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Summary

We study sequential formulations for coupled multiphase flow and
reservoir geomechanics. First, we identify the proper definition of
effective stress in multiphase-fluid systems. Although the average
pore-pressure p—defined as the sum of the product of saturation
and pressure of all the fluid phases that occupy the pore space—is
commonly used to describe multiphase-fluid flow in deformable po-
rous media, it can be shown that the “equivalent” pore pressure
pE —defined as p minus the interfacial energy—is the appropriate
quantity (Coussy 2004). We show, by means of a fully implicit anal-
ysis of the system, that only the equivalent pore pressure pE leads to
a continuum problem that is thermodynamically stable (thus, nu-
merical discretizations on the basis of the average pore pressure p
cannot render unconditionally stable and convergent schemes). We
then study the convergence and stability properties of sequential-
implicit coupling strategies. We show that the stability and conver-
gence properties of sequential-implicit coupling strategies for sin-
gle-phase flow carry over for multiphase systems if the equivalent
pore pressure pE is used. Specifically, the undrained and fixed-stress
schemes are unconditionally stable, and the fixed-stress split is
superior to the undrained approach in terms of convergence rate.
The findings from stability theory are verified by use of nonlinear
simulations of two-phase flow in deformable reservoirs.

Introduction

The coupling of mechanical deformation and multiphase-fluid
flow in porous media is central to many natural and man-made
systems in civil, environmental, and petroleum engineering. For
example, in civil engineering, soils can shrink as a result of water
evaporation, because vaporization decreases the fluid pore pres-
sure and results in compressive effective stresses (Coussy et al.
1998); frost heaving caused by phase changes of water can lead to
an increase in the fluid pore pressure causing tensile effective
stresses; and porous materials such as concrete can suffer from
tensile failure and cracking (Coussy 2005).

In environmental engineering, the disposal of nuclear waste in
the subsurface increases the temperature of the geological forma-
tion, which can lead to changes in the mechanical equilibrium and
the hydrological properties (e.g., permeability or porosity). In car-
bon dioxide (CO2) sequestration operations, injection of CO2

underground will cause an increase in pore pressure, and this will
limit storage capacity (Szulczewski et al. 2012), and may lead to
induced seismicity (Cappa and Rutqvist 2011) and potentially
affect caprock integrity and cause leakage of CO2 (Chiaramonte
et al. 2008; Rutqvist et al. 2008; Morris et al. 2011). For geother-
mal fields, injection of cold water and production of hot water can
lead to significant geomechanical deformation.

In petroleum engineering, the oil industry deals with a wide
range of problems that involve geomechanical deformation,
including the stability of boreholes and surface facilities, hydrau-
lic fracturing, reservoir compaction, sand production, and heavy
oil and gas-hydrate recovery (e.g., Merle et al. 1976; Kosloff et al.
1980; Lewis and Schrefler 1998; Bagheri and Settari 2008; Free-

man et al. 2009; Jain and Juanes 2009; Rutqvist and Moridis
2009; Holtzman and Juanes 2011; Holtzman et al. 2012; Kim
et al. 2012a, 2012b). These challenging engineering problems
involve complex interactions between geomechanics, fluid flow,
and heat transfer. Capillarity effects such as matrix suction play a
critical role in unsaturated soil mechanics—for example, signifi-
cantly affecting the material strength, fluid flow, subsurface defor-
mation, and the effective-stress state (Maswoswe 1985; Josa et al.
1987; Josa 1988; Alonso et al. 1990; Fredlund and Rahardjo
1993a, 1993b; Olivella et al. 1996; Terzaghi et al. 1996; Khalili
and Khabbaz 1998; Dangla et al. 2000; Mainguy et al. 2001;
Mayor et al. 2007; Zhang et al. 2007; Nuth and Laloui 2008). In
geotechnical engineering, civil engineering, or radioactive waste
disposal problems, capillary pressures can experience magnitudes
up to 0.2 MPa in sandy clay (Alonso et al. 1990), 1.0 MPa
for clayey silt (Fredlund and Rahardjo 1993b), 20.0 MPa from
the ventilation test in the Mont Terri underground laboratory
(Mayor et al. 2007), 100 MPa for the Opalinus clay or clay bar-
riers (Dangla et al. 2000; Zhang et al. 2007), and higher than 100
MPa for hardened cement or concrete samples (Mainguy et al.
2001).

Several authors have proposed constitutive relations to model
coupled flow and mechanics (e.g., Biot 1941; Biot and Willis
1957; Geertsma 1957; Bishop 1959; Alonso et al. 1990; Fredlund
and Rahardjo 1993b; Lewis and Sukirman 1993b; Coussy 1995;
Lewis and Schrefler 1998; Coussy 2004; Borja 2006). Biot (1941),
Geertsma (1957), and Biot and Willis (1957) developed the consti-
tutive equations for single-phase flow of a slightly compressible
fluid, and they proposed laboratory tests to determine the various
coupling coefficients.

For multiphase flow, the definition of the effective stress is still
controversial, and several constitutive models have been pro-
posed. For example, Bishop (1959) proposed a formulation of
effective stress in a water-air system by introducing a weighted
suction term. The weighting of this term is determined through
laboratory experiments, and depends on the type of geomaterial
(Bishop and Donald 1961; Khalili and Khabbaz 1998). Alonso
et al. (1990) introduced a constitutive model to capture suction
effects in poroplasticity. Nuth and Laloui (2008) reviewed and
compared effective-stress models, classifying them into three
types: independent-variable effective stresses, Category 1 effec-
tive stresses, and Category 2 effective stresses. In the independ-
ent-variable effective-stress approach, deformation is modeled by
two independent state variables, such as total stress minus air
pressure and suction (Alonso et al. 1990). The effective stress of
Category 1 is expressed by the total stress minus air pressure and
an additional term that is a function of suction, whereas that of
Category 2 employs an additional term that is a function of suc-
tion and phase saturation. Among the three types of formulations,
Nuth and Laloui (2008) conclude that effective stresses of Cate-
gory 2 are the most advantageous and robust when dealing with
saturated-unsaturated transitions, hysteresis effects, and harden-
ing. The constitutive models proposed by Lewis and Schrefler
(1998), Borja (2006), and Coussy (2004) all use effective stresses
of Category 2. The model by Lewis and Sukirman (1993b) and
Lewis and Schrefler (1998) provides explicit expressions of the
physical quantities of interest (i.e., coefficients in the governing
equations), which can be used in engineering applications. The
model of Borja (2006), examining different definitions of the
effective stress, shows that the coupling is thermodynamically
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stable. However, Borja (2006) proposed experiments to determine
the physical quantities, such as the bulk modulus, that are some-
what different from those proposed by Biot and Willis (1957).
The models by Coussy (1995) and Coussy et al. (1998) provide
thermodynamically consistent constitutive relations for more gen-
eral cases, including large deformation and plasticity.

Two numerical solution strategies are commonly used for
the solution of coupled flow–mechanics problems: fully implicit
(monolithic) and sequential-implicit (staggered) methods. In the
fully implicit method (FIM), one solves the coupled discrete non-
linear system of equations simultaneously, typically using the
Newton-Raphson scheme (Lewis and Sukirman 1993a, 1993b;
Sukirman and Lewis 1993; Pao et al. 2001; Gutierrez and Lewis
2002; Pao and Lewis 2002; Lewis et al. 2003; Li et al. 2005; Fer-
ronato et al. 2010). FIM guarantees unconditional stability for a
well-posed problem. In practice, the FIM approach is quite costly,
in terms of both the effort required to develop a unified flow-
mechanics code and the need for computational resources. In con-
trast, sequential approaches split the coupled problem into two
subproblems—one for flow and one for mechanics—and the two
problems are then solved in sequence. A sequential coupling strat-
egy allows the integration of two separate simulation codes, each
designed specifically for modeling either flow or mechanics.
Although this flexibility is highly desirable, sequential schemes
are advantageous for solving coupled flow–mechanics problems
of practical interest only if their stability and convergence proper-
ties are competitive with those enjoyed by FIM.

Considerable effort has been invested in devising sequential-
implicit methods with improved accuracy, stability, and conver-
gence properties. For dynamic mechanics and single-phase-fluid
(or heat) flow, Zienkiewicz et al. (1988) and Armero and Simo
(1992, 1993) proposed an unconditionally stable scheme based on
an undrained split of the flow and mechanics problems. Armero
and Simo (1992) showed that the undrained split honors the dissi-
pative character of the coupled flow–mechanics problem. Armero
(1999) applied the undrained split to the coupled, quasistatic, sin-
gle-phase-fluid flow and mechanics in the presence of finite defor-
mation. Settari and Mourits (1994) proposed a sequential-implicit
method, where the flow problem is solved first, followed by the
mechanics problem. When the flow problem is solved first, the
“rock compressibility” term can be used as a relaxation parameter
to control the convergence rate of the overall coupled scheme
(Settari and Mourits 1994, 1998; Mainguy and Longuemare 2002;
Jean et al. 2007). Recently, Kim et al. (2011a, 2011b, 2011c) per-
formed stability and convergence analyses of sequential-implicit
solution strategies of coupled geomechanics and single-phase
flow in porous media. They studied four coupling strategies:
drained, undrained, fixed-strain, and fixed-stress. They concluded
that the undrained and fixed-stress methods have superior stability
properties compared with the drained and fixed-strain variants.
They also showed that the fixed-stress coupling strategy leads to
faster convergence rates compared with the undrained approach
(Kim et al. 2011a).

