufeld et al. (2010), and Backhaus, Turitsyn & Ecke
(2011) have confirmed this experimentally. By taking advantage of these results, an
upscaled model for solubility trapping due to convective mixing can be incorporated
into computational models for CO2 migration at large scales (Gasda, Nordbotten &
Celia 2011).

Here, we incorporate a simple upscaled model for solubility trapping into the
theoretical migration model considered in Part 1. Such sharp-interface, gravity current
models have been used recently to provide important insights into the injection
(Nordbotten & Celia 2006; Neufeld, Vella & Huppert 2009; Gunn & Woods 2011),
spreading (Bickle et al. 2007; Hesse et al. 2007; MacMinn & Juanes 2009), and
migration (Hesse, Orr & Tchelepi 2008; Juanes, MacMinn & Szulczewski 2010;
MacMinn et al. 2010) of CO2 in saline aquifers. Here we study the importance of
solubility trapping relative to capillary trapping during post-injection migration, and
the impact of solubility trapping on the migration behaviour and the storage efficiency.
We show that solubility trapping plays a major role in CO2 migration, and can increase
the storage efficiency by several-fold even when the volume dissolved is small.

In § 2, we review the model for CO2 migration without solubility trapping. In § 3,
we develop the model for solubility trapping due to convective mixing. In § 4, we
present the model for CO2 migration with solubility trapping. In § 5, we develop
semi-analytical solutions to the model in some limiting cases. In § 6, we use the model
and solutions to study the competition between capillary and solubility trapping, and
their impact on migration.

2. Model for CO2 migration

In Part 1 of this series, we derived a theoretical model for the migration and
capillary trapping of a plume of CO2 in a confined, sloping aquifer with a natural
groundwater through-flow (Bear 1972; Kochina, Mikhailov & Filinov 1983; Huppert &
Woods 1995; Hesse et al. 2008; Juanes et al. 2010; MacMinn et al. 2010). We review
that model here.

We are interested in large CO2 storage projects, because large quantities of CO2

would need to be stored in order to significantly reduce atmospheric emissions.
We therefore study the evolution of the CO2 plume at the geologic-basin scale, as
proposed by Nicot (2008) (figure 1). We take the aquifer to be homogeneous, with an
arbitrary tilt relative to the horizontal and a net groundwater through-flow to the right.
We assume line symmetry in the y-direction (figure 1). As a result, all volumes and
fluxes discussed here are per-unit-length of the line-drive well array unless specifically
noted otherwise. We take the fluids to be incompressible and Newtonian, with constant
and uniform properties within the aquifer. We denote the CO2 density and viscosity by
ρg and µg, respectively, and the water density and viscosity by ρw and µw. We employ
a sharp-interface approximation, neglecting saturation gradients as well as the capillary
pressure. We further assume vertical equilibrium, neglecting the vertical component
of the fluid velocity relative to the horizontal one. We divide the domain into three
regions of uniform fluid saturation with sharp interfaces corresponding to saturation
discontinuities (figure 2): Region 1 is the plume of mobile CO2, containing free-phase
CO2 and a saturation Swc of connate or residual groundwater; Region 2 is the region
from which the plume has receded, containing mobile groundwater and a saturation
Sgr of residual, free-phase CO2; and Region 3 contains mobile groundwater with some
dissolved CO2, and no free-phase CO2.
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FIGURE 1. Large-scale geological storage of CO2 requires injection at the scale of geologic
basins. (a) A bird’s-eye view of CO2 injection into a saline aquifer via a linear or ‘line-drive’
array of wells. The plumes from the individual wells merge together as the CO2 spreads away
from the well array (black dots), and we model the single resulting plume (dark grey) as
two-dimensional in the x–z plane, with some width W in the y-direction equal to the length
of the well array. (b) A section view of post-injection CO2 migration due to groundwater flow
and/or slope. Residual CO2 (light grey) is left behind, trapped, in the wake of the mobile
plume (Juanes et al. 2006). Groundwater is shown in white, and the caprock as a thick line.
Arrows indicate the direction of groundwater flow. Typical horizontal and vertical scales are
indicated. The vertical scale of the aquifer is greatly exaggerated.
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FIGURE 2. (Colour online available at journals.cambridge.org/flm) After injection stops, the
plume of mobile CO2 (dark grey) will migrate due to a combination of groundwater flow
and aquifer slope, leaving residual CO2 in its wake (light grey). CO2 will dissolve from the
plume by convective mixing, as indicated by the fingers of dense, CO2-rich groundwater
(blue) falling away from the plume. We divide the domain into three regions of uniform
CO2 and groundwater saturation, separated by sharp interfaces corresponding to saturation
discontinuities: Region 1 (dark grey) contains mobile CO2 and a saturation Swc of connate
(residual) groundwater; Region 2 (light grey) contains mobile groundwater and a saturation
Sgr of residual CO2; Region 3 (white, blue) contains mobile groundwater with some dissolved
CO2. The aquifer has a total thickness H, and the thickness of Region i, i= 1, 2, 3, is denoted
hi(x, t). Groundwater flows naturally through the aquifer from left to right with velocity Un;
the aquifer has permeability k and porosity φ, as well as an arbitrary angle of tilt ϑ measured
anticlockwise from the direction of gravity.

With the assumptions above, and neglecting solubility trapping, we can write the
Darcy velocity for each fluid in each region and relate them through conservation of
mass, accounting for the residual fluid that crosses each interface (Hesse, Tchelepi &
Orr 2006; Hesse et al. 2008). The resulting conservation law for the local thickness of

http://journals.cambridge.org/flm
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the plume, h1(x, t), is

(1− Swc)φR̃
∂h1

∂t
+ ∂Fg

∂x
= 0, (2.1)

where

Fg(h1(x, t))= Qf + (1− Swc)φκ sinϑ(1− f )h1

− (1− Swc)φκ cosϑ(1− f )h1
∂h1

∂x
(2.2)

is the total horizontal flow of CO2 through the plume at some position x and time t.
The discontinuous accumulation coefficient R̃ captures the fact that residual CO2 is
lost from the plume due to capillary trapping by taking different values for drainage
and imbibition,

R̃ =
{

1 if ∂h1/∂t > 0 and h2 = 0,
1− Γ otherwise.

(2.3)

The parameter Γ = Sgr/(1− Swc) is the capillary trapping number, which measures the
amount of residual CO2 that is left behind at the trailing edge of the plume and takes
a constant value between zero (no capillary trapping) and one. A net volume rate Q
of fluid flows through the aquifer from left to right. We denote the mobility of the
mobile fluid in Region i, i = 1, 2, 3, by λi = kri/µi, where kri and µi are the relative
permeability to that fluid and the viscosity of that fluid, respectively. For simplicity,
we neglect the reduction of water mobility due to the presence of residual CO2 in
region 2, taking λ2 = λ3, although this effect can be included (Juanes & MacMinn
2008). The nonlinear function f (h1) is then given by

f (h1)= λ1h1

λ1h1 + λ3(H − h1)
. (2.4)

The characteristic buoyancy-driven velocity of the plume is

κ = 1ρgkλ1

(1− Swc)φ
, (2.5)

where 1ρ = ρw − ρg is the density difference between the groundwater and the CO2, g
is the force per unit mass due to gravity, and k and φ are the intrinsic permeability and
porosity of the aquifer, respectively.

The conservation law for the layer of water beneath the plume, which has total
thickness hw = h2 + h3 = H − h1, is readily derived from conservation of mass or by
rewriting (2.1) in terms of hw. It can be written as

(1− Swc)φR̃
∂hw

∂t
+ ∂Fw

∂x
= 0, (2.6)

where

Fw(h1(x, t))= Q(1− f )− (1− Swc)φκ sinϑ(1− f )h1

+ (1− Swc)φκ cosϑ(1− f )h1
∂h1

∂x
(2.7)

is the total horizontal flow of groundwater at position x and time t. Note that
Fg + Fw = Q, the total horizontal flow of fluid through the aquifer. Equation (2.6)
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(a) (b)

FIGURE 3. (Colour online) We assume that total fluid volume is conserved as CO2 dissolves
into groundwater. Consider (a) a closed box containing a volume Vg of free-phase CO2 (dark
grey) and a volume Vw of groundwater (white). We assume that a volume δVg of the CO2
then dissolves into the groundwater to form (b) a volume Vd = Vw + δVg of groundwater
with dissolved CO2 (light grey (blue online)), and the total fluid volume within the box is
unchanged. This assumption violates conservation of mass, introducing a relative error of
size χv into the mass balance, but we adopt it for simplicity. To eliminate this error would
require a complete treatment of the kinetics and thermodynamics of the CO2–water system.
The saturated volume fraction χv (3.1) is here χv = δVg/Vd.

is redundant since hw = H − h1, and we need only solve (2.1). However, (2.7) will be
useful when solubility trapping is included (§ 3.4).

