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Materials and Methods

Analog fluid system. We work with analogue fluids rather than CO2 and water to allow
experiments at room temperature and pressure, where the solubility of CO2 in water is extremely
low (∼ 0.15% by mass) and the density and viscosity of CO2 are much lower than at reservoir
conditions. In order to conduct experiments with and without convective dissolution, we use two
different pairs of analogue fluids.

In the analogue system with convective dissolution, water plays the role of the buoyant CO2

and propylene glycol (PG) plays the role of the denser and more viscous ambient groundwater [1].
Although pure PG is denser than water (∆ρ ≈ 36 kg/m3), the density of water-PG mixtures is
non-monotonic with water concentration and mixtures of the two with up to about 54% water are
denser than pure PG [Fig. S1(a)]. As a result, a layer of water will float above a layer of PG while
simultaneously dissolving into the PG by convective dissolution, as fingers of the dense mixture
that forms at the interface between the two sink downward into the PG [Fig. S1(c)].

To study buoyant currents without convective dissolution, we replace the PG with a mixture
of glycerol and water. All such mixtures are denser and more viscous than water. We choose one
for which the viscosity contrast is similar to the water-PG system (77.5% glycerol by mass, for
which ∆ρ ≈ 200 kg/m3 andM≈ 40) [Fig. S1(b)]. As in the water-PG system, the buoyant water
will mix with the dense glycerol-water mixture along their shared interface. Unlike in the water-
PG system, this will never trigger convective dissolution because the density of water-glycerol
mixtures is monotonic in water concentration.

With these two fluid pairs, we are able to study buoyant currents with and without convective
dissolution while keeping other parameters approximately constant. In both systems, we add a
small amount of blue food dye to the water for visualization.

Flow cell and experimental procedure. We conduct experiments in a quasi-two-dimensional
flow cell packed with spherical glass beads. The cell is constructed from three pieces of laser-cut
acrylic—solid front and rear panels, and a middle spacer that frames the working area. The work-
ing area is 5.2 cm tall, 56 cm long, and about 1 cm thick. The spacer is held tightly between the
front and rear panels via bolts. Once assembled, we orient the cell “vertically” (long direction
aligned with gravity) and fill it with glass beads via a port. We tap the cell vigorously during filling
to generate a tight, consistent bead pack. Once the cell is full, we plug this port.

For simplicity, we work with only one bead size: spherical beads with a nominal mean diameter
of 1.25 mm. We use soda-lime glass spheres from Mo-Sci Specialty Products, LLC, with a nominal
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Figure S1. (color online). We study buoyant currents with convective dissolution using analogue fluids:
water and propylene glycol (PG). Pure PG is denser and more viscous than water, but a mixture of the two
is denser than either component for water mass fractions less than about 0.54, and this drives convective
dissolution [1]. Here we show (a) the amount by which the density of the mixture exceeds the density of
pure PG, (b) the ratio of the viscosity of the mixture to the viscosity of pure water (circles are experimental
measurements at 25 ◦C [2; 3] and solid lines are polynomial fits to the data), and (c) a snapshot from an
experiment in a Hele-Shaw cell where a layer of buoyant water floats above a layer of denser PG while
dissolving into PG via convective dissolution.
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Figure S2. (color online) Snapshots of experiments in the flow cell packed with glass beads. Left: a buoyant
current of water (dark) migrates over glycerol and water. Right: a buoyant current of water (dark) migrates
over PG while dissolving via convective dissolution. We superpose the predictions of the model (red lines)
on the experimental snapshots.
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size range of 1.0–1.5 mm (Mo-Sci GL0191SB/1000-1500).
The porosity of the packed cell is the ratio of the volume of fluid in the cell to the bulk internal

volume of the cell. From four measurements, we find that the mean porosity of the packed cell is
φ = 0.388 with a standard deviation of 0.002. This is consistent with the expected porosity of a
poured random packing of monodisperse spheres. Because we disassemble, clean, reassemble, and
repack the cell after each measurement, the small standard deviation indicates that the properties
of the packed cell are sufficiently consistent across experiments.