In engineering practice, multiple fluid phases (water, oil, and/
or gas) are often present in the pore space of the formation under
consideration. Therefore, the primary objective of this work is to
devise effective solution strategies for coupled flow and geome-
chanics problems when multiple fluid phases share the pore space.
However, before we can turn our attention to coupling issues and
efficient sequential (staggered) solution strategies, we first need to
determine which definition of effective stress renders a well-posed
continuum problem. Here, we show that the equivalent pore-pres-
sure pE, as defined by Coussy (2004), is the appropriate definition
of pressure to be used when solving the coupled problem, and that
the saturation-weighted pore-pressure p is not adequate, espe-
cially when capillarity is strong. Then, once the proper definition
of pore pressure (i.e., pE) in the governing equations and constitu-
tive relations is identified, we perform a thorough analysis of the
stability and convergence properties of sequential-implicit strat-
egies for the solution of coupled geomechanics-flow problems in
the presence of strong capillarity.

Mathematical Formulation

We use a classical continuum representation, where the fluids and
the solid skeleton are viewed as overlapping continua. The gov-
erning equations for flow and mechanics are obtained from mass
and linear-momentum balances, respectively. For multiphase
flow, the mass-conservation equation is expressed as

dmJ

dt
þ Div wJ ¼ ðqf ÞJ ; ð1Þ

where the subscript J denotes a particular fluid phase. Here, m is
fluid mass per unit volume of porous medium, q is density, f is a
volumetric source term, Divð�Þ is the divergence operator, and wJ

is the mass-flux of fluid phase J relative to the solid skeleton. The

accumulation term,
dmJ

dt
, describes the time variation of fluid mass

relative to the motion of the solid skeleton. From here on, we
denote by dð�Þ=dt the change of a quantity ð�Þ relative to the
motion of the solid skeleton.

The volumetric flux of phase J, vJ¼ (w/q0)J, is given by
Darcy’s law as

vJ ¼ �
1

BJ

kp;JK

lJ

ðGradpK � qKgÞ; ð2Þ

where kp,JK is the effective-permeability tensor in the presence of
two fluid phases J and K, and lJ and BJ¼ (q0/q)J denote the vis-
cosity and formation volume factor (normalized phase density) of
fluid phase J, respectively (Aziz and Settari 1979). Double indices
(e.g., K in Eq. 2) indicate summation. Typically in reservoir simu-
lation, kp,JK is split into an absolute permeability kp and a relative
permeability kr

JK, which is expressed as kp;JK ¼ kpkr
JK, where

kr
JK ¼ 0 if J=K.

Under the quasistatic assumption, the governing equation for
mechanical equilibrium can be written as

Div rþ qbg ¼ 0; ð3Þ

where r is the Cauchy total-stress tensor, g denotes gravity,
qb¼/qfþ (1 – /)qs is bulk density, qf is total fluid density, qs is
solid-phase density, and / is the “true” porosity. The true porosity
is defined as the ratio of the pore volume to the bulk volume in
the deformed configuration. In this paper, we assume small defor-
mation (i.e., the infinitesimal transformation is applicable), iso-
tropic geomaterial, and isothermal conditions. On the basis of
these assumptions, the changes in total stress and fluid pressure(s)
are related to changes in strain and fluid content, as follows
(Coussy 1995, 2004):

dr ¼ Cdr : ðde� depÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
dr0

�bJdpJ1; ð4Þ

dpJ ¼ MJK �bKðdev � dev;pÞ þ
dm

q

� �
K

� d/K;p

� �� �
;

� � � � � � � � � � � � � � � � � � � ð5Þ

dj ¼ �H � dn; ð6Þ

where the variation of the elastic fluid content of phase J is

dm

q

� �
J;e

¼ dm

q

� �
J

� d/J;p: ð7Þ

Here, subscripts e and p denote elastic and plastic, respectively; e is
the total strain tensor; and Cdr represents the tensor of elastic drained
bulk moduli. We define r0, the effective stress, in the incremental
form as dr0 ¼Cdr:dee, where r0 ¼ 0 at ee¼ 0. ee¼ e� ep is the elas-
tic strain. The Biot moduli matrix and Biot coefficient are denoted,
respectively, by M¼ (MJK) and b¼ (bJ). j and n are the internal
stress-like and strain-like plastic variables, respectively. H is a hard-
ening modulus matrix. Here, M and H are assumed to be positive-
definite, which is a sufficient condition for thermodynamic stability
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(Coussy 1995). We use the explicit expression of the Biot modulus
matrix M presented in Lewis and Sukirman (1993b) and Lewis and
Schrefler (1998). We set bJ¼ b SJ (Lewis and Sukirman 1993b;
Coussy et al. 1998; Lewis and Schrefler 1998), where b is the Biot
coefficient for single-phase flow (Biot and Willis 1957; Coussy
1995); ev indicates the total volumetric strain. The plastic porosity
/p and plastic volumetric strain ep,v can be related to each other by
assuming that d/p¼ bdep,v. Here, we further assume that b¼ b
(Armero 1999), which yields

d/p ¼ bdep;v: ð8Þ

Pressure Definition for Multiphase Problems

There are two widely used definitions of pressure when multiple
fluid phases saturate the porous medium: the average pore pres-
sure p and the equivalent pore pressure pE.

Several investigators (Lewis and Sukirman 1993b; Lewis and
Schrefler 1998; Rutqvist et al. 2001; Wan 2002; Gai 2004; Yin
et al. 2009) write the total stress as

r� r0 ¼ Cdr : ðe� epÞ � bðp � p0Þ1; ð9Þ

where the subscript 0 denotes the reference state. Eq. 9 is modeled
after the assumption that the average pore pressure defined as

p ¼ SJpJ ; ðsummation over fluid phases is impliedÞ;
� � � � � � � � � � � � � � � � � � � ð10Þ

is the appropriate definition when multiple fluid phases occupy
the pore space. Then, Eq. 9 leads to

dr ¼ Cdr : ðde� depÞ � ðbJdpJ þ ~bJdSJÞ1; ð11Þ

where ~bJ¼ b pJ.
In contrast, Eq. 4 is rooted in the concept of equivalent pore

pressure pE, which is defined as (Coussy 2004)

pE ¼ p � U; ð12Þ

where U is the surface (interfacial) energy. The interfacial energy
U is defined, in incremental form, as

dU ¼ pJdSJ : ð13Þ

Substituting pE into Eq. 9 instead of p, we obtain Eq. 4. For an
isothermal system with two fluid phases (e.g., oil and water) in
the porous medium, the interfacial energy can be determined from
the capillary pressure relation with

UðSwÞ ¼
ð1

Sw

PcðSÞdS; ð14Þ

where Sw is the water (wetting phase) saturation and Pc is the oil-
water capillary pressure relation. The reference condition for U is
taken as U¼ 0 when Sw¼ 1.

Compared with Eq. 4, Eq. 11 has an additional term because
of capillarity. Coussy (2004) argues that pE must be used (Eq. 4)
instead of p (Eq. 11) when capillary forces are significant. Eq. 4 is
derived by starting from a continuum description (i.e., macro-
scopic view) (Coussy 1995, 2004), whereas Eq. 11 is obtained
from volume averaging starting from a microscopic description.

Next, we address the question of which pressure definition, p
or pE, is appropriate for multiphase flow in porous media. For that
purpose, we rely on the fact that, because the coupled physical
problem must be dissipative, the constitutive model used should
yield a well-posed mathematical statement.

Contractivity of the Mathematical Statement

We analyze the contractivity properties of the mathematical state-
ment of coupled geomechanics and multiphase flow for both p

and pE. The analysis is performed using the norm based on the
complementary Helmholtz free energy, motivated by Coussy
(1995); namely,

kfmk2
T m
¼ 1

2

ð
X
ðr0 : C�1

dr r0 þ j �H�1jþ pJNJKpKÞdX;

T m :¼ ½fm :¼ ðr0; j; pÞ 2 S� Rnint � Rnp

: r0ij 2 L2ðXÞ; ji 2 L2ðXÞ; pJ 2 L2ðXÞ�;
� � � � � � � � � � � � � � � � � � � ð15Þ

where r0ij and ji are the components of r0 and j, respectively; np

is the number of fluid phases; and p¼ {pJ}. N¼ {NJK} and

M¼ {MJK}, where M¼N�1. S ¼ Rðndimþ1Þndim=2 is the vector
space of symmetric rank-two tensors (Marsden and Hughes
1983), where ndim is the dimension of the domain X. The sub-
script m denotes multiphase conditions.

We first investigate the contractivity of the coupled problem
in Eqs. 4 through 7, which use the equivalent pore pressure, pE.

Let (u0, p0, n0) and (~u0, ~p0, ~n0) be two arbitrary initial condi-

tions, and let (u, p, n) and (~u, ~p, ~n) be the corresponding solu-
tions, which yield (r0, m, j, ep) and (~r0, ~m, ~j, ~ep), respectively,
where m¼ {mJ}. The difference between the two solutions is

denoted by dð�Þ ¼ ð�Þ � ~ð�Þ. Let the corresponding solutions
from two arbitrary initial conditions be close enough, such that
they honor the incremental form of the constitutive relations;
namely,

dr ¼ Cdr : ðde� depÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
dr0

�bJdpJ 1; ð16Þ

dpJ ¼ MJK �bKðdev � dep;vÞ þ
dm

q

� �
K

� d/p;K

� �� �
;

� � � � � � � � � � � � � � � � � � � ð17Þ

dj ¼ �H � dn: ð18Þ

Substitution of Eqs. 16 through 18 into Eq. 15 leads to

kdfmk2
T m
¼ 1

2

ð
X
ðdr0 : C�1

dr dr0 þ dj �H�1djþ dpJNJKdpKÞdX

¼ 1

2

ð
X

(
dee : Cdrdee þ dn �Hdnþ dm

q

� �
J;e

� bJdee;v

" #

�MJK
dm

q

� �
K;e

� bKdee;v

" #)
dX;

¼ kdvmk2
N m � � � � � � � � � � � � � � � � � � � � � � � � � � ð19Þ

where we define the norm of kvmkN m
as

kvmk2
N m
¼ 1

2

ð
X

(
ee : Cdree þ n �Hnþ m

q

� �
J;e

� bJee;v

" #

�MJK
m

q

� �
K;e

� bKee;v

" #)
dX; � � � � � � ð20Þ

N m :¼ ½v :¼ ðee; n;meÞ 2 S�Rnint �Rnp : eei; j
2 L2ðXÞ;

ni 2 L2ðXÞ;mJ;e 2 L2ðXÞ�; � � � � � � � � � � � � ð21Þ

which originates from the Helmholtz free energy (Coussy 1995).
Because the solutions from two arbitrary initial conditions sat-

isfy the governing equations and the boundary conditions, Eqs. 1
and 3 yield

Div dr ¼ 0; d _mJ þ Div dwJ ¼ 0; ð22Þ

where nonnegative plastic dissipation is assumed for elastoplastic-
ity. Note that homogeneous boundary conditions are obtained.
It can be shown that the coupled problem of mechanics and
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multiphase flow is contractive relative to the k � kN m
norm.