3. Model for solubility trapping due to convective mixing
We now consider solubility trapping of CO2 from the mobile plume due to

convective mixing. We denote by χm the maximum or saturated mass fraction of
dissolved CO2 in groundwater. We denote by ρd the density of groundwater containing
mass fraction χm of dissolved CO2. It is convenient here to work in terms of a volume
fraction χv,

χv = ρdχm/ρg, (3.1)

which measures the equivalent free-phase volume of CO2 dissolved per unit volume of
groundwater saturated with dissolved CO2. The values of χm and χv depend strongly
on the aquifer temperature and pressure, and on the salinity of the groundwater.
Typical values of χv range from 0.03 to 0.1 (Garcı́a 2001; Bachu 2003; Duan &
Sun 2003; Kharaka & Hanor 2003; Carbon Capture and Sequestration Technologies @
MIT 2010). We take χv to be constant within a given aquifer.

We assume that total fluid volume is conserved as free-phase CO2 dissolves into
groundwater (figure 3). This assumption introduces a relative error in the mass balance
of size χv, but we adopt it for simplicity. To eliminate this error would require a
complete treatment of the kinetics and thermodynamics of the CO2–water system.

3.1. Onset time for convective mixing
It has been shown from linear stability analysis (Ennis-King & Paterson 2005; Riaz
et al. 2006; Pau et al. 2010) that the onset time for convective mixing can be written
as

tonset = α0Deff

(
φ

1ρdgkλ3

)2

, (3.2)

where 1ρd = ρd − ρw is the density difference that drives convective mixing and
α0 ∼ 103 is a dimensionless constant (Pau et al. 2010). Deff is the effective
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diffusion/dispersion coefficient for CO2 in brine in the aquifer rock; velocity-dependent
dispersion can speed the onset of the instability (Hidalgo & Carrera 2009), but is not
included here. We compare this time to the time it would take the leading edge of
the CO2 plume to travel one characteristic length in the horizontal direction during
migration due to groundwater flow or aquifer slope (Juanes & MacMinn 2008; Hesse
et al. 2008; MacMinn et al. 2010),

tflow = QiTi/2
M UnH

, tslope = QiTi/2
1ρgkλ1H sinϑ

. (3.3)

When tonset/tflow � 1 and tonset/tslope � 1, the onset time for convective mixing is
negligible compared to typical migration time scales, meaning that convective mixing
begins instantaneously along the entire plume in post-injection migration. We assume
here that this is always the case.

3.2. Rate of solubility trapping due to convective mixing
We denote the upscaled mass flux of solubility trapping due to convective mixing
by qm

d . In principle, this flux is a function of the details of the complex convective
flow beneath the plume. It is natural to expect that this flux should scale with the
characteristic speed κd at which fingers of heavy water sink away from the plume,

κd = 1ρdgkλ3

φ
, (3.4)

and with the concentration of CO2 carried by those fingers, ρdχm (see e.g. Ennis-King
& Paterson 2005). The results of Pau et al. (2010) confirm this scaling, showing that
the time-average of the mass flux is essentially constant after some relatively short
onset time, and can be estimated as

qm
d = αρdχmφκd, (3.5)

where α ∼ 10−2 is a dimensionless constant. The volume flux qd of CO2 leaving the
mobile plume due to convective mixing can then be written

qd = qm
d /ρg = αχvφκd. (3.6)

We expect this expression to be valid until the water beneath the plume begins to
saturate with dissolved CO2, at which time the rate of solubility trapping should
decrease. For simplicity, we account for this saturating effect by setting the rate of
solubility trapping to zero at each position x when the water at that position becomes
completely saturated with dissolved CO2. For this purpose, we track the thickness
hd(x, t) of the ‘curtain’ of water with dissolved CO2 that builds beneath the plume
(i.e. the blue region in figure 2). We set the rate of solubility trapping to zero when the
water beneath the plume is completely saturated, i.e. when h1+ hd = H. We discuss the
curtain in § 3.4.

3.3. Solubility trapping and capillary trapping
Solubility trapping enters the mass balance as a loss term L < 0 on the right-hand
side of (2.1),

(1− Swc)φR̃
∂h1

∂t
+ ∂Fg

∂x
=L , (3.7)

where Fg is as defined in (2.2). When ∂Fg/∂x = 0, (3.7) implies that the interface
retreats at speed L /(1 − Swc)φR̃. Equation (2.3) gives R̃ = 1 − Γ in this scenario
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(a) (b) (c)

FIGURE 4. We assume that interface displacements due to solubility trapping do not
contribute to capillary trapping (§ 3.3). Here, we consider this modelling choice in the
context of three possible scenarios for local interface displacement. The local position of
the CO2–water interface is shown before (solid black line) and after (shaded dark grey)
displacement due to solubility trapping and flux of mobile CO2 through the plume. Although
these processes occur simultaneously, we suppose for illustration that they occur sequentially.
We suppose that solubility trapping occurs first, displacing the interface from its original
position (solid black line) to a hypothetical intermediate position (dashed black line), as
indicated (vertical dashed black arrow). We then consider the net flux of mobile CO2 through
this portion of the plume. (a) When the flux of mobile CO2 into this portion of the plume
(small, horizontal black arrow) is less than the flux of mobile CO2 out of this portion of
the plume (large, horizontal black arrow), the net flux is negative and the interface retreats
(vertical black arrow) to its final position (shaded dark grey), while leaving behind residual
CO2 (shaded light grey). Solubility trapping enhances imbibition in this scenario, but we
assume that the component of interface motion due to solubility trapping (vertical dashed
black arrow) does not cause additional capillary trapping. (b) When the net flux is positive
and large, the interface experiences net drainage as the interface advances to its final position
and no capillary trapping occurs. (c) When the net flux is positive and small, the interface
may experience net imbibition. However, we assume that no capillary trapping occurs because
any residual CO2 would dissolve as the water imbibes. As a result of this modelling choice,
capillary and solubility trapping are effectively decoupled.

since ∂h/∂t < 0, but we argue that capillary trapping should not contribute to the
speed of the interface here because residual CO2 should also dissolve as the interface
is displaced upward. We further argue that when ∂Fg/∂x > 0 such that the interface
retreats faster than by solubility trapping alone, it is only this flow-driven component
of imbibition that contributes to capillary trapping (figure 4). This motivates the
definition

L =
{
−R̃ (1− Swc)qd if hd < H − h1,

0 otherwise,
(3.8)

where the rate of solubility trapping is reduced by (1 − Swc) because the presence
of the connate water reduces the CO2–water interfacial area by this amount, and
L → 0 where the water beneath the plume is saturated (§ 3.4). We include R̃ in L
so that interface displacements due to solubility trapping do not contribute to capillary
trapping. We also modify the definition of R̃,

R̃ =
{

1 if ∂h1/∂t >−qd/φ and h2 = 0,
1− Γ otherwise.

(3.9)

Again, this is physically motivated by the expectation that residual CO2 must also
dissolve as the interface is displaced unless the interface moves faster than by
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solubility trapping alone (figure 4). These definitions effectively decouple the processes
of capillary and solubility trapping.

3.4. The curtain of water with dissolved CO2

We assume that a layer of fully saturated water builds beneath the plume as CO2

dissolves. We denote the thickness of this ‘curtain’ of water with dissolved CO2 by
hd(x, t). We write the conservation law for the thickness of the curtain as

χvφ
∂hd

∂t
+ χv ∂Fd

∂x
=−L

R̃
− χvSwcφ

∂h

∂t
− 1− R̃

R̃

∂Fg

∂x
, (3.10)

where Fd is the total horizontal flow of groundwater with dissolved CO2 through the
curtain. The curtain gains volume due to convective mixing via the term −L /R̃,
where we divide by the conditional coefficient R̃ because dissolution of residual CO2

at the imbibition front also contributes to the curtain (cf. § 3.3). The curtain either
gains or loses volume as connate water is left behind by the plume or swept into
the plume during imbibition or drainage, respectively, via the term proportional to
Swc. We assume that all connate water is supplied from the curtain, and is therefore
fully saturated with dissolved CO2 before entering the plume. This is a very good
assumption in most cases, but will lead to an underestimate of the rate of solubility
trapping when the amount of connate water swept into the plume at the drainage front
exceeds the volume of saturated water available in the curtain. Lastly, residual CO2 in
the wake of the plume takes up a fraction of the available pore space, and the curtain
gains macroscopic volume as a result via the term proportional to ∂Fg/∂x. This term
vanishes on portions of the interface that are in drainage.

The curtain is a subset of the groundwater region, so the total horizontal flow
of water through the curtain is simply a fraction of the total horizontal flow of
groundwater, Fd = (hd/hw)Fw. We neglect the migration of the dense curtain relative to
the ambient groundwater because this occurs with characteristic velocity κd� κ , much
slower than the characteristic velocity of CO2 migration.

Equations (2.1) and (3.10) are coupled through the loss term L , so we must solve
them simultaneously. We discuss this in § 5.