We measure the effective permeability of the packed cell directly by treating it as a fitting
parameter: when comparing the model to an experiment for a buoyant current without convective
dissolution (qd = 0), this is the only unknown quantity. Since we expect the properties of the
packed cell to be consistent across experiments, we fit the permeability for one experiment and
use this same value for all other experiments, with and without convective dissolution. We find
the permeability of the packed cell to be k = 9.5 × 10−10 m2. For comparison, the Kozeny-
Carman relation for the permeability of a packed bed of monodisperse spheres predicts, for the
same nominal diameter and porosity, a permeability of 13.5× 10−10 m2, or about 50% larger. That
our measured value is somewhat lower than the prediction is consistent with the fact that our beads
are not monodisperse.

We also conduct experiments in a Hele-Shaw cell. The materials and methods are the same
except that we replace the middle spacer with a thinner one so that the working area has a thickness
of about 1.4 mm. The porosity of a Hele-Shaw cell is φ ≡ 1. We measure the effective permeability
of the Hele-Shaw cell to be 0.95 × 10−7 m2, which compares well with the estimated value of
b2/12 = 1.6× 10−7 m2 for a Hele-Shaw cell of thickness b = 1.4 mm.

To perform an experiment, we orient the packed flow cell “vertically” (long direction aligned
with gravity) and inject the dense fluid from the bottom. We then add the buoyant fluid via an
injection port at the top, close all ports, and rotate the cell to the desired orientation (an angle ϑ
from horizontal) to initiate the fluid flow. We record the experiment with a digital still camera.
From the resulting images, we measure the position of the leading edge or “nose” of the current as
a function of time.

Comparing the model with the water-PG experiments requires determining one additional pa-
rameter: the rate of convective dissolution qd. Recent numerical and experimental work has shown
that qd is approximately constant on average [1; 4–9]. We are unable to measure this rate directly
in our migrating-current experiments because we do not perform a concentration-to-light-intensity
calibration. Instead, we measure this rate via an independent experiment in the packed flow cell
for a stationary layer of water overlying PG. To do so, we leave the flow cell in the vertical orien-
tation (long direction aligned with gravity) after adding the buoyant fluid. The rate at which the
water-PG interface retreats is a direct measurement of the rate of convective dissolution [1; 7]. We
measure this rate to be qd = 7.0× 10−8 m/s. The rate of convective dissolution has dimensions of
length per time because it is the volume of buoyant fluid dissolved per unit interfacial area per unit
time. The dissolving interface retreats at velocity qd/φ. Although measured for a stationary layer,
we assume that this dissolution rate applies also to a migrating current. High-resolution numerical
simulations offer a promising avenue for assessing the validity of this assumption.

We compare the nose positions measured experimentally with those predicted by the model
[Eq. (1)] in Fig. 2 of the main text. The model also captures the evolution of the shape of the
buoyant current (Figure S2).
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Mathematical model with capillary and solubility trapping. We have elsewhere devel-
oped and discussed a sharp-interface model for the macroscopic evolution of a buoyant current of
CO2 in a sloping aquifer with a net groundwater through-flow, subject to residual and solubility
trapping [10].

In developing the model, we have neglected capillarity and assumed vertical flow equilibrium.
The assumption of negligible capillarity is justified when the capillary pressure is small relative to
typical viscous and gravitational pressure changes in the flow. While capillarity may have some
macroscopic impact on the evolution of the buoyant current [11–13], the focus of this study is on
the impact of convective dissolution, and we do not expect capillarity to have a qualitative impact
on the results presented here. The assumption of vertical flow equilibrium involves neglecting
the vertical component of the fluid velocity relative to the horizontal one, which requires that the
buoyant current is thin relative to its length. This assumption is not met in our experiments at early
times since we use an initial condition that is roughly square (Fig. S2), but rapidly becomes valid
as the current lengthens and thins. We estimate that vertical flow becomes negligible when the
dimensionless length of the current is greater than about 3 [14; 15], which occurs at very early
times in our experiments (Fig. 2).