Specifically,

dkdvmk2
N m

dt
¼
@kdvmk2

N m

@dee
: d _ee þ

@kdvmk2
N m

@dn
� d _n þ

@kdvmk2
N m

@dmJ;e
d _mJ;e

¼
ð

X
dr0 : d _ee �

dme

q

� �
J

� bJdee;v

� �
MJKbKd_ee;v

�

� dj � d _n þ dme

q

� �
J

� bJdee;v

� �
MJK

d _me

q

� �
K

�
dX

¼
ð

X
dr : d _e þ dp

q

� �
J

d _mJ

� �
dX�

ð
X
ðdr0 : d _ep þ dj � d _nÞdX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dd
p

¼
ð

X
½dr: d _e � dpJDivðdvJÞ� dX� Dd

pðfrom Eq: 222Þ

¼ �
ð

X
dvJ � k�1

JK dvK dX� Dd
p � 0;

*

ð
X

dr: d _edX ¼ 0 from Eq: 221

� �
; � � � � � � ð23Þ

where Dd
p � 0 is satisfied for (nonnegative) plastic dissipation.

Note that the divergence theorem and Darcy’s law are applied to
the last expression, where we write

dvJ ¼ �kJKGrad dpKð Þ; kJK ¼
1

BJ

kp;JK

lJ

; vJ;i 2 Hðdiv;XÞ;

� � � � � � � � � � � � � � � � � � � ð24Þ

where vJ,i is a component of vJ.
From Eq. 23, we have

kvmðtÞ � ~vmðtÞkN m
� kvm0 � ~vm0kN m

ð25Þ

and by use of Eq. 19, we obtain

kfmðtÞ � ~fmðtÞkT m
� kfm0 � ~fm0kT m

; ð26Þ

where ð�Þm0 indicates a quantity at the initial (reference) condi-
tion. Therefore, the coupled multiphase flow and geomechanics
problem expressed in terms of pE is contractive relative to the
norms k � kN m

and k �kT m
.

Next, we perform a similar analysis for Eq. 11, where the aver-
age pore pressure p is used. In this case, we can write

dkdvmk2
N m

dt
¼
@kdvmk2

N m

@dee
: d _ee þ

@kdvmk2
N m

@dn
� d _n þ

@kdvmk2
N m

@dmJ;e
d _mJ;e

¼
ð

X
dr0 : d _ee �

dme

q

� �
J

� bJdee;v

� ��
MJKbKd_ee;v

� dj � d _n þ dme

q

� �
J

� bJdee;v

� �
MJK

d _me

q

� �
K

�
dX

¼
ð

X
dr : d _e þ dp

q

� �
J

d _mJ

� �
dX

�
ð

X
½dr0 : d _ep þ dj � d _n�dX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dd
p

þ
ð

X

~bJdSJ1 : d_e dX

¼
ð

X

~bJdSJ1 : d_e dX|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
not always�0

�
ð

X
dvJ � k�1

JK dvK dX� Dd
p �= 0;

� � � � � � � � � � � � � � � � � � � ð27Þ

where the first term in the last equation may be positive. Thus,
Eqs. 9 and 11 do not ensure contractivity relative to the Helmholtz
free-energy norm. In other words, because the Helmholtz free
energy of the mathematical statement may increase with time,
which is unphysical, the well-posedness of the coupled system
when using p is not guaranteed. Note that in the absence of capil-
lary effects, ~bJdSJ¼ 0, and Eqs. 11 and 4 become identical, for
which contractivity is guaranteed.

To illustrate the implications of our findings, we consider one-
dimensional (1D) oil-water flow with capillarity and _rv¼ 0. From
Eqs. 5 and 11, we can write

Noo Now

Nwo Nww

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

N

_po

_pw

� �
þ b

So

Sw

� �
_ev ¼

�Div vo þ fo

�Div vw þ fw

� �
;

� � � � � � � � � � � � � � � � � � � ð28Þ

_rv ¼ Kdr _ev � bðSo _po þ Sw _pwÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
bJ _pJ

� �bPc
dSw

dPc
ð _po � _pwÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~bJ
_SJ

;

� � � � � � � � � � � � � � � � � � � ð29Þ

where Kdr is the drained bulk modulus and N is given by (Lewis
and Schrefler 1998)

Noo Now

Nwo Nww

� �

¼
/Soco � /

dSw

dPc
þ So

b� /
Ks

So

/
dSw

dPc
þ Sw

b� /
Ks

So

/
dSw

dPc
þ So

b� /
Ks

Sw

/Swcw � /
dSw

dPc
þ Sw

b� /
Ks

Sw

2
664

3
775:

By substitution of Eq. 29 into Eq. 28 and by use of _rv¼ 0, we
obtain

Noo Now

Nwo Nww

" #
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

N

þ b2

Kdr

S2
o SoSw

SwSo S2
w

" #
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

~S

� b2

Kdr
Pc

dSw

dPc

So �So

Sw �Sw

" #
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

S

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W

�
_po

_pw

" #
¼
�Div vo þ fo

�Div vw þ fw

" #
: � � � � � � � � � � � � � � ð30Þ

The positive definiteness of W (left side of Eq. 30) is not guar-

anteed because S is indefinite, where the eigenvalues of S are 0,

So – Sw. This is the case even though N and ~S are positive definite
and positive semidefinite, respectively. For example, when the
fluids and the solid grains are incompressible, and when both jPcj
and jdSw=dPcj are large enough such that ~S can be ignored, the
matrix W can be approximated by

W � 1

P0c

�/� b2

Kdr
PcSo

/� b2

Kdr
PcSw

�/þ b2

Kdr
PcSo

� /þ b2

Kdr
PcSw

0
BB@

1
CCA ð31Þ

where P0c¼ dPc/dSw. The eigenvalues in Eq. 31 are

k1;2 ¼ 0; � 1

P0c

b2

Kdr
Pcð1� 2SwÞ þ 2/

� �
: ð32Þ

Because P0c is negative, we have a large negative eigenvalue when
Sw> 0.5, Pc> 0.0, and b2Pc/Kdr is large. In other words, the aver-
age pore pressure p may lead to an ill-posed problem for which
no (numerical) solution exists.

Numerical Discretization

We use the generalized midpoint rule for time discretization in the
mathematical analysis. For space discretization, we use the finite-
volume method for flow (Aziz and Settari 1979) and a nodal-based
finite-element method for the mechanics (Zienkiewicz et al. 1988;
Armero and Simo 1992; Lewis and Sukirman 1993b; Lewis and
Schrefler 1998; Armero 1999; Wan et al. 2003; White and Borja
2008). In the finite-volume method, the pressure is at the cell cen-
ter. In the nodal-based finite-element method, the displacement
vector is at the vertices of an element (Hughes 1987). This space
discretization strategy has the following characteristics: local mass

. . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . .
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conservation at the element level; a continuous displacement field,
which allows for tracking the deformation; and convergent
approximations with the lowest-order discretization (Jha and
Juanes 2007). For a slightly compressible fluid, the stated space
discretization provides a stable pressure field (Phillips and
Wheeler 2007a, 2007b). It is well known that for incompressible
(solid and fluid) systems, nodal-based finite-element methods
result in spurious pressure oscillations if equal-order approxima-
tions of pressure and displacement (e.g., piecewise continuous
interpolation) are used (Vermeer and Verruijt 1981; Murad and
Loula 1992, 1994; White and Borja 2008). Stabilization techni-
ques for such spurious pressure oscillations have been studied by
several authors (Murad and Loula 1992, 1994; Wan 2002; Truty
and Zimmermann 2006; White and Borja 2008).

Sequential-Implicit Schemes

We denote the operator corresponding to Eqs. 1 and 3 by Am. The
superscript m is used to indicate multiple fluid phases. By use of
the fully implicit method (FIM), the discrete approximation of Am

can be written as

un

pn
J

� �
�!
Am

fc unþ1

pnþ1
J

" #
; where Am

fc :
Div rþ qbg ¼ 0;

_mJ þ DivwJ ¼ ðqf ÞJ ;

�
� � � � � � � � � � � � � � � � � � � ð33Þ

where we solve the coupled nonlinear equations simultaneously
using the Newton-Raphson method. Recall that _ð�Þ indicates time
discretization relative to the motion of the solid skeleton. With
FIM, the following linear system

Km �LT
m

Lm Fm

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Jfc;m

du
dpJ

� �nþ1;k

¼ � Ru

Rp
J

� �nþ1;k

; ð34Þ

must be solved for every Newton iteration. Here, Jfc,m is the Jaco-
bian matrix. Km and Lm are the stiffness and mechanics-flow cou-
pling matrices, respectively. Fm¼QmþDtTm is the flow matrix,
where Qm is the compressibility matrix and Tm is the transmissi-
bility matrix. The subscript m, ð�Þm, denotes multiple fluid phases.
Similar to our treatment in Kim et al. (2011a, b, c), sequential-
implicit solution strategies are used. Specifically, staggered sin-
gle-pass schemes are used, in which two implicit problems (one
for mechanics and one for flow) are solved in sequence. Here, we
focus on the undrained split and the fixed-stress split for multi-
phase-fluid flow because they show unconditional stability for sin-
gle-phase flow (Kim et al. 2011a).