We emphasize that this model for solubility trapping features several key
simplifications. First, we have assumed that convective mixing ends abruptly when
the water becomes saturated, rather than decreasing gradually. This assumption is
reasonable if the rate of solubility trapping decreases quickly to zero as the water
saturates; we adopt it here for simplicity, and because we believe it captures the
essential dissolution-limiting feature of the finite amount of water beneath the plume.
Second, we have assumed that the curtain of water with dissolved CO2 builds beneath
the plume as a layer of fully saturated water. Third, we have not accounted for
dissolution of the residual CO2 except immediately at the imbibition front. This is
motivated by the fact that residual CO2 is located primarily in the wake of the plume,
so we do not expect it to impact the migration or solubility trapping of the mobile
plume. Fourth, we have neglected lateral spreading of the dense, CO2-rich groundwater
relative to the ambient groundwater. This is motivated by the fact that the CO2 plume
spreads and migrates much faster than this water. The importance of these effects has
not yet been studied, but our emphasis here is on deriving insight from a simple but
physically reasonable model and we do not expect these effects to have an order-one
impact on our results.
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4. Model for CO2 migration with solubility trapping
We now incorporate the model for solubility trapping ((3.8) and (3.9)) into the

model for CO2 migration ((2.1) and (3.10)). The complete model for CO2 migration
with solubility trapping consists of two coupled conservation laws, one for the buoyant
plume of mobile CO2 and the other for the curtain of water saturated with dissolved
CO2. We write them in dimensionless form:

R̃
∂η

∂τ
+ Nf

∂f

∂ξ
+ Ns

∂

∂ξ
[(1− f )η] − Ng

∂

∂ξ

[
(1− f )η

∂η

∂ξ

]
=−R̃Nd, (4.1)

and
∂ηd

∂τ
+ (1− Swc)Nf

∂fd

∂ξ
− (1− Swc)Ns

∂

∂ξ
[fdη]

+ (1− Swc)Ng
∂

∂ξ

[
fdη
∂η

∂ξ

]
= Nd

Γd
− Swc

∂η

∂τ
− (1− R̃)

(
∂η

∂τ
+ Nd

)
. (4.2)

The primary variables are η = h1/H, which is the local thickness of the plume of CO2

scaled by the thickness of the aquifer, and ηd = hd/H, which is the local thickness of
the curtain of water saturated with dissolved CO2, again scaled by the thickness of the
aquifer. The nonlinear functions f and fd are given by

f (η)= M η

M η + (1− η), fd(η, ηd)= ηd

M η + (1− η), (4.3)

where M = λ1/λ3 is the mobility ratio. These functions reflect the fact that the aquifer
is confined, so that the plume of CO2 must displace the ambient fluid (groundwater) in
order to migrate.

The dimensionless time is τ = t/Tc, where Tc is an appropriate characteristic time.
The dimensionless x-coordinate is ξ = x/Lc, where Lc is an appropriate characteristic
length. We discuss the specific choice of these characteristic values for the injection
period in § 4.1, and for the post-injection period in § 4.2.

The model includes capillary and solubility trapping, migration due to groundwater
flow and aquifer slope, and buoyant spreading against the caprock. The conditional
coefficient R̃ captures capillary trapping, changing value depending on whether the
interface is locally in drainage or imbibition,

R̃ =
{

1 if ∂η/∂τ >−Nd,

1− Γ otherwise.
(4.4)

The capillary trapping number Γ measures the amount of residual fluid that is left
behind as the interface recedes during imbibition.

Both conservation laws have three flux terms, with coefficients Nf , Ns, and Ng.
These terms capture migration due to groundwater flow, migration due to aquifer slope,
and buoyant spreading due to gravity, respectively. The coefficients are given by

Nf = Tc

Ti

Q

Qi/2
, Ns = Tc

Lc
κ sinϑ, Ng = Tc

Lc
κ cosϑ

H

Lc
, (4.5)

where Lc is the characteristic length (4.7), Tc is the characteristic time (§§ 4.1 and 4.2),
and Q is the net volume flow of fluid through the aquifer from left to right (§§ 4.1 and
4.2); κ is the characteristic buoyancy-driven velocity of the plume (2.5).
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The sink term with coefficient Nd on the right-hand side of (4.1) captures the loss of
CO2 from the plume due to solubility trapping via convective dissolution. Nd is given
by

Nd =
αχvκd

Tc

H
if η(ξ, τ ) > 0 and ηd(ξ, τ ) < (1− η(ξ, τ )),

0 otherwise,
(4.6)

taking a constant value until the water beneath the plume becomes saturated with
dissolved CO2, and changing to zero locally as the water saturates. We assume that the
water beneath the plume is locally saturated with dissolved CO2 when the curtain of
water saturated with dissolved CO2 reaches the bottom of the aquifer (η + ηd = 1).

The curtain grows as CO2 dissolves from the plume. Each unit volume of CO2 that
dissolves from the plume becomes 1/Γd units of volume in the curtain, where the
constant Γd = χv/(1− Swc). The curtain also gains and loses volume due to the transfer
of residual CO2and connate (residual) water across the CO2–water interface as the
plume migrates (§ 3.4); the source/sink terms on the right-hand side of (4.2) account
for these effects.

Without loss of generality, we choose Nf > 0 so that groundwater flow is always to
the right by convention. Aquifer slope can be either positive (Ns > 0) for anticlockwise
aquifer tilt or negative (Ns < 0) for clockwise aquifer tilt.

4.1. The injection period
During injection, we assume that a constant volume flow rate Qi of CO2 per
unit length of the line-drive well array is pumped into the aquifer. We take the
characteristic time scale to be the duration of injection, Tc = Ti, so that τ = 1 is the
end of the injection period.

As in Part 1, we choose the characteristic length scale during injection to be the
length of a rectangle of aquifer of height H and containing a volume equal to one-half
of the total volume of CO2 to be injected, QiTi/2:

Lc = QiTi/2(1− Swc)φH. (4.7)

Injection typically dominates the flow, so we neglect natural groundwater flow and
slope relative to injection and assume that the flow rate Qi is split evenly between the
left and right sides of the injection well. We then have that Q = UnH + Qi/2 ≈ Qi/2,
so that

N i
f = 1, N i

s =
1ρgkλgH

Qi/2
sinϑ, N i

g =
1ρgkλg(1− Swc)φH3

(Qi/2)
2 Ti

cosϑ, (4.8)

and

N i
d =

αχvκd
Ti

H
if η(ξ, τ ) > 0 and ηd(ξ, τ ) < (1− η(ξ, τ )),

0 otherwise.
(4.9)

The superscript i indicates that these are the values of these parameters during
injection. Typically N i

s,N i
g � 1, so the plume shape will be symmetric across the

injection well. We discuss the impact of solubility trapping during injection in § 5.1.

4.2. Post-injection migration
Once injection has stopped, the net flow of fluid through the aquifer, Q, is due only to
natural groundwater flow. We therefore have that Q= UnH in the post-injection period.
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The characteristic length scale from the injection period was based on the total
amount of CO2 injected (4.7). This is also an appropriate choice for the post-injection
period because it is characteristic of the initial length of the now-migrating plume, so
we retain it.

The characteristic time scale from the injection period was the injection time. This
is not an appropriate choice for the post-injection period because CO2 migration due
to slope and/or groundwater flow is typically very slow relative to injection. In order
to choose a new characteristic time while keeping τ = 1 as the end of injection, we
redefine the dimensionless time in post-injection as

τ = 1+ t − Ti

Tc
, (4.10)

so that the end of injection, t = Ti, corresponds to τ = 1 for any choice of
characteristic time Tc. A characteristic time for post-injection can be derived from
any one of the four rates associated with post-injection migration and trapping: the
rate of migration due to groundwater flow, the rate of migration due to aquifer slope,
the rate of buoyant spreading against the caprock, or the rate of solubility trapping
due to convective mixing. For a specific aquifer, the choice should be guided by the
dominant mechanism. When no one mechanism is dominant, which is often the case in
continental sedimentary basins (Garven 1995), the specific choice is arbitrary.

Here, we choose a characteristic time based on the rate of migration due to
groundwater flow:

Tc = QiTi/2
UnH

. (4.11)

For this choice, we have that ((4.5) and (4.6) with Q= UnH and Tc = QiTi/2UnH)

Nf = 1, Ns = 1ρgkλg

Un
sinϑ, Ng = 1ρgkλg(1− Swc)φH2

Un(Qi/2)Ti
cosϑ (4.12)

and

Nd =
αχvκd

QiTi/2
UnH2

if η(ξ, τ ) > 0 and ηd(ξ, τ ) < (1− η(ξ, τ )),
0 otherwise.

(4.13)

Here, Ns gives the importance of advection due to slope relative to that due to
groundwater flow; Ng gives the importance of diffusive spreading due to buoyancy
relative to advection due to groundwater flow, analogous to the inverse of a Péclet
number in mass transfer; and Nd gives the importance of loss due to solubility trapping
relative to advection due to groundwater flow, analogous to a Damköhler number in
reactive transport.