With no net fluid flow through the cell, the model takes the form

R̃∂h
∂t

+ κ
∂

∂x

[
sinϑ (1− f)h− cosϑ (1− f)h

∂h

∂x

]
= −R̃ qd/φ, (S1)

with

R̃ =

{
1 if ∂h/∂t > −qd/φ,

1− Γ otherwise,
(S2)

where Γ = Sgr/(1− Swc) is the residual trapping number and the other parameters are as defined
in the main text. The conditional coefficient R̃ accounts for residual trapping by taking a value of 1
on portions of the interface that are in drainage (where CO2 displaces water) and a value of Γ ≤ 1
on portions that are in imbibition (where water displaces CO2, and blobs of CO2 are left behind).
When there is no residual trapping, Γ ≡ 1 and Eq. (S1) reduces to Eq. (1) of the main text.

We solve Eq. (S1) for the interface height h in the half-space x ≥ 0, subject to the Neumann
boundary conditions (∂h/∂x = 0) at the ends of the cell and for an initial condition that approx-
imates the step function h(x, t = 0) = 1 for x < 1 and h(x, t = 0) = 0 for x > 1. Although
Eq. (S1) can be solved analytically in some limits [10], we solve it numerically in general using a
finite-volume method in space with explicit time integration.

Estimation of parameters for the Mt. Simon Sandstone. As discussed in §5, we consider
a migrating current of CO2 in the Mt. Simon sandstone (Region a as discussed in §S5.1 of [16]).
We assume that M = 10 Gt of CO2 are injected uniformly along a linear array of wells of length
W = 200 km. This is about one-half of the pressure-constrained capacity of this formation, which
[16] estimated as about 23 Gt of CO2 injected over about 100 years [16, Figure 3 and Table S23].

We estimateM, Ns, and Nd for this scenario using parameters from [16, Table S2]. We report
the relevant parameters here in Table S1. We use a conservative value of the residual trapping
number Γ ≈ 0.2 and consider angles ranging from 0 to 2 degrees. The actual slope of this aquifer
is ϑtrue ≈ 0.5◦ and we can estimate Γtrue ≈ Sgr/(1− Swc) = 0.5.
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Parameter Value
ρg 700 kg ·m−3

ρw 1000 kg ·m−3

µg 6× 10−5 Pa · s
µw 8× 10−4 Pa · s
k 1× 10−13 m2

φ 0.2
H 400 m
ϑ 0.5◦

Sgr 0.3
Swc 0.4
χv 0.05
α 0.01

∆ρd 6 kg ·m−3

Table S1. Parameters for Region a of the Mt. Simon sandstone from Table S2 of [16]. See §S5.1 and
Table S2 of [16] for more details.

From these parameters, we calculate ∆ρ = ρw − ρg = 300 kg · m−3 and κ = ∆ρ gk/φµg =
2.5× 10−5 m/s. The characteristic initial width of the CO2 plume is L = M/(ρgφHW ) ≈ 890 m
and the characteristic time is T = L2/(Hκ cosϑ) ≈ 8.1 × 107 s. We estimate the dissolution
flux to be qd = αχv∆ρdgk/µw ≈ 3.7 × 10−12 m/s, where χv ≈ 0.05 is the maximum equivalent
volume of free-phase CO2 that can dissolve in one unit volume of groundwater, corresponding to
a maximum solubility of mass fraction χm = ρgχv/(ρw + ∆ρd) ≈ 0.035 [10, §3.2]. We then have
thatM = µw/µg ≈ 13, Nd = L2qd/(H

2φκ cosϑ) ≈ 3.7 × 10−6, and Ns = (L/H) tanϑ ≈ 0 to
0.078 for angles ranging from 0 to 2 degrees.
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