Undrained Split. Similar to the treatment for coupled mechanics
and single-phase flow, the undrained split for multiphase flow
decomposes the original operator Am into

un

pn
J

� �
�!
Au;m

ud unþ1

p	J

" #
�!
Ap;m

ud unþ1

pnþ1
J

" #
;

where

Au;m
ud : Div rþ qbg ¼0; dmJ ¼ 0;

Ap;m
ud : _mJ þ DivwJ ¼ ðqf ÞJ ;

_e : prescribed;

8><
>: � � � � � � � ð35Þ

where the time variation of the mass of the fluids is set to zero
(i.e., dmJ¼ 0), when solving the mechanics problem. The interme-
diate pressure p	J is calculated locally (and explicitly) after the dis-
placement unþ1 is computed. Then, this updated (intermediate)
pressure is used in the flow problem. From Eqs. 4 through 8, the
constraint dmJ¼ 0 yields

p	J � pn
J ¼ �MJKbKðenþ1

v � en
vÞ: ð36Þ

Eq. 36 involves calculation of MJKbK and p	J locally, but this
additional computational cost is negligible compared with solving
a global system of flow equations.

Fixed-Stress Split. The fixed-stress approach splits the original
operator Am as follows:

un

pn
J

� �
�!
Ap;m

ss u	

pnþ1
J

� �
�!
Au;m

ss unþ1

pnþ1
J

" #
;

where
Ap;m

ss : _mJ þ DivwJ ¼ ðqf ÞJ ; d _r ¼ 0;

Au;m
ss : Div rþ qbg ¼ 0; pJ: prescribed;

�
� � � � � � � � � � � � � � � � � � � ð37Þ

where the initial condition of the flow problem Ap
ss is determined

from the original coupled problem satisfying

Div _r t¼ 0 ¼ 0; Div rt¼ 0þqbg ¼ 0: ð38Þ

In this scheme, the flow problem is solved first while freezing
the time variation of the total stress ðd _r ¼ 0Þ. As a result, the volu-
metric total-stress term ðb=KdrÞ _rv in the accumulation term of
Eq. 37 is evaluated explicitly when dealing with the flow problem:

rnþ1
v � rn

v ¼ rn
v � rn�1

v : ð39Þ

Note that the use of the elastoplastic moduli implies nonnegative
plastic dissipation.

Contractivity of Sequential-Implicit Schemes. In this section,
we investigate the contractivity properties of the undrained split
and the fixed-stress split. We then investigate their B-stability,
which refers to the numerical stability of a specific discrete time-
stepping strategy.

Undrained Split. From Eq. 35, we can write

dun

dpn
J

� �
�!
Au;m

ud dunþ1

dp	J

" #
�!
Ap;m

ud dunþ1

dpnþ1
J

" #
;

where

Au;m
ud : Div dr ¼ 0; ddmJ ¼ 0

Ap;m
ud : d _mJ þ DivðdwJÞ ¼ 0;

d _e ¼ 0; d _ep ¼ 0; d _n ¼ 0

8><
>: � � � � � ð40Þ

where nonnegative plastic dissipation is assumed for elastoplastic-
ity, Dd

p � 0. Note that homogeneous boundary conditions are
obtained, just as in Eq. 22. When solving the mechanical problem
Au;m

ud of Eq. 40, we obtain

dkdvmk2
N m

dt
¼
ð

X
dr : d _e þ dp

q

� �
J

d _mJ

� �
dX

�
ð

X
ðdr0 : d _ep þ dj � d _nÞdX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dd
p

¼
ð

X
dr : d _edX� Dd

p

¼ �Dd
p � 0 ðfrom Eq: 401Þ; � � � � � � � � � ð41Þ

which shows contractivity relative to the norm k �kN m
. Then, for

the flow problem (i.e., Ap;m
ud of Eq. 40), we can write

dkdvmk2
N m

dt
¼
ð

X
dr : d _e þ dp

q

� �
J

d _mJ

� �
dX�

ð
X
ðdr0 : d _ep þ dj � d _nÞdX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dd
p

¼
ð

X
� dpJDivðdvJÞdX ð*d _e ¼ 0; d _ep ¼ 0; d _n ¼ 0Þ

¼ �
ð

X
dvJ � k�1

JK dvKdX � 0; � � � � � � � � � � � � � � ð42Þ

which shows contractivity relative to the norm k �kN m
. Therefore,

the undrained split of coupled mechanics and multiphase flow is
contractive relative to the norm k �kN m

.

. . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

December 2013 SPE Journal 1127



Fixed-Stress Split. From Eq. 37, the fixed-stress split has the
form

dun

dpn
J

� �
�!
Ap;m

ss du	

dpnþ1
J

� �
�!
Au;m

ss dunþ1

dpnþ1
J

" #
;

where

Ap;m
ss : d _mJ þ Div dwJ¼ 0; dd _r ¼ 0

Au;m
ss : Div dr ¼ 0; dpJ ¼ 0

) Div dr0 ¼ 0;

8><
>:

� � � � � � � � � � � � � ð43Þ

where homogeneous boundary conditions are obtained. Just as for
single-phase flow, the condition of nonnegative plastic dissipation
is assumed to be valid for multiphase flow.

When the flow problem Ap;m
ss is solved, the initial conditions of

the stress field (i.e., Div d _rt¼0¼ 0 and Div drt¼0¼ 0) and
dd _r¼ 0 yield

Div dr ¼ 0; ð44Þ

from which we obtainð
X

dr : d _edX ¼ 0: ð45Þ

It follows that for the flow problem solution, we can write

dkdvmk2
N m

dt
¼
ð

X
dr : d _e þ dp

q

� �
J

d _mJ

� �
dX

�
ð

X
ðdr0 : d _ep þ dj � d _nÞdX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dd
p

¼ �
ð

X
ðdvJ � k�1

JK ldvKÞdX� Dd
p � 0:

� � � � � � � � � � � � � � � � � � � ð46Þ

For solution of the mechanics problem, Au;m
ss , we write

dkdvmk2
N m

dt
¼
ð

X
dr : d_e þ dp

q

� �
J

d _mJ

� �
dX

�
ð

X
ðdr0 : d _ep þ dj � d _nÞdX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dd
p

¼
ð

X
dr0 : d_edX� Dd

d

¼ Dd
p � 0;

ð
X

dr0 : d_edX ¼ 0 from Eq: 432

� �
:

� � � � � � � � � � � � � � � � � � � ð47Þ

Therefore, the fixed-stress split is contractive relative to
k �kN m

.

B-Stability of Sequential Implicit Methods. Because the
undrained split and the fixed-stress split are contractive, we study
their numerical stability with respect to time discretization, which
is referred to as B-stability. Here, we measure stability with
respect to k �kN m

. A time discretization is B-stable if the following
condition is satisfied for a contractive problem:

kdvnþ1
m kN m

� kdvn
mkN m

: ð48Þ

We use the generalized midpoint rule for time discretization.
Therefore, the return-mapping algorithm for elastoplasticity is
also on the basis of the generalized midpoint rule. We need the
return-mapping algorithm to model nonnegative plastic dissipa-
tion for elastoplasticity. In the return mapping, we adopt the asso-
ciated flow rule (maximum plastic dissipation), which satisfies
(Simo 1991; Simo and Govindjee 1991)


 Rtr;nþa � Rnþa;P� Rnþa �� 0 8P 2 E;
� � � � � � � � � � � � � � � � � � � ð49Þ

where we define the bilinear form
 �; � �,


 R;P�:¼
ð

X
ðr0 : C�1

dr p0 þ j �H�1gÞdX; ð50Þ

and its associated norm k � kE ,

kRk2
E :¼ 1

2

 R;R�; ð51Þ

where R¼ (r0, j) is a generalized effective stress constrained to
lie within the elastic domain E. P¼ (p0, g) is another (arbitrary)
generalized effective stress, and Rtr,nþa from the elastic trial step
is defined as (r0nþ aCdrDen, jn). Eq. 49 yields


 dRn � dRnþa; dRnþa �
þ
 ðaCdrDden; 0Þ; ð�dr0

nþa
;�djnþaÞ �� 0: � � � � ð52Þ

Undrained Split. In the undrained scheme, one solves a
mechanics problem first, followed by the flow problem. We now
show B-stability for both steps. The discrete form of the mechani-
cal problem in the undrained split is expressed as

Div drnþa ¼ 0; DdmJ ¼ 0; ð53Þ

which satisfies Eq. 52 as follows. The first term of Eq. 52 can be
written as


 dRn � dRnþa; dRnþa �

¼ � 
 a dRn � dRnþ1
	 


; dRnþ1=2 þ a� 1

2

� �
dRnþ1 � dRn
	 


�

¼ a kdRnþ1k2
E � kdRnk2

E

� �
þ að2a� 1ÞkdRnþ1kE � kdRnk2

E :