A consequence of this choice of characteristic time is that Nf ≡ 1. We retain Nf in
the analysis (§ 5) and report our results (§ 6) in terms of the ratios Ns/Nf , Ng/Nf , and
Nd/Nf so that the results remain relevant for other choices of the characteristic time.

The choice of a characteristic time based on groundwater flow will not be
appropriate when groundwater flow is ‘weak’ compared to slope, buoyancy, or
solubility trapping. In these cases, a different characteristic time should be used
in (4.5) and (4.6) to derive the appropriate expressions for Nf , Ns, Ng, and Nd.
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5. CO2 migration with capillary and solubility trapping
We now study injection and post-injection migration with capillary and solubility

trapping. We note that the macroscopic features of CO2 migration and trapping – in
particular, the prominent gravity tongue, the position of the leading edge, and the
shape of the profile of residual gas – are little affected by even large values of Ng

compared to Nf or Ns (Juanes & MacMinn 2008; Hesse et al. 2008). We therefore
neglect the buoyant spreading term to simplify the analysis, as in Part 1 (see figure 3
of Part 1). In this limit, (4.1) and (4.2) are of hyperbolic character.

After neglecting the spreading term, it will be useful to rewrite (4.1) in terms of a
scaled and shifted dimensionless plume thickness g, as in Part 1,

∂g

∂τ
+ 1

R̃

∂

∂ξ
G(g)=−(M − 1)Nd, (5.1)

where g= (M − 1)η + 1 remaps 0 6 η 6 1 to 1 6 g 6 M , and G is the corresponding
flux function,

G(g)=M Nf

[
1− 1

g

]
+ Ns

M − 1

[
(M + 1)− g− M

g

]
. (5.2)

Equation (5.1) is a first-order, nonlinear, autonomous, hyperbolic conservation law
with a sink term. The solution to this equation depends on seven dimensionless
parameters: M , Γ , Γd, Swc, Nf , Ns, and Nd. One of the latter three parameters
can always be subsumed into the characteristic time scale, so the solution depends
uniquely only on the ratios of any two of them to the third. For generality, we retain
all three parameters in the analysis that follows; however, we present the results (§ 6)
in terms of the ratios Ns/Nf and Nd/Nf because we choose a characteristic time scale
based on groundwater flow (§ 4.2).

Note that the values of M and Γ used in the figures throughout this section
(figures 5–9) are chosen for illustration only, to make the noteworthy features of the
plume shapes and characteristics clearly visible. In practice, these values of M = 2
and Γ = 0.5 are too low and too high, respectively. We use realistic values of
M = 5–15 and Γ = 0.3 when presenting the key results in § 6 (figures 10–13).

5.1. The injection period

We derive here the shape of the plume at the end of the injection period, because this
serves as the initial condition for post-injection migration (Juanes & MacMinn 2008;
MacMinn & Juanes 2009; Juanes et al. 2010).

As discussed in § 4.1, we assume that injection dominates the flow during the
injection period, and we therefore take N i

f = 1 and N i
s,N i

g� 1. As a result, the injected
CO2 is split evenly between the left and right sides of the injection well and the plume
shape is symmetric across the injection well.

To assess the impact of solubility trapping on the plume shape during injection, we
compare the rate of CO2 injection, Qi, to an estimate of the rate of solubility trapping,
Qd. The upscaled rate of solubility trapping per unit length of CO2–water interface is
(1 − Swc)qd (§ 3.2). Without solubility trapping, the extent of the plume at the end of
injection is 2M QiTi/(1− Swc)φH (§ 2.2 of Part 1). We then estimate

Qd

Qi
∼ qdM QiTi

φHQi
=M N i

d. (5.3)
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FIGURE 5. (Colour online) During injection with M = 2, (a) the evolution of the plume
in characteristic space and (b)–(d) the shape of the plume (grey) at τ = 0.1, 0.5, and 1,
respectively. In (a), we show several waves of the left and right fronts in dark grey (red online)
and light grey (green online), respectively; the innermost and outermost waves on each front
correspond to g=M and g= 1 (η = 1 and η = 0), respectively.

Taking typical but conservative values, µw = 5.5 × 10−4 Pa s, µg = 6 × 10−5 Pa s,
χv = 0.1, Swc = 0.4, φ = 0.15, 1ρd = 10 kg m−3, k = 100 mD = 10−13 m2, Tc = Ti =
30 years, H = 100 m, we find that Qd/Qi ∼ 10−2, implying that the fraction of the
CO2 that dissolves during injection is negligible. Note that we have neglected the
onset time for convective mixing as well as the finite supply of water, both of which
would decrease the amount of CO2 that would dissolve during injection. We have also
used the extent of the plume at the end of injection, again giving an overestimate of
the amount of CO2 that would dissolve during injection. We therefore conclude that
solubility trapping is negligible during injection and we use the injection solution of
Nordbotten & Celia (2006) and Verdon & Woods (2007), as in Part 1. Modelling the
well as a line source located at ξ = 0 with strength Qi/2H per unit length, the solution
from the method of characteristics is

ξ i
L(g, τ )=−

(
M

g2

)
τ, ξ i

R(g, τ )=
(

M

g2

)
τ, (5.4)

where the left front, ξ i
L, is the reflection of the right front, ξ i

R. Figure 5 shows the
characteristics and the plume shape at several times during the injection period, which
ends at τ = 1.

5.2. Post-injection migration
Once injection has ended, the plume migrates due to slope and groundwater flow,
and shrinks due to capillary and solubility trapping. The migration behaviour is given
by the solution to (4.1) and (4.2), which are nonlinear conservation laws coupled
by mass transfer due to convective mixing. These must be solved numerically in
general, but we are able to derive semi-analytical solutions in two limiting cases: when
the water beneath the plume saturates very slowly or very quickly relative to plume
migration (figure 6). When the water beneath the plume saturates with dissolved CO2

slowly relative to plume migration, the curtain does not interact with the bottom of
the aquifer. In this slow-saturation limit, (5.1) can be solved independently of (4.2).
When the water beneath the plume saturates with dissolved CO2 very quickly relative
to plume migration, the water beneath the plume will be completely saturated except
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FIGURE 6. (Colour online) The rate at which the water beneath the plume saturates with
dissolved CO2 depends on the speed of migration, the length of the plume, the rate of
solubility trapping, and the amount of dissolved CO2 the water can hold. Here we show
the shape of the plume (dark grey) and the curtain (mid grey (blue online)) at τ = 2.5
from numerical solutions to (4.1) and (4.2) for fixed M = 2, Γ = 0.5, Γd = 0.1, Nf = 1,
Ns = −0.75, Ng = 0, and for Nd increasing from 0 to 4, as indicated. Where the curtain
reaches the bottom of the aquifer, convective mixing has stopped because the water is
saturated. We identify two limits: (b) when the water saturates slowly relative to plume
migration, solubility trapping is not limited by the amount of water beneath the plume, and
(d) when the water saturates very quickly (instantaneously) relative to plume migration, the
water beneath the plume is completely saturated with dissolved CO2 and only the leading
edge of the plume dissolves as it migrates.

at the leading edge. In this instantaneous-saturation limit, the majority of the plume
will not experience solubility trapping as it migrates and (5.1) can again be solved
independently of (4.2). Below, we develop semi-analytical solutions to (5.1) in these
two limits.

5.3. The slow-saturation limit
When the water beneath the plume saturates with dissolved CO2 slowly compared
to plume motion, solubility trapping from the plume is not limited by the supply
of water and (5.1) can be solved independently of (4.2). In this limit, we develop
semi-analytical solutions to (5.1) via the method of characteristics. Note that CO2

migration becomes independent of Γd in this limit because the water does not saturate.
All of the expressions and results for this limit simplify to those from Part 1 when
Nd = 0.

5.3.1. Post-injection migration in the slow-saturation limit
We begin with (5.1), moving the loss term inside the time derivative,

∂

∂τ
[g+ (M − 1)Nd(τ − 1)] + 1

R̃

∂

∂ξ
G(g)= 0. (5.5)

We then introduce a new variable g0 such that g = g0 − (M − 1)Nd(τ − 1), and we
write

∂g0

∂τ
+ 1

R̃

∂

∂ξ
[G(g0 − (M − 1)Nd(τ − 1))] = 0. (5.6)

Equation (5.6) is a nonlinear hyperbolic conservation law in g0; note that it is not
autonomous because τ appears explicitly in the flux function G. The solution is a
collection of waves travelling through space–time. Physically, g0 is the thickness of
each wave at the end of injection (g= g0 at τ = 1) and this initial thickness is constant
in time for each wave. The current thickness of each wave is g= g0−(M−1)Nd(τ−1),
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which shrinks in time at a constant rate due to solubility trapping. Waves travel with
speed G′/R̃, where

G′ = ∂G

∂g0
=−

[
1

M − 1
Ns

]
+
[
M Nf + M

M − 1
Ns

]
1
g2
. (5.7)

Note that the velocity at which each wave propagates is a function of its current
thickness, and that this function G′(g) is the same as in Part 1. Unlike in Part 1, waves
no longer travel at constant velocity because all waves now shrink in time due to
solubility trapping.