� � � � � � � � � � � � � � � � � � � ð54Þ

Introducing the following identityð
X

dpnþa
J NJKðdpnþ1

K � dpn
KÞdX ¼ ðkdpnþ1k2

M � kdpnk2
MÞ

þ ð2a� 1Þkdpnþ1 � dpnk2
M; � � � � � ð55Þ

the second term of Eq. 52 becomes


 ðaCdrDden; 0Þ; ð�dr0nþa;�djnþaÞ �

¼ �
ð

X
aDden : dr0

nþa
dX ¼ �a

ð
X
Dden : ðdrnþa þ bJdpnþa

J 1ÞdX

¼ �a
ð

X
Dden : bJdpnþa

J 1dX *

ð
X
Dden : drnþadX ¼ 0 from Eq: 53

� �

¼ a
ð

X
dpnþa

J NJKðdpnþ1
K � dpn

KÞdX

½*bJDden : 1 ¼ �NJKðdpnþ1
K � dpn

KÞ from DdmJ ¼ 0; Eqs: 8 and 17�
¼ aðkdpnþ1k2

M � kdpnk2
MÞ þ að2a� 1Þkdpnþ1 � dpnk2

M; � � � � ð56Þ

where k �kM is defined as

kpk2
M ¼

1

2

ð
X

pJNJKpKdX: ð57Þ

Using Eqs. 52, 54, and 56 yields

a kdRnþ1k2
E � kdRnk2

E þ kdpnþ1k2
M � kdpnk2

M

� �h i
þ að2a� 1Þ

�
kdRnþ1 � dRnk2

E þ kdpnþ1 � dpnk2
M

�
� 0:

� � � � � � � � � � � � � � � � � � � ð58Þ
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From Eq. 58, the mechanics-problem solution can be
expressed as

kdvnþ1
m k2

N m
� kdvn

mk
2
N m

¼ kdRnþ1k2
E þ kdpnþ1k2

M � kdRnk2
E � kdpnk2

M

� �ð2a� 1Þ kdRnþ1 � dRnk2
E þ kdpnþ1 � dpnk2

M

� �
:

� � � � � � � � � � � � � � � � � � � ð59Þ

Eq. 59 indicates that the undrained split has B-stability when
0.5 � a � 1 for the mechanical problem.

The discrete form of the flow problem Ap;m
ud (Eq. 40) can be

written as

NJK
dpnþ1

K � dpn
K

Dt
þ bJ

denþ1
v � den

v

Dt
þ Divðdvnþa

J Þ ¼ 0;

� � � � � � � � � � � � � � � � � � � ð60Þ

Dde ¼ 0; Ddep ¼ 0; Ddn ¼ 0: ð61Þ

By use of Darcy’s law, Eqs. 60 and 61 lead toð
X

dpnþa
J NJK

dpnþ1
K � dpn

K

Dt

� �
dX ¼

ð
X

Grad dpnþa
J � dvnþa

J dX

¼ �
ð

X
dvnþa

J � k�1
JK dvnþa

K dX ð*Grad dpnþa
J ¼ �k�1

JK dvnþa
K Þ:

� � � � � � � � � � � � � � � � � � � ð62Þ

In turn, Eq. 61 implies

kdRnþ1k2
E ¼ kdRnk2

E : ð63Þ

From Eqs. 55, 62, and 63, we have

kdvnþ1
m k2

N m
� kdvn

mk
2
N m
¼ kdpnþ1k2

M � kdpnk2
M

¼ �ð2a� 1Þkdpnþ1 � dpnk2
M � Dt

ð
X

dvnþa
J � k�1

JK dvnþa
K dX;

� � � � � � � � � � � � � � � � � � � ð64Þ

which shows that B-stability is obtained for 0.5 � a � 1. From the
mechanics problem (Eq. 59) and the flow problem (Eq. 64), the
undrained sequential-implicit scheme is B-stable for 0.5� a� 1.

Fixed-Stress Split. We show B-stability of the fixed-stress split
in which the flow problem is solved first, followed by the mechan-
ics problem. The discrete form of the flow problem is written as

NJK
dpnþ1

K � dpn
K

Dt
þ bJ

denþ1
v � den

v

Dt
þ Divðdvnþa

J Þ ¼ 0;

� � � � � � � � � � � � � � � � � � � ð65Þ

drnþ1 � drn ¼ drn � drn�1; ð66Þ

where the initial conditions for the stress field satisfy

Divðdr1 � dr0Þ ¼ 0; Div dr0 ¼ 0: ð67Þ

Then, Eqs. 66 and 67 lead to

Div drnþa ¼ 0; ð68Þ

which, when we solve the flow problem, yieldsð
X

drnþa : DdendX ¼ 0: ð69Þ

Note that we consider maximum plastic dissipation in the flow
step because we use the elastoplastic moduli, which are obtained
from the return-mapping algorithm. Because maximum plastic
dissipation is assumed for the flow problem, Eq. 52 is satisfied.
Also, note that Eq. 54 is an identity.

Now, we consider the second term of Eq. 52, which is calcu-
lated as follows:


 ðaCdrDden; 0Þ; ð�dr0nþa ;�djnþaÞ �

¼ �
ð

aDden : dr0
nþa

dX

¼ �a
ð

Dden : ðdrnþa þ bJdpnþa
J 1ÞdX

¼ �a
ð

Dden
vbJdpnþa

J dX ðfrom Eq: 69Þ: ð70Þ

From Eqs. 54 and 70, Eq. 52 can be written as

ðkdRnþ1k2
E � kdRnk2

EÞ þ ð2a� 1ÞkdRnþ1 � dRnk2
E

�
ð

Dden
vbJdpnþa

J dX � 0: � � � � � � � � � � � � � � � � � � ð71Þ

The flow-equation operator, Ap;m
ss (Eq. 65), has the following

propertyð  
dpnþa

J NJK
dpnþ1

K � dpn
K

Dt
þ bJ

denþ1
v � den

v

Dt

þDivðdvnþa
J Þ

!
dX ¼ 0: � � � � � � � � � � � � � � ð72Þ

Using the identity of Eq. 55 and Darcy’s law, Eq. 72 becomes

kdpnþ1k2
M � kdpnk2

M ¼ �ð2a� 1Þkdpnþ1 � dpnk2
M

�
ð

dpnþa
J bJDden

vdX� Dt

ð
dvnþa

J � k�1
JK dvnþa

K dX:

� � � � � � � � � � � � � � � � � � � ð73Þ

Thus, for the flow-problem treatment in the fixed-stress
scheme, the evolution of the norm k � kN m

can be analyzed by add-
ing Eqs. 71 and 73. We then have

kdvnþ1
m k

2
N m
� kdvn

mk
2
N m

¼ kdRnþ1k2
E þ kdpnþ1k2

M � kdRnk2
E � kdpnk2

M

� �ð2a� 1Þ
�
kdRnþ1 � dRnk2

E þ kdpnþ1 � dpnk2
M

�
�Dt

ð
dvnþa

J � k�1
JK dvnþa

K dX: � � � � � � � � � � � � � � � � ð74Þ

This expression shows that B-stability is obtained for the flow
problem, if 0.5 � a � 1.

Now, for the mechanics problem, from Eq. 43, we have

Div dr0
nþa ¼ 0; dpnþa ¼ 0; ð75Þ

to which maximum plastic dissipation, Eq. 52, is applied. The sec-
ond term of Eq. 52 is expressed as


 ðaCdrDden; 0Þ; ð�dr0
nþa

;�djnþaÞ �

¼ �
ð

aDden : dr0
nþa

dX ¼ 0: ð76Þ

Using Eqs. 54 and 76, Eq. 52 becomes

ðkdRnþ1k2
E � kdRnk2

EÞ þ ð2a� 1ÞkdRnþ1 � dRnk2
E � 0:

� � � � � � � � � � � � � � � � � � � ð77Þ

Because dpnþa
J ¼ 0, Eq. 55 can be written as

kdpnþ1k2
M � kdpnk2

M ¼ �ð2a� 1Þkdpnþ1 � dpnk2
M:

� � � � � � � � � � � � � � � � � � � ð78Þ

. . . . . . . . . . . . . . .
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Then, Eqs. 77 and 78 yield

kdvnþ1
m k

2
N m
� kdvn

mk
2
N m

¼ kdRnþ1k2
E � kdRnk2

E þ kdpnþ1k2
M � kdpnk2

M

� �ð2a� 1Þ
�
kdRnþ1 � dRnk2

E þ kdpnþ1 � dpnk2
M

�
;

� � � � � � � � � � � � � � � � � � � ð79Þ

which shows that B-stability is obtained if 0.5 � a � 1 for the
mechanics problem, Au;m

ss . Therefore, from Eqs. 74 and 79, the
fixed-stress split is B-stable if 0.5 � a � 1.

Numerical Results

We test the applicability of the equivalent pore pressure ( pE) and
average pore pressure ( p) definitions for immiscible two-phase-
flow (e.g., oil and water) problems with mechanical deformation.
Fig. 1 shows the setup of the two test cases. The backward-Euler
method is used for time discretization. We take oil pressure and
water saturation as primary variables in our numerical discretiza-
tion, and understand that oil and water represent the nonwetting
and wetting fluid phases, respectively.

Case 1: Water Injection and Oil Production in a 1D Poro-

elastic Medium. The schematic of this 1D problem is shown in
the left plot of Fig. 1. The water injection rate Qw,inj¼ 500 kg�d�1

is the same as the total liquid production rate Qo,prod¼ 500 kg�d�1.
The length of the homogeneous domain is Lz¼ 15 m. The overbur-
den stress is r¼ 10.0 MPa. A no-displacement boundary condition
is maintained at the bottom of the domain. The bulk density of the
porous medium is qb¼ 2400 kg�m�1. The formation is initially
fully saturated with oil, and the initial oil pressure is Po,i¼ 10.0
MPa. The fluid densities and viscosities are qo,0¼ qw,0¼ 1000
kg�m�1 and lo¼lw¼ 1.0 cp, respectively. With the same density
for oil and water, we effectively neglect the effect of gravity. The
medium permeability is kp¼ 50 md, the porosity is /0¼ 0.1, the
constrained modulus is Kdr¼ 20.0 MPa, and the Biot coefficient is
b¼ 1.0. Low values of the bulk modulus—even much lower than
the value of Kdr used here—can be found in sandy clay, soft clay,
or weakly consolidated porous media under low confining stress
(Maswoswe 1985; Josa et al. 1987; Josa 1988; Terzaghi et al.
1996; Alonso et al. 1990). The oil and water compressibilities are
co¼ 4.0� 10�9 Pa�1 and cw¼ 4.0� 10�10 Pa�1, respectively. No-
flow boundary conditions are applied at the top and bottom. We

discretize the domain with grid spacing Dz¼ 1.0 m (i.e., 15 grid
blocks) and track the pressure at the fifth gridblock from the top.
We use a timestep size of 0.025 days.

We use power-law (Corey-type) relative-permeabilities:

kr;J ¼ ðSJ � Sr;JÞlJ ; ð80Þ

where Sr,J is the residual saturation of phase J and lJ is the expo-
nent that characterizes the relative permeability curve of phase J
(Fig. 2). To test the numerical stability and accuracy in the pres-
ence of capillarity, we use the capillary pressure model used in
Coussy (2004), which is expressed as

Pc � Pe ¼ Pcð1 = Se
w � 1Þlp ; Se ¼ Sw � Sr;w

1� Sr;o � Sr;w
; ð81Þ

where Pc is the capillary pressure between oil and water, Pe is the
capillary entry pressure, and Pc is the capillary modulus. The
exponent lp characterizes the shape of the capillary pressure
curve, which becomes flat as lp decreases (Fig. 2). We use differ-
ent values of Pc to test the formulations on the basis of the aver-
age and equivalent pore pressures. In the numerical examples, the
residual oil and water saturations are assumed to be zero.

We define the following three nondimensional quantities:

s ¼ bJMJKbK

Kdr
; g ¼ DPo

Pc
; v ¼ b2Pc

Kdr
; ð82Þ

where DPo is the characteristic oil pressure difference between the
injection and production wells. Parameter s is the coupling
strength of flow and geomechanics (Kim et al. 2011a), and g is a
capillary number that represents the ratio of large-scale viscous
forces compared with the capillary forces. For low values of g,
flow is dominated by capillary forces. We introduce the dimen-
sionless quantity v, motivated by Eq. 32, to investigate the stability
and accuracy of deformable systems for various levels of capillar-
ity. From Eq. 82, high values of v imply high coupling strength
and strong capillarity. For the parameter values used here,
s¼ 1.25� 102 for oil and s¼ 1.25� 103 for water. Parameters g
and v take different values depending on the value of Pc.

Here we are interested in testing the stability properties of the
two definitions of effective stress (on the basis of pE and p), for
different levels of capillarity. To that end, it is useful to compare
the results against a reference solution. This is possible in the
present case, similar to the classical Terzaghi problem in a 1D
poroelastic medium with a single-phase fluid and homogeneous

. . . . . . . . . . . . . . . . . . . . . . . . .

. . . .

. . . . . . . . . . . .

No flow
Overburden

Overburden 10 MPa

Production Monitioring well 10 × 4 Grid blocks

No gravity

No flow Side burden
10 Mpa

No flow

No flow

No flow

No flow

Water injection

10 MPa

Δz

Observation
(5th from the top)

No gravity
15 Grid blocks

Injection

Production

Po,i = 10 MPa Po,i = 10 MPa

Fig. 1—Water injection and oil production. Left: coupled multiphase flow and geomechanics in a 1D poroelastic medium. Right:
coupled multiphase flow and geomechanics in a 2D poroelastic medium with overburden and side burden.
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boundary conditions. For the classical Terzaghi problem, the flow
and mechanics problems decouple. This is true also for multi-
phase flow when the capillary pressure is constant over the entire
range of saturations (i.e., dPc � 0). We can reproduce these condi-
tions by use of the capillary pressure functional form in Eq. 81
with lp¼ 0. In this case, Pc plays the role of the capillary entry
pressure (we set Pe to zero). Thus, although the capillary pressure

curves are flat, capillarity effects are important if the value of Pc

is high. Finally, we use quadratic relative permeabilities (i.e.,
lo¼ lw¼ 2.0 in Eq. 80).

To avoid any ambiguity with regard to the influence of the
coupling scheme, we use a fully implicit, monolithic solution
strategy for both definitions of the pore pressure under multi-
phase-flow conditions. In Fig. 3 we show the evolution of the oil

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

td td

P
d

P
d

P
d

P
d

Πc = 0.0 Pa, χ = 0.0 Πc = 0.2 Pa, χ = 0.01

Πc = 2.0 MPa, χ = 0.1 Πc = 7.0 MPa, χ = 0.35

−p−

pE

Ref

0.5

1

1.5

2
−p−

pE

Ref

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
td td

0 0.2 0.4 0.6 0.8 1

0.7

0.75

0.8

0.85

0.9

0.95

1
−p−

pE

Ref

0.5

1

1.5

2
−p−

pE

Ref

(a) (b)

(c) (d)

Fig. 3—Evolution of the oil pressure at the observation well in the 1D example. We compare the numerical solutions based on the
average pore pressure (p , blue triangles) and the equivalent pore-pressure (pE, red circles) with the results from the reference so-

lution (black solid line), for different values of the capillary modulus Pc. We plot the dimensionless pressure Pd 5
po � pL

po;i � pL
as a

function of dimensionless time td 5 (Qw,inj/Mt)t, where pL is a lower limit of the pressure during simulation (here, we take pL 5 9.5
MPa) and Mt is the total initial liquid mass in place. (a) Pc 5 0.0 Pa; (b) Pc 5 0.2 MPa; (c) Pc 5 2.0 MPa. (d) Pc 5 7.0 MPa. The results
from the p formulation are increasingly inaccurate for higher values of Pc, and eventually become unstable for a sufficiently high
value of Pc. The results from the pE formulation, in contrast, are stable and accurate for all values of Pc.
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pressure at the observation well on the basis of the average pore-
pressure p and the equivalent pore-pressure pE. Without capillar-
ity (Pc¼ 0), there is no difference between the two formulations,
and they both match the reference solution (Fig. 3a). However, as
capillarity increases (Pc¼ 0.2 MPa and 2.0 MPa, corresponding
to v¼ 0.01 and 0.1, respectively), the results based on p, although
stable, show large errors, whereas those based on pE agree exactly
with the reference solutions (Figs. 3b and 3c). If the strength of
the capillary forces is large (Pc¼ 7.0 MPa, corresponding to
v¼ 0.35), the solution based on the p formulation becomes unsta-
ble, and blows up at finite time (Fig. 3d).

This numerical behavior can be explained by the a priori esti-
mates of the nonzero eigenvalue of the Jacobian matrix (Eq. 32).
For the cases Pc¼ 0, 0.2, and 2 MPa, the eigenvalues are positive
for the entire range of saturations (Figs. 4a, 4b, 4c, respectively).
In contrast, for the case Pc¼ 7 MPa, the nonzero eigenvalue takes
negative values in the range of high water saturations (Fig. 4d),
suggesting that one should expect an unstable solution with the p
pore-pressure formulation, even with a fully implicit monolithic
solution strategy.

In Table 1 we report the values of g and v for different values
of Pc. As g decreases, v also increases, and the errors of the p-
based approach become larger. For very large values of v, numeri-
cal instabilities are observed, and this is consistent with the a priori

estimates of negative eigenvalues in Eq. 32. Numerical instabil-
ities associated with the use of the average pore pressure p cannot
be removed by reducing the timestep size or by refining the grid
size. In Fig. 5 we show how the oil pressure, computed with both p
and pE, changes when the timestep and grid size are refined by a
factor of 10. These results illustrate that refinement does not lead
to an improvement in the accuracy of the p formulation.

The a priori estimates in Eq. 32 also indicate that numerical
stability and accuracy of the p formulation also depend on poros-
ity: lower porosity values lead to less-accurate solutions. This
dependence is confirmed by numerical results. We performed
simulations for two cases: (i) initial porosity /0¼ 1.0� 10�2

and injection/production rates Qw,inj¼Qo,prod¼ 500 kg�d�1, (ii)
smaller initial porosity /0¼ 1.0� 10�3 and reduced injection/pro-
duction rates Qw,inj¼Qo,prod¼ 50 kg�d�1. The two cases yield the
same dimensionless timestep size because the initial liquid mass
in place is reduced by the same factor as the porosity. In Figs. 6a
and 6b, we show the evolution of the oil pressure at the observa-
tion well for both cases. We find that the p formulation becomes
unstable for the low-porosity case, whereas the pE formulation is
accurate in both cases. The instability of the p formulation can
again be explained from the behavior of the nonzero eigenvalue,
which becomes negative for water saturations Sw> 0.6. This find-
ing points to the instability of the p formulation for low-porosity
formations, even for moderate values of the capillary modulus.

Case 2: Water Injection and Oil Production in a 2D

Poroelastic Medium. We sketch the 2D waterflooding example
in a 2D homogeneous domain in the right plot of Fig. 1. The
dimensions of the domain are 100� 20 m, which we discretize
into 10� 4 gridblocks under the plane-strain mechanical condi-
tion. The injection and production wells are at the bottom-right

TABLE 1—VALUES OF g AND v FOR DIFFERENT VALUES OF

Pc IN CASE 1

Pc 0.0 Pa 0.2 MPa 2.0 MPa 7.0 MPa

g 1 8.6 0.86 0.25

v 0 0.01 0.1 0.35
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Fig. 4—Nonzero eigenvalue of the Jacobian matrix (Eq. 32) in the 1D example when using the average pore pressure formulation
(p ), as a function of water saturation, and for different values of the capillary modulus Pc. (a) Pc � 0.0 Pa; (b) Pc 5 0.2 MPa; (c)
Pc 5 2.0 MPa; (d) Pc 5 7.0 MPa. For Pc 5 7.0 MPa, the eigenvalue becomes negative in the range of high water saturations, suggest-
ing that one should expect an unstable solution.
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and top-left corners, respectively. The water injection rate is the
same as the total-liquid production rate, Qw,inj¼Qprod¼ 5000
kg�d�1. We record pressures and saturations at a “monitoring
well” at gridblock (2,3). The boundary conditions are as follows:
an overburden of r¼ 10.0 MPa is applied on the top boundary;
no horizontal displacement at the left boundary; a side burden of
rh¼ 10.0 MPa is applied at the right boundary; and no vertical
displacement at the bottom boundary. No-flow boundary condi-
tions are applied at all sides.