As in Part 1, the post-injection problem is more difficult than the injection problem
because of the complex interactions between slope, groundwater flow, capillary
trapping, and now solubility trapping – waves collide, and we divide the analysis
into parts based on the types of collisions that occur. The derivative of the flux
function again changes sign once at the stationary point g= gs given by

gs =
√

M (M − 1)Nf /Ns +M , (5.8)

and we can again divide the range of possible values of the ratio Ns/Nf into three
intervals based on the nature of the resulting plume migration, and these intervals are
the same as in Part 1 since G′ is unchanged. For Ns/Nf 6 −M , the negative-slope-
with-weak-flow interval, the flux function is concave up and has a local minimum,
so that G′ vanishes at g = gs and is negative for g < gs and positive for g > gs.
For −M < Ns/Nf < 1, the flow-with-weak-slope interval, the flux function is concave
up for Ns/Nf < −(M − 1), linear for Ns/Nf = −(M − 1), and concave down for
Ns/Nf > −(M − 1), and in all cases strictly increasing so that G′ is positive. For
1 6 Ns/Nf , the positive-slope-with-weak-flow interval, the flux function is concave
down and has a local maximum, so that G′ vanishes at g = gs and is positive for
g < gs and negative for g > gs. Note that, unlike in Part 1, any single wave is only
instantaneously stationary as its current thickness passes through the value gs, which
occurs at time

τs = 1+ g0 − gs

(M − 1)Nd
. (5.9)

For simplicity, we restrict our analysis here to the flow-with-weak-slope interval,
−M < Ns/Nf < 1, for which G′ is strictly positive. Outside that interval, a stationary
point exists on the plume and both fronts have a portion that is in drainage and a
portion that is in imbibition. This complicates the solution because waves may change
direction as they shrink. That is, drainage waves may at some point become imbibition
waves and vice-versa. While the procedure presented below is general and could be
used to develop semi-analytical solutions outside the flow-with-weak-slope interval, the
complexity of doing so is prohibitive in practice.

It is straightforward to rewrite the definition of the conditional accumulation
coefficient R̃ in terms of g0,

R̃ =
{

1 if ∂g0/∂τ > 0,
1− Γ otherwise,

(5.10)

The direction in which each wave travels (i.e. to the left, or to the right) is again
determined by the sign of G′(g), and this in turn sets the appropriate value of R̃ for
each wave. Waves of the left front moving to the left correspond to CO2 displacing



CO2 migration in saline aquifers. Part 2. Capillary and solubility trapping 337

groundwater, and are then drainage waves; waves of the left front moving to the right
correspond to groundwater displacing CO2, and are imbibition waves. Waves of the
right front moving to the left or to the right are similarly imbibition waves or drainage
waves, respectively. Note that all waves shrink vertically in time due to solubility
trapping, but this component of imbibition does not contribute to capillary trapping by
construction of the model (§ 3.3).

Now starting from the end-of-injection shape, all waves propagate to the right at
speed G′(g)/R̃ until two or more waves collide. The right front is a drainage front with
R̃ = 1, and the left front is an imbibition front with R̃ = (1 − Γ ). Because of this,
a given wave on the left front travels faster than the corresponding wave on the right
front.

Given the position of each wave at τ = 1 and its instantaneous velocity in post-
injection, we can write the position of each wave on the left and right fronts by
integrating the velocity in time,

ξL =−M

g2
0

+ 1
1− Γ

(
−
[

Ns

M − 1

]
+
[
M Nf + M

M − 1
Ns

]
1

gg0

)
(τ − 1),

(5.11a)

ξR = M

g2
0

+
(
−
[

Ns

M − 1

]
+
[
M Nf + M

M − 1
Ns

]
1

gg0

)
(τ − 1), (5.11b)

where, again, g0 is the initial thickness of each wave and g= g0 − (M − 1)Nd(τ − 1)
is the current thickness of each wave. These expressions are valid for all waves with
current thickness g> 1 (η > 0), and that have not yet collided with other waves.

When the current thickness of a wave decreases below g = 1, that wave has
dissolved completely and ceases to exist. The left and right edges of the plume are
then formed by the leftmost and rightmost waves that still exist at time τ . As in Part 1,
we refer to the position of the leftmost wave on left front and of the rightmost
wave on the right front as ξLL and ξRR, respectively. These positions correspond
to the waves with current thickness g = 1 and therefore with original thickness
g0 = 1+ (M − 1)Nd(τ − 1). These waves do not correspond to characteristics because
the characteristics here are waves with constant original thickness and shrinking
current thickness. The expressions for ξLL and ξRR are readily evaluated from (5.11)
for these values of g and g0.

Depending on the shape of the flux function, waves will either accelerate or
decelerate as they shrink. When the flux function is concave down (Ns/Nf >

−(M − 1)), wave velocity increases monotonically with wave thickness and waves
accelerate as they shrink. Because of this acceleration, the entire left front does not
compact into a shock simultaneously. Rather, an incipient shock forms at the leftmost
point on the left front, ξLL, and builds from left to right as waves accelerate, until the
entire left front is part of the shock. We find the time τ σLL at which this incipient shock
would form by solving for the time at which ∂ξL/∂g vanishes at the leftmost point.
This gives the time of shock formation implicitly,

(M − 1)2 N2
d (τ

σ
LL − 1)3+3(M − 1)Nd (τ

σ
LL − 1)2

+ 2(τ σLL − 1)= 2
(1− Γ )(M − 1)
(M − 1)Nf + Ns

. (5.12)
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With Nd = 0, this expression simplifies readily to the time at which the entire left front
would compact into a shock in the absence of solubility trapping (τ LR

LL , equation (3.5a)
from Part 1).

Similarly, wave velocity decreases monotonically with wave thickness when the flux
function is concave up (Ns/Nf < −(M − 1)), and waves decelerate as they shrink.
Here, shock formation begins with an incipient shock at the rightmost point on the
right front, ξRR, and builds from right to left as waves decelerate, until the entire right
front is part of the shock. We find the time τ RR

σ at which this incipient shock would
form by solving for the time at which ∂ξR/∂g vanishes at the rightmost point. This
gives the time of shock formation implicitly,

(M − 1)2 N2
d (τ

RR
σ − 1)

3+3(M − 1)Nd (τ
RR
σ − 1)

2

+ 2(τ RR
σ − 1)=−2

(M − 1)
(M − 1)Nf + Ns

. (5.13)

With Nd = 0, this expression simplifies readily to the time at which the entire right
front would compact into a shock in the absence of solubility trapping (equation (3.5c)
from Part 1).

In the particular case when the flux function is a straight line (Ns/Nf =−(M − 1)),
wave speed is independent of wave thickness. The fronts will not change shape as
they migrate and dissolve, and no shock will form. Accordingly, (5.12) and (5.13)
degenerate for this value of Ns/Nf , and have no solution.

The migration behaviour may also change if the rightmost point on the left front,
ξLR, collides with the leftmost point on the right front, ξRL, forming a peak. Unlike ξLL

and ξRR, these positions correspond to characteristics: they are the waves with original
thickness g0 =M and current thickness g=M − (M − 1)Nd(τ − 1). Expressions for
ξLR and ξRL can be evaluated from (5.11). The time τ RL

LR at which these two waves
would collide to form a peak is given implicitly by the expression

NsNd (τ
RL
LR − 1)

2+
[

2(1− Γ )(M − 1)Nd

MΓ
+ (Nf − Ns)

]
(τ RL

LR − 1)

= 2(1− Γ )
Γ

. (5.14)

With Nd = 0, this expression simplifies to the time at which this collision would occur
in the absence of solubility trapping (equation (3.5b) from Part 1).

What remains is to divide the flow-with-weak-slope interval into cases based on the
order in which these collisions occur. We did so explicitly in Part 1, finding five cases
within this interval. The five possible cases here are the same as in Part 1, and are
as follows: in case 1, an incipient shock forms on the left and consumes the entire
left front before a peak forms; in case 2, an incipient shock forms on the left and a
peak forms at the bottom of the plume, and then the shock collides with the peak;
in case 3, a peak forms at the bottom of the plume and no shock forms; in case 4,
an incipient shock forms on the right and a peak forms at the bottom of the plume,
and then the peak collides with the shock; and in case 5, an incipient shock forms
on the right and consumes the entire right front before a peak forms. The delineation
between these cases now depends on Nd in addition to M , Γ , and Ns/Nf , and we are
no longer able to delineate them explicitly because the collision times (in particular,
τ σLL and τ RR

σ ) are defined implicitly. Instead, we implement a decision-tree algorithm to
evaluate and compare these times, and evolve the plume accordingly. We describe in
detail the remainder of the development for case 2.
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5.3.2. Flow with weak slope, case 2, in the slow-saturation limit
In case 2, the first two collisions are the development of an incipient shock at the

left, which occurs at time τ σLL, and the formation of a peak at the bottom, which occurs
at time τ RL

LR . The ordering of these two collisions is unimportant. The peak is formed
by the intersection of the left and right fronts, and the initial thickness g0,p of the
waves forming the peak at time τ is given implicitly by[

Ns

M − 1
(τ − 1)

]
g3

0,p +
[

2M (1− Γ )
Γ

−
(

M Nf + M

M − 1
Ns

)
(τ − 1)

]
g0,p

+ [NsNd (τ − 1)2]g2
0,p −

[
2M (1− Γ )

Γ
(M − 1)Nd(τ − 1)

]
= 0. (5.15)

The shock, once it has formed, collides continuously with waves of the left front as
it grows. To construct the differential equation describing the growth of the shock, we
begin by posing the collision of the shock at time τ ? with an arbitrary wave of the left
front of initial thickness g?0 and current thickness g?. The position of the shock at time
τ ? can be written

ξ ?σ = ξσ (τ ?)= ξ σLL +
∫ τ?

τσLL

σ dτ. (5.16)

The shock speed σ is evaluated from the Rankine–Hugoniot condition (see e.g. Lax
1972),

σ(g?)= 1
1− Γ

[[G]]
[[g]] =

1
1− Γ

G(g?)

g? − 1
, (5.17)

where the notation [[◦]] indicates the difference or ‘jump’ in the indicated quantity
across the shock. Note that only the current thicknesses of the waves on either side of
the shock influence the instantaneous shock speed. The position at time τ ? of the wave
with initial thickness g?0 is

ξ ? = ξ(g?, τ ?)=−M

g?20

+ 1
1− Γ

∫ τ?

1
G′(g?) dτ. (5.18)

Equating ξ ?σ with ξ ?, since these must be equal by the definition of g? and τ ?, we
differentiate the resulting expression with respect to τ ? and rearrange to find an
ordinary differential equation (ODE) for the shock height as a function of time,

dg?

dτ ?
= σ(g

?)− ∂ξ ?/∂τ ?
∂ξ ?/∂g?

. (5.19)

This ODE is not separable unless Nd = 0, so we integrate it numerically from time
τ ? = τ σLL until it collides with the peak, at which time g?(τ ?)= gp(τ

?). The shock then
collides continuously with the right front until the plume vanishes. The development
of the ODE for the shock height as a function of time during this period is analogous
to that above. We plot the characteristics and plume shapes for case 2 in the slow-
saturation limit in figure 7.

5.4. The instantaneous-saturation limit
When the water beneath the plume saturates with dissolved CO2 very quickly relative
to plume migration, the majority of the plume migrates over saturated water and is
therefore not influenced by solubility trapping. Only the leading edge of the plume
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FIGURE 7. (Colour online) Post-injection migration in the slow-saturation limit for case 2 of
the flow-with-weak-slope interval, with M = 2, Γ = 0.5, Nf = 1, Ns =−0.75, and Nd = 0.04.
(a) The evolution of the plume in characteristic space with waves of the left and right fronts
in dark grey (red online) and light grey (green online), respectively, and the paths of the
peak, the shock, and the leading and trailing edges of the plume in solid black lines with
open circles (blue online). (b)–(f ) The shape of the plume at several times during migration,
with mobile CO2 in dark grey, the region containing residual CO2 in light grey, the curtain
of groundwater with dissolved CO2 in mid grey (blue online), and groundwater in white.
The curtain is approximate (drawn for Γd = 0.1) because we do not solve (4.2) in this limit.
The characteristics are not straight lines here because the waves shrink and therefore change
speed as they migrate, and also that the leading and trailing edges of the plume are not
characteristics, but rather cut across characteristics. For comparison, the characteristics and
the plume shapes here are drawn on the same scale in space and time as those in figure 12
in Part 1 and those in figure 9 below. We include the injection period here, but denote that
portion of the time axis (τ < 1) with dashed lines to emphasize that the characteristic time
scale may change dramatically from injection to post-injection, across τ = 1 (§§ 4.1 and 4.2).

encounters unsaturated water as it migrates, and all of this water must saturate
instantaneously as the leading edge travels over it. In this limit, we can again develop
semi-analytical solutions to (5.1) via the method of characteristics. Note that CO2

migration becomes independent of Nd in this limit because the water is assumed to
saturate instantaneously. All of the expressions and results for this limit simplify to
those from Part 1 when Γd = 0. Although the procedure we use here is general, we
again restrict our analysis to the flow-with-weak-slope interval, −M < Ns/Nf < 1, for
simplicity.

5.4.1. Initial condition in the instantaneous-saturation limit
Because the water beneath the plume saturates instantaneously relative to plume

migration, the initial condition for post-injection migration changes instantly from the
end-of-injection plume shape to a modified shape as CO2 from the plume dissolves to
saturate the water beneath. Recall from § 5.1 that the end-of-injection shape is assumed
to be symmetric across ξ = 0. Rearranging (5.4), the right half of the end-of-injection
shape is given by

ηi =


1 0< ξ < 1/M ,

(
√

M /ξ − 1)/(M − 1) 1/M < ξ <M ,

0 M < ξ.

(5.20)

The dimensionless volume of the end-of-injection shape is 2. The volume of free-
phase CO2 within an infinitesimal section of the end-of-injection plume at some
position ξ is (1− Swc)φηi(ξ) dξ . The volume of CO2 that can be dissolved in the water
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FIGURE 8. (Colour online) In the instantaneous-saturation limit, the plume contracts at
τ = 1+ as the water beneath the end-of-injection plume shape saturates instantaneously with
dissolved CO2. We therefore use a modified initial shape for post-injection migration in
this limit, as illustrated here for M = 2 (a) at the end of injection (5.20) and (b)–(d) after
saturating the water for Γd = 0.1–0.3, as indicated in (5.24). Free-phase CO2 is shown in dark
grey, water is shown in white, the curtain of water saturated with dissolved CO2 is shown in
mid grey (blue online), and the end-of-injection shape from (a) is indicated in (b)–(d) as a
dashed black line.

at the same position ξ is φχv(1 − η0(ξ)) dξ , where η0 is the shape of the plume after
saturating the water. Conserving the total mass of CO2 at position ξ before and after
the water saturates with dissolved CO2, we have that

(1− Swc)φηi = (1− Swc)φη0 + φχv(1− η0), (5.21)

which can be rearranged to give

η0 = ηi − Γd

1− Γd
. (5.22)

The new initial thickness η0 goes to 0 at ηi = Γd, which occurs at position

ξ ? = M

((M − 1)Γd + 1)2
. (5.23)

This is the position where the water column can dissolve exactly as much free-phase
CO2 as was present. For ξ < ξ ?, the water saturates completely before dissolving all
of the free-phase CO2; for ξ > ξ ?, the free-phase CO2 dissolves completely but is not
sufficient to saturate the water. We then have

η0 =


1 0< ξ < 1/M ,

(ηi − Γd)/(1− Γd) 1/M < ξ < ξ ?,

0 ξ ? < ξ.

(5.24)

We plot (5.24) in figure 8 for several values of Γd. The dimensionless volume
of this new initial shape is 2/((M − 1)Γd + 1), where a dimensionless volume
2(M − 1)Γd/((M − 1)Γd + 1) of free-phase CO2 has dissolved. Rewriting (5.24)
in terms of characteristics, we have

ξ 0
L (g)=−

M

((1− Γd)g+MΓd)
2 , ξ 0

R(g)=
M

((1− Γd)g+MΓd)
2 . (5.25)

This will be the initial condition for post-injection migration in the instantaneous-
saturation limit.
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FIGURE 9. (Colour online) Post-injection migration in the instantaneous-saturation limit for
case 2 of the flow-with-weak-slope interval, with M = 2, Γ = 0.5, Nf = 1, Ns = −0.75,
Swc = 0.4, and Γd = 0.1. (a) The evolution of the plume in characteristic space with waves of
the left and right fronts in dark grey (red online) and light grey (green online), respectively,
and the paths of the peak, the shock, and the leading and trailing edges of the plume in
solid black lines with open circles (blue online). (b)–(f ) The shape of the plume at several
times during migration, with mobile CO2 in dark grey, the region containing residual CO2
in light grey, the curtain of groundwater with dissolved CO2 in mid grey (blue online),
and groundwater in white. The curtain is approximate because we do not solve (4.2) in
this limit. Note that the characteristics contract instantaneously across τ = 1, where the
characteristic time scale changes from the injection time scale to the post-injection time scale.
This corresponds to the instantaneous saturation of the water beneath the end-of-injection
plume shape (§ 5.4.1). Unlike in the slow-saturation limit, the characteristics here are straight
lines. The leading edge of the plume is the instantaneous-saturation shock, which truncates
the plume by cutting across characteristics. For comparison, both the characteristics and the
plume shapes are drawn here on the same scale in space and time as those in figure 12 from
Part 1 and figure 7 above. We include the injection period here, but denote that portion of the
time axis (τ < 1) with dashed lines to emphasize that the characteristic time scale may change
dramatically from injection to post-injection, across τ = 1 (§§ 4.1 and 4.2).