The bulk density of the porous medium is qb¼ 2400 kg�m�1.
The medium is initially fully saturated with oil, and the initial oil
pressure is po,i¼ 10.0 MPa. The density and viscosity of water are
qw,0¼ 1000 kg�m�3 and lw¼ 1.0 cp, respectively. The density
and viscosity of oil are qo,0¼ 1000 kg�m�3 and lo¼ 1.0 cp,
respectively. The permeability is kp¼ 500 md, and the porosity is
/0¼ 0.1. Gravity effects are negligible because the two fluids
have the same density. The Young modulus is E¼ 24.0 MPa, and
the Poisson ratio is �¼ 0.3. The Biot coefficient is b¼ 1.0. From
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the given Young modulus and Poisson ratio, the drained bulk
modulus is Kdr¼ 20.0 MPa, the same value of the previous 1D
test case. The compressibilities of oil and water are co¼
4.0� 10�9 Pa�1 and cw¼ 4.0� 10�10 Pa�1, respectively. These
fluid compressibility values yield s¼ 1.25� 102 and s¼ 1.25�
103 for single-phase oil and single-phase water, respectively. We
use quadratic relative permeabilities and the residual oil and water
saturations are assumed to be zero, as in the 1D case. In our simu-
lations, we use a timestep size Dt¼ 0.075 days.

Comparison Between the Average- and Equivalent-Pore-

Pressure Formulations. We use the same capillary pressure
curve used in the 1D problem, taking an exponent lp¼ 0 and differ-
ent values of the capillary modulus Pc to test the performance of
the two formulations of the multiphase effective stress, on the ba-
sis of the average pore pressure p and the equivalent pore pressure
pE. Here, we use a fully implicit, simultaneous solution method to
solve the coupled flow-mechanics problem at each timestep.

In Fig. 7 we show that the average-pore-pressure formulation
leads to numerical instabilities when the capillary pressure effects
are important—that is, when parameter v is large (in our 2D
example, this happens for values of v> 0.35; Table 2). Even
when the solutions based on the average pore pressure are stable,

the errors become large for strong capillarity (i.e., low g and high
v). In contrast, the results from the equivalent-pore-pressure pE

show that the numerical solutions are stable regardless of the
magnitude of capillarity (Fig. 7).

Comparison Between the Undrained Split and the Fixed-

Stress Split. After demonstrating that the equivalent pore pressure
pE (unlike the average pore pressure p) leads to a stable formula-
tion for a fully implicit monolithic scheme, we now compare the
fixed-stress and undrained sequential-implicit solution schemes of
the pE formulation.

In Fig. 7 we show that both the undrained and the fixed-stress
operator splits are stable, even in the case of high capillary pres-
sure (Fig. 7d)—in agreement with our nonlinear stability analysis
of multiphase flow and geomechanics by use of the energy
method. However, it is apparent that the undrained split suffers
from loss of accuracy regardless of the magnitude of the capillary
pressure, even though the timestep size is five times smaller than
that used in the fully implicit monolithic method. The origin of
this loss of accuracy of the undrained method is its intrinsic de-
pendence on the coupling strength (Kim et al. 2011b). As the
timestep size is reduced, the undrained split yields more accurate
solutions, although it still shows noticeable errors even though the
timestep size is reduced by one order of magnitude (Fig. 8). In
contrast, the fixed-stress split yields accurate solutions even when
the timestep size is the same as that used in the fully implicit
method (Fig. 8), because the accuracy of the fixed-stress split
does not depend on the coupling strength (Kim et al. 2011c).

To further confirm this behavior, we run a test case with dis-
parate values of the oil and water compressibilities, co¼
4.0� 10�7 Pa�1 and cw¼ 4.0� 10�12 Pa�1, which results in a
wide range of the coupling strength during the simulation (from
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Fig. 7—Evolution of the dimensionless oil pressure at the observation well in the 2D example. We compare the numerical solutions
with a fully implicit monolithic strategy on the basis of the average pore pressure (p , blue triangles) and the equivalent pore pres-
sure (pE, red circles), for different values of the capillary modulus Pc. (a) Pc 5 0 Pa; (b) Pc 5 0.2 MPa; (c) Pc 5 2.0 MPa; (d) Pc 5 7.0
MPa. We also plot the numerical solutions for the pE formulation with two different sequential solution schemes: the fixed-stress
split (black asterisks) and the undrained split (Und, magenta diamonds).

TABLE 2—VALUES OF g AND v FOR DIFFERENT VALUES OF

Pc IN CASE 2

Pc 0.0 Pa 0.2 MPa 2.0 MPa 7.0 MPa

g 1 3.84 0.384 0.110

v 0 0.01 0.1 0.35
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1.25 to 1.25� 105). This allows us to investigate the numerical
stability and convergence of the two sequential methods when the
fluid system becomes nearly incompressible as water injection
progresses.

As the water saturation increases, and as a consequence of the
increase in coupling strength s, the undrained split deviates from
the reference fully implicit solution (Fig. 9). Although it provides
stable solutions in this test case, for high coupling strength, the
undrained split yields very stiff subproblems for both flow and
mechanics, resulting in ill-conditioned matrices for both subpro-
blems (Kim et al. 2011b). In contrast, the fixed-stress split yields
stable and accurate solutions, even for very high coupling strength,
matching the fully implicit solution at all times (Fig. 9). Moreover,
the fixed-stress split yields less stiff subproblems, which result in
better condition numbers, even in the regime of high capillarity.

Accuracy of the Average-Pore-Pressure Approach. Our analy-
sis leading to the expression of the eigenvalue k in Eq. 32 indi-
cates that the stability and accuracy of the p-based formulation
are compromised as the value of parameter v¼ b2Pc/Kdr in-
creases. This implies that small capillary pressures can cause large
errors when the rock stiffness is small and, conversely, that large
capillary pressures may induce small errors when the rock stiff-
ness is large. This behavior is shown in Fig. 10, where we plot

solutions obtained with the p and pE formulations for high capil-
larity (Pc¼ 7.0 MPa) and two different values of Kdr. As the
drained bulk modulus increases from Kdr¼ 2 GPa to Kdr¼ 200
GPa (v decreases; Table 3), the difference in the solutions obtained
with the two different pore-pressure definitions decreases. Even
though capillarity is strong, a stiffer bulk modulus results in lower
values of s and v. As v decreases, the average-pore-pressure formu-
lation becomes numerically stable (Fig. 10a) and the errors
decrease (Fig. 10b).

Nonlinear Capillary Pressure Curve. After investigating the
effect of high capillarity (high values of Pc or, equivalently, v)
with a flat capillary pressure curve, we now show an example
with a nonlinear Pc curve. We take Pc¼ 0.2 MPa, Pe¼ 10 kPa,
and an exponent lp¼ 0.4. This leads to a highly nonlinear Pc

curve, especially in the range of low water saturations. We take
Sr,o¼ Sr,w¼ 0.

In Fig. 11 we compare the solutions from the p and pE formu-
lations, both computed with a fully implicit monolithic scheme.
There is a noticeable difference between p and pE in the evolution
of the oil pressure at the monitoring well (Fig. 11a) and the spatial
distribution of oil pressure at the top layer (Fig. 11b), indicating
that the p formulation is inaccurate even at moderate levels of
capillarity.
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fully implicit method in Fig. 7. (a) Pc 5 0.0 Pa; (b) Pc 5 7.0 MPa. As the timestep size becomes smaller, the accuracy of the
undrained method is enhanced, but it is still lower than that of the fixed-stress method.
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Conclusions

In this work, we have analyzed strategies for the solution of
coupled flow and geomechanics in the presence of multiple fluid
phases and, therefore, capillarity effects. First, we addressed the
question of what is the appropriate definition of pore pressure in
the multiphase extension of effective stress.

We investigated two definition; the (saturation-weighted) aver-
age pore pressure p and the equivalent pore-pressure of Coussy
(2004), pE, from the perspective of nonlinear stability, as well as
accuracy and convergence of coupled mechanics and multiphase
flow.

Our a priori estimates using the energy method show that pE is
the proper definition of the multiphase pore pressure because it
renders a formulation that is demonstrably dissipative, a key prop-
erty that the p formulation does not enjoy. We conduct numerical
simulations with a fully implicit monolithic scheme that show, in
agreement with our nonlinear stability analysis, that the pE formu-
lation leads to unconditionally stable and accurate solutions,

whereas p leads to numerically unstable solutions for strong capil-
larity. Our simulations also show that even when the p-based sol-
utions are stable, they deviate significantly from the physically
correct reference solution.

After demonstrating that pE is the appropriate definition of
pore pressure in the conservation equations and constitutive rela-
tions when multiple fluids occupy the pore space, we then per-
formed stability and convergence analyses of sequential-implicit
coupling strategies. We show that the multiphase extensions of
both the undrained split and the fixed-stress split (Kim et al.
2011b, 2011c) are unconditionally stable (B-stable). Our analysis
and numerical simulations also show that the fixed-stress split is
superior to the undrained split in terms of convergence behavior.
Even with strong capillarity in near-incompressible systems, the
fixed-stress split matches the fully implicit monolithic solution.
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Josa, A. 1988. Un Modelo Elatoplástico Para Suelos No Saturados. PhD

dissertation, Universitat Politecnica de Catalunya, Barcelona, Spain.

Josa, A., Alonso, E.E., Lloret, A., et al. 1987. Stress-Strain Behaviour of

Partially Saturated Soil. Proc., 9th European Conference on Soil

Mechanics and Foundation Engineering, Adelaide, Australia, 67–71.