5.4.2. Post-injection migration in the instantaneous-saturation limit
The instantaneous velocity of each wave in this limit is again G′/R̃, with G′ as

given in (5.7). Because only the leading edge of the plume experiences solubility
trapping in this limit, all other waves have constant thickness and therefore travel at
constant speed. The value of R̃ is again determined by the sign of G′. Given the
position of each wave at τ = 1 and its instantaneous velocity in post-injection, we can
write the position of each wave on the left and right fronts by integrating the velocity
in time,

ξL = ξ 0
L (g)+

1
1− Γ

(
−
[

Ns

M − 1

]
+
[
M Nf + M

M − 1
Ns

]
1
g2

)
(τ − 1), (5.26a)

ξR = ξ 0
R(g)+

(
−
[

Ns

M − 1

]
+
[
M Nf + M

M − 1
Ns

]
1
g2

)
(τ − 1), (5.26b)

The analysis then proceeds exactly as in Part 1 – waves collide, forming shocks or
peaks, and we divide the analysis into parts based on the types of collisions that occur.
For −(M − 1) < Ns/Nf , the left front compacts as it migrates. A shock will begin to
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build from the leftmost point on the left front at time

τ LL
σ = 1+ (1− Γ )(M − 1)(1− Γd)

((M − 1)Nf + Ns) ((M − 1)Γd + 1)3
. (5.27)

For Ns/Nf <−(M − 1), the right front compacts as it migrates. A shock will begin to
build from the rightmost point on the right front at time

τ σRR = 1− (M − 1)(1− Γd)

((M − 1)Nf + Ns) ((M − 1)Γd + 1)3
. (5.28)

For any value of Ns/Nf , the rightmost point on the left front and the leftmost point on
the right front will collide at time

τ RL
LR = 1+ 2(1− Γ )

Γ (Nf − Ns)
. (5.29)

We must then divide the flow-with-weak-slope interval into cases based on the order
in which these collisions occur. The possible cases here are again the same as in
Part 1, but the delineation between them now depends on Γd in addition to M , Γ , and
Ns/Nf . Unlike in the slow-saturation limit, the comparison of collision times can be
carried out explicitly for the first collision. For the collisions thereafter, however, the
expressions are implicit and we therefore again implement a decision-tree algorithm
to evaluate and compare these collision times, and evolve the plume accordingly. We
describe in detail below the remainder of the development for case 2. First, we handle
the propagation of the leading edge of the plume.

5.4.3. Nose position in the instantaneous-saturation limit
The leading edge of the plume dissolves rapidly in this limit, so we must handle

its propagation separately. As the leading edge propagates to the right, it must lose
enough mobile CO2 to saturate the water that passes beneath. As a result, the plume
is truncated at some moving position x? where all of the CO2 to the right of x? has
dissolved and all of the water to the left of x? is saturated. By definition, then, x? is the
position across which there is no flux of CO2. The volume flow rate of mobile CO2 to
the right at x? can be written

F?
g(x

?, t)= Fg(x
?, t)− (1− Swc)φh1(x

?, t)sd, (5.30)

where Fg is the total horizontal flow of CO2 from (2.2) and sd = dx?/dt. Similarly, the
volume flow rate of water to the left at x? can be written

F?
w(x

?, t)= φhw(x
?, t)sd − Fw(x

?, t), (5.31)

where Fw is the total horizontal flow of water from (2.7). The water flowing to the
left must dissolve and carry away the entire amount F?

g of CO2 so that no mobile CO2

crosses ξ ?, and we therefore have that F?
g = χvF?

w. Rearranging this expression gives

sd = Fg + χvFw

(1− Swc)φh1 + χvφhw
, (5.32)

where the right-hand side is evaluated at x?. This is the speed of the instantaneous-
saturation shock at the leading edge of the plume, given by the difference in the total
flux of CO2 across the shock divided by the difference in the total thickness of the
CO2 layer across the shock. Making sd dimensionless and writing it in terms of g in
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the hyperbolic limit, we have

σd = χv(M − 1)Nf g+ (1− χv)(M Nf (g− 1)+ Ns(M − g)(g− 1)/(M − 1))
(1− Γd)(g− 1)g+ (M − 1)Γdg

,

(5.33)

where σd is the dimensionless shock speed and the right-hand side is evaluated at ξ ?.
We can then formulate an ODE for the height of the shock as a function of time via
the same construction used in (5.19), but where the shock speed is given by (5.33).
This ODE is not separable for Γd 6= 0, so we integrate it numerically.

5.4.4. Flow with weak slope, case 2, in the instantaneous-saturation limit
In case 2, the first two collisions are the development of an incipient shock at

the left, which occurs at time τ σLL from (5.27), and the formation of a peak at the
bottom, which occurs at time τ RL

LR from (5.29). The ordering of these two collisions
is unimportant. The initial height of the peak is M , and the height of the peak as
a function of time is given by the value of g at which ξL and ξR intersect, which
yields a fourth-order polynomial in g. The height of the peak is the smallest root of
this polynomial on the interval g ∈ [1,M ]. Meanwhile, the right front is truncated as
the instantaneous-saturation shock evolves. The shock on the left evolves according to
an ODE constructed as in (5.19), but where ∂ξ/∂g and ∂ξ/∂τ are calculated using
the expression for the shape of the left front from (5.26). The shock evolves until
it collides with the peak, at which time the entire left front has become a shock.
Thereafter, the shock collides continuously with the right front until it collides with
the instantaneous-saturation shock at the leading edge of the plume. We plot the
characteristics and plume shapes for case 2 in the instantaneous-saturation limit in
figure 9.

6. Impact of solubility trapping on storage efficiency and migration speed
We now use the analysis of § 5 to study the competition between capillary and

solubility trapping, and the impact of solubility trapping on CO2 migration.
Recall that we have chosen a characteristic time in post-injection migration based on

groundwater flow so that Nf ≡ 1. We retain this choice here, but we report the results
in this section in terms of the ratios Ns/Nf and Nd/Nf so that they remain valid for
other choices of the characteristic time (§§ 4.2 and 5).

Further, recall that we have neglected the buoyant spreading term (the term
proportional to Ng) in the analysis for simplicity (§ 5), because the macroscopic
features of CO2 migration and trapping are little affected by even large values of
Ng compared to Nf or Ns (Hesse et al. 2008; Juanes & MacMinn 2008). All of the
results reported here are therefore strictly valid for Ng/Nf → 0.

As in Part 1, we interpret these results in the context of the storage efficiency, a
macroscopic measure of CO2 migration. The storage efficiency is the volume of CO2

stored per unit pore volume of aquifer ‘used’, and is an important metric in capacity
estimation (Bachu et al. 2007). We again define the storage efficiency ε as

ε = VCO2

VT
= QiTi

HLT(1− Swc)φ
= 2
ξT
, (6.1)

which is the ratio of the total volume of CO2 injected, QiTi, to the total pore volume
available for CO2 storage in a rectangle of thickness H and length LT , where LT

is the total extent in the x-direction of the fully trapped CO2 plume (Juanes &
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FIGURE 10. Both (a) the storage efficiency, ε, and (b) the fraction of CO2 trapped by
solubility trapping, Φd, increase monotonically with dimensionless rate of solubility trapping,
Nd/Nf . Here, we fix the values of Γ = 0.3, Nf = 1, Ns = −0.75, Swc = 0.4, and Γd = 0.06,
and show curves for three typical values of M , as indicated. Storage efficiency decreases
monotonically with M , as in Part 1, because the plume becomes longer and thinner as M
increases; Φd increases monotonically with M because the amount of solubility trapping is
proportional to the length of the plume. The water beneath the plume saturates more quickly
as Nd increases, and both ε and Φd approach a plateau in the instantaneous-saturation limit
where the water is completely saturated. The height of this plateau depends on Γd, but not
on Nd. The semi-analytical solutions in the slow-saturation limit (solid black line) and the
instantaneous-saturation limit (dashed black line) agree with numerical solutions to (4.1)
and (4.2) (black dots) to within a few per cent.

MacMinn 2008; Juanes et al. 2010) and ξT = LT/Lc. The storage efficiency is inversely
proportional to the dimensionless footprint of residual CO2, i.e. for a given volume of
CO2 injected, a larger footprint corresponds to less efficient storage.

We also consider an additional parameter here, which is the fraction Φd of CO2 that
has been trapped by solubility trapping once all of the CO2 has been trapped. This is a
measure of the importance of solubility trapping relative to capillary trapping since the
remaining fraction 1−Φd must be trapped by capillarity.

Our focus in Part 1 was the competition between flow and slope, as measured by the
ratio Ns/Nf . Here, we focus on the interactions between migration, capillary trapping,
and solubility trapping. For this purpose, we fix Ns/Nf , Γ , Γd, and Swc, and evaluate
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FIGURE 11. Solubility trapping can lead to a several-fold increase in storage efficiency
even when the fraction trapped by solubility trapping is small. For M = 8.5, we plot
here the storage efficiency ε from figure 10(a), scaled by the storage efficiency without
solubility trapping, ε0, against the corresponding fraction trapped by solubility trapping Φd
from figure 10(b). Both quantities increase monotonically with Nd/Nf (figure 10). Several
values of Nd/Nf are indicated for reference (black dots). Results shown here are from the
semi-analytical solutions for the limiting cases of slow saturation (solid black line) and
instantaneous saturation (black star). The transition from slow to instantaneous saturation
is not shown. The storage efficiency is twice the no-solubility-trapping value with only 20 %
of the CO2 trapped by solubility trapping, increasing in the instantaneous-saturation limit
to ∼6.6 times the no-solubility-trapping value with 52 % of the CO2 trapped by solubility
trapping.
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FIGURE 12. (Colour online) Solubility trapping reduces the speed at which the nose of the
plume advances, as shown here in the slow-saturation regime for M = 8.5, Γ = 0.3, Nf = 1,
and Ns = −0.75. (a) In space–time, we superpose the path of the nose for several values
of Nd (solid blue lines) onto the characteristics without solubility trapping (faded red, green,
blue lines). Without solubility trapping (Nd = 0), the path of the nose is a straight line in
space–time because the speed of the nose is constant (6.2). With solubility trapping, the
nose travels more slowly and its path in space–time is curved because its speed is no longer
constant (6.3). (b) The mean velocity of the nose (solid black line) decreases by more than
a factor of 2 from its no-solubility-trapping value (dashed black line) as Nd increases from
0 to 0.02. For Nd > 0.02, plume migration is no longer in the slow-saturation limit for these
parameters.
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FIGURE 13. (Colour online) Solubility trapping is increasingly important as Nd increases, but
capillary trapping plays an important role even for large Nd. Here, we show the time-evolution
of the volume fractions of mobile, residual, and dissolved CO2 for Nd = 0, 0.01, and 1 from
bottom to top, respectively, and for M = 5 (left) and 15 (right). The three volume fractions
must add to 100 % at all times. Residual CO2 does not dissolve in this model, so the fraction
trapped by solubility trapping is constant once all of the CO2 is trapped. We fix Γ = 0.3,
Nf = 1, Ns = −0.75, Swc = 0.4, Γd = 0.06. As Nd increases, the combination of capillary and
solubility trapping traps the plume more quickly (total migration time decreases, as indicated
here by the vertical, dashed, white lines), and over a shorter distance (storage efficiency
increases). Note that in the instantaneous-saturation limit (top row), the amount of dissolved
CO2 increases sharply at τ = 1 as the water beneath the end-of-injection plume saturates with
dissolved CO2; thereafter, solubility trapping occurs only at the leading edge (§ 5.4).

the storage efficiency and the fraction trapped by solubility trapping as a function of
the ratio Nd/Nf for several values of M .

Both the storage efficiency and the fraction trapped by solubility trapping increase
monotonically with Nd/Nf (figure 10). However, storage efficiency decreases with M
whereas fraction trapped by solubility trapping increases with M . This is because the
plume becomes longer and thinner as M increases, which slows capillary trapping
but increases the amount of solubility trapping. In this sense, capillary and solubility
trapping are complementary trapping mechanisms.
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Comparing storage efficiency to the fraction trapped by solubility trapping at the
same value of Nd/Nf , we find that the combination of capillary and solubility trapping
can greatly increase storage efficiency even when the fraction trapped by solubility
trapping is small (figure 11). This is a consequence of the complementary nature of
capillary and solubility trapping: capillarity traps CO2 at the short, trailing edge of the
plume, while convective mixing acts most strongly along the long, leading edge.

In particular, solubility trapping slows the speed at which the leading edge advances,
decreasing total migration distance and increasing the storage efficiency (6.1). Without
solubility trapping, the dimensionless speed of the nose of the plume is constant
((3.4d) from Part 1):

vnose = dξRR/dτ =M Nf + Ns. (6.2)

With solubility trapping, the speed of the nose in the slow-saturation limit can be
evaluated from (5.11), and is given by

vnose(τ )= M Nf +M Ns/(M − 1)

(1+ (M − 1)Nd(τ − 1))2
− Ns

M − 1
− 2M (M − 1)Nd

(1+ (M − 1)Nd(τ − 1))3
. (6.3)

The speed of the nose is no longer constant in time, so the nose now traverses a
curved path in space–time (figure 12a). In addition, the time-averaged speed of the
nose decreases monotonically with Nd (figure 12b). Slowing the leading edge of the
plume has a twofold impact on migration distance and therefore on storage efficiency:
it decreases both migration speed and total migration time. Slowing the leading edge
of the plume decreases total migration time because the plume of mobile CO2 shrinks
from the rear due to capillary trapping, becoming fully trapped when the trailing edge
catches the leading edge. This occurs more quickly when solubility trapping slows the
leading edge (figure 12a). Note that (6.3) is valid for all Ns/Nf >−M , except for the
narrow interval near Ns/Nf = −M where the leading edge of the plume is a shock
(see Part 1, §§ 3.1.4 and 3.1.5); for Ns/Nf < −M , the expression is identical except
that the last term changes sign. The advancement of the nose in the instantaneous-
saturation regime is more complicated because the leading edge is a shock, but the
behaviour is qualitatively similar.

Because solubility trapping acts most strongly along the long, leading edge of the
plume, capillary trapping remains important even for large values of Nd. We illustrate
the complementary nature of capillary and solubility trapping via the time-evolution of
the volume fractions of mobile, residual, and dissolved CO2 (figure 13). This provides
a quantitative, physical understanding of the time-evolution of the role of trapping
mechanisms in immobilizing the buoyant CO2, as recognized qualitatively in terms of
perceived storage security in IPCC (2005, p. 208, figure 5.9).

7. Conclusions
In Part 1 of this series, we presented a complete solution to a theoretical model

for the subsurface migration and capillary trapping of a plume of CO2 in a confined,
sloping aquifer with a natural groundwater through-flow. Here, we considered the
impact of solubility trapping. We incorporated solubility trapping into the migration
model, including the dissolution-limiting effect of the finite amount of water beneath
the plume, and we identified two limiting cases in CO2 migration with solubility
trapping. We developed semi-analytical solutions to the migration equation in these
limits, when the water beneath the plume saturates very slowly or very quickly
(‘instantaneously’) relative to the motion of the plume. As in Part 1, we used these
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solutions to explore the parameter space via the storage efficiency, a macroscopic
measure of plume migration, and here also via the fraction of CO2 that is ultimately
trapped by solubility trapping.

We showed that capillary and solubility trapping are complementary trapping
mechanisms because capillarity traps CO2 at the short, trailing edge of the plume,
while solubility trapping acts most strongly along the long, leading edge. Solubility
trapping is most effective at large values of M , when the plume is long and thin,
and this is precisely when capillary trapping is least effective. We further showed that
solubility trapping can lead to a several-fold increase in storage efficiency even when
the fraction of CO2 dissolved is small, because solubility trapping slows the speed
at which the plume advances. However, capillary trapping plays an important role
even when the rate of solubility trapping is large. As the rate of solubility trapping
increases, the combination of the two mechanisms traps the plume more quickly (total
migration time decreases), and over a shorter distance (storage efficiency increases).
These results are useful for the insight they provide into the physics of CO2 migration
and trapping, and may also aid benchmarking and interpreting the predictions of more
complicated numerical models.

We have derived and studied a simple but physics-based model and, in doing so,
we have made many simplifying assumptions. For example, our analysis is planar,
assuming line-symmetry and neglecting lateral flow. This assumption is justified by
the injection scenario we consider, injection at the scale of a geologic basin via a
line-drive array of wells. However, three-dimensional flow may become important at
later times as the plume migrates sufficiently far from the injection wells, or if the
direction of groundwater flow is not completely aligned with the slope. We have also
assumed that the thickness of the aquifer is uniform and that the caprock is flat:
in practice, this is rarely the case. These effects are not included here, but can be
accounted for in a computational framework (Gasda, Nordbotten & Celia 2009; Gasda
et al. 2011).

We have not included leakage here; however, the CO2 plume will probably
encounter faults or fractures in the caprock as it migrates because its areal footprint
will be very large. Capillary entry pressure will inhibit leakage in many cases, but the
impact of leakage will ultimately be very sensitive to the distribution and permeability
of the leakage pathways (Pritchard 2007; Farcas & Woods 2009; Neufeld et al. 2009;
Woods & Farcas 2009).

Further, although we have assumed that the aquifer is homogeneous, all natural
rocks are heterogeneous at some scale. The impact of heterogeneity on CO2 migration
and trapping is not well understood, but it will depend strongly on the nature, scale,
and distribution of the heterogeneity.

These considerations are beyond the scope of this study, but they will have some
quantitative bearing on the results presented here. However, it is unlikely that they will
have a strong qualitative impact on the fundamental nature of the interaction between
slope and groundwater flow, or the competition between capillary and solubility
trapping.
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