Khalili, N. and Khabbaz, M.H. 1998. A Unique Relationship of v for the

Determination of the Shear Strength of Unsaturated Soils. Geotechni-
que 48 (5): 681–687. http://dx.doi.org/10.1680%2fgeot.1998.48.5.681.

Kim, J., Moridis, G.J., and Rutqvist, J. 2012a. Coupled Flow and Geome-

chanical Analysis for Gas Production in the Prudhoe Bay Unit L-106

Well Unit C Gas Hydrate Deposit in Alaska. J. Pet. Sci. Eng. 92–93:

143–157. http://dx.doi.org/10.1016/j.petrol.2012.04.012.

Kim, J., Moridis, G.J., Yang, D., and Rutqvist, J. 2012b. Numerical Stud-

ies on Two-Way Coupled Fluid Flow and Geomechanics in Hydrate

Deposits. SPE J. 17 (2): 485–501. http://dx.doi.org/10.2118/141304-

PA.

Kim, J., Tchelepi, H.A., and Juanes, R. 2011a. Stability, Accuracy and Ef-

ficiency of Sequential Methods for Coupled Flow and Geomechanics.

SPE J. 16 (2): 249–262. http://dx.doi.org/10.2118/119084-PA.

Kim, J., Tchelepi, H.A., and Juanes, R. 2011b. Stability and Convergence

of Sequential Methods for Coupled Flow and Geomechanics: Drained

and Undrained Splits. Comput. Methods Appl. Mech. Eng. 200

(23–24): 2094–2116. http://dx.doi.org/10.1016/j.cma.2011.02.011.

Kim, J., Tchelepi, H.A., and Juanes, R. 2011c. Stability and Convergence

of Sequential Methods for Coupled Flow and Geomechanics: Fixed-

Stress and Fixed-Strain Splits. Comput. Methods Appl. Mech. Eng. 200

(13–16): 1591–1606. http://dx.doi.org/10.1016/j.cma.2010.12.022.

Kosloff, D., Scott, R., and Scranton, J. 1980. Finite Element Simulation of

Wilmington Oil Field Subsidence: I. Linear Modelling. Tectonophysics

65 (3–4): 339–368. http://dx.doi.org/10.1016/0040-1951(80)90082-7.

Lewis, R.W., Makurat, A., and Pao, W.K.S. 2003. Fully Coupled Model-

ling of Seabed Subsidence and Reservoir Compaction of North Sea Oil

Fields. Hydrogeol. J. 11 (1): 142–161. http://dx.doi.org/10.1007/

s10040-002-0239-z.

Lewis, R.W. and Schrefler, B.A. 1998. The Finite Element Method in the

Static and Dynamic Deformation and Consolidation of Porous Media,

second edition. Chichester, England: Wiley.

Lewis, R.W. and Sukirman, Y. 1993a. Finite Element Modelling for Simu-

lating the Surface Subsidence Above a Compacting Hydrocarbon Res-

ervoir. Int. J. Numer. Anal. Methods Geomech. 18 (9): 619–639. http://

dx.doi.org/10.1002/nag.1610180904.

December 2013 SPE Journal 1137

http://dx.doi.org/10.1680/geot.1990.40.3.405
http://dx.doi.org/10.1680/geot.1990.40.3.405
http://dx.doi.org/10.1016/S0045-7825(98)00211-4
http://dx.doi.org/10.1002/nme.1620350408
http://dx.doi.org/10.1002/nme.1620350408
http://dx.doi.org/10.1016/0749-6419(93)90036-P
http://dx.doi.org/10.1016/0749-6419(93)90036-P
http://dx.doi.org/10.2118/93083-PA
http://dx.doi.org/10.2118/93083-PA
http://dx.doi.org/10.1063/1.1712886
http://dx.doi.org/10.1016/j.ijsolstr.2005.04.045
http://dx.doi.org/10.1029/2011GL048487
http://dx.doi.org/10.1007/s00254-007-0948-7
http://dx.doi.org/10.1016/j.jmps.2005.04.001
http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:6(658)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:6(658)
http://dx.doi.org/10.1007/0-306-46953-7&hx005F;20
http://dx.doi.org/10.1016/j.jcp.2010.03.018
http://dx.doi.org/10.2118/119151-MS
http://dx.doi.org/10.1061/(ASCE)0733-9399(2002)128:7(779)
http://dx.doi.org/10.1029/2011GL047937
http://dx.doi.org/10.1029/2011GL047937
http://dx.doi.org/10.1103/PhysRevLett.108.264504
http://dx.doi.org/10.1103/PhysRevLett.108.264504
http://dx.doi.org/10.1029/2008JB006002
http://dx.doi.org/10.1002/nag.576
http://dx.doi.org/10.1002/nag.576
http://dx.doi.org/10.1007/s11440-007-0033-0
http://dx.doi.org/10.1007/s11440-007-0033-0
http://dx.doi.org/10.1680&hx0025;2fgeot.1998.48.5.681
http://dx.doi.org/10.1016/j.petrol.2012.04.012
http://dx.doi.org/10.2118/141304-PA
http://dx.doi.org/10.2118/141304-PA
http://dx.doi.org/10.2118/119084-PA
http://dx.doi.org/10.1016/j.cma.2011.02.011
http://dx.doi.org/10.1016/j.cma.2010.12.022
http://dx.doi.org/10.1016/0040-1951(80)90082-7
http://dx.doi.org/10.1007/s10040-002-0239-z
http://dx.doi.org/10.1007/s10040-002-0239-z
http://dx.doi.org/10.1002/nag.1610180904
http://dx.doi.org/10.1002/nag.1610180904


Lewis, R.W. and Sukirman, Y. 1993b. Finite Element Modelling of Three-

Phase Flow in Deforming Saturated Oil Reservoirs. Int. J. Numer.
Anal. Methods Geomech. 17 (8): 577–598. http://dx.doi.org/10.1002/

nag.1610170804.

Li, X., Liu, Z., and Lewis, R.W. 2005. Mixed Finite Element Method for

Couple Thermo-Hydro-Mechanical Process in Poro-Elastic-Plastic

Media at Large Strains. Int. J. Numer. Meth. Eng. 64 (5): 667–708.

http://dx.doi.org/10.1002/nme.1469.

Mainguy, M., Coussy, O., and Baroghel-Bouny, V. 2001. Role of Air Pressure

in Drying of Weakly Permeable Materials. J. Eng. Mech. 127 (6):

582–592. http://dx.doi.org/10.1061/(ASCE)0733-9399(2001)127: 6(582).

Mainguy, M. and Longuemare, P. 2002. Coupling Fluid Flow and Rock

Mechanics: Formulations of the Partial Coupling Between Reservoir

and Geomechanics Simulators. Oil Gas Sci. Tech. 57 (4): 355–367.

http://dx.doi.org/10.2516/ogst:2002023.

Marsden, J.E. and Hughes, T.J.R. 1983. Mathematical Foundations of
Elasticity. Englewood Cliffs, New Jersey: Prentice-Hall.

Maswoswe, J. 1985. Stress Path for a Compacted Soil During Collapse
due to Wetting. PhD dissertation, Imperial College London, London,

UK (May 1985).

Mayor, J., Velasco, M., and Garcia-Sineriz, J. 2007. Ventilation Experi-

ment in the Mont Terri Underground Laboratory. Phys. Chem. Earth
32 (8–14): 616–628. http://dx.doi.org/10.1016/j.pce.2006.04.030.

Merle, H.A., Kentie, C.J.P., van Opstal, G.H.C., et al. 1976. The Bacha-

quero Study–A Composite Analysis of the Behavior of a Compaction

Drive/Solution Gas Drive Reservoir. J. Pet. Tech. 28 (9): 1107–1114.

http://dx.doi.org/10.2118/5529-PA.

Morris, J.P., Hao, Y., Foxall, W., et al. 2011. A Study of Injection-Induced

Mechanical Deformation at the In Salah CO2 Storage Project. Int. J.
Greenh. Gas Con. 5 (2): 270–280. http://dx.doi.org/10.1016/

j.ijggc.2010.10.004.

Murad, M.A. and Loula, A.F.D. 1992. Improved Accuracy in Finite Element

Analysis of Biot’s Consolidation Problem. Comput. Methods Appl. Mech.
Eng. 95 (3): 359–382. http://dx.doi.org/10.1016/0045-7825(92)

90193-N.

Murad, M.A. and Loula, A.F.D. 1994. On Stability and Convergence of

Finite Element Approximations of Biot’s Consolidation Problem.

Comput. Methods Appl. Mech. Eng. 37 (4): 645–667. http://dx.doi.org/

10.1002/nme.1620370407.

Nuth, M. and Laloui, L. 2008. Effective Stress Concept in Unsaturated

Soils: Clarification and Validation of a Unified Framework. Int. J.

Numer. Anal. Methods Geomech. 32 (7): 771–801. http://dx.doi.org/

10.1002/nag.645.

Olivella, S., Gens, A., Carrera, J., et al. 1996. Numerical Formulation for a

Simulator (CODE_BRIGHT) for the Coupled Analysis of Saline

Media. Eng. Comput. 13 (7): 87–112. http://dx.doi.org/10.1108/

02644409610151575.

Pao, W.K.S. and Lewis, R.W. 2002. Three Dimensional Finite Element

Simulation of Three-Phase Flow in a Deforming Fissured Reservoir.

Comput. Methods Appl. Mech. Eng. 191 (23–24): 2631–2659. http://

dx.doi.org/10.1016/S0045-7825(01)00420-0.

Pao, W.K.S., Lewis, R.W., and Masters, I. 2001. A Fully Coupled Hydro-

Thermo-Poro-Mechanical Model for Black Oil Reservoir Simulation.

Int. J. Numer. Anal. Methods Geomech. 25 (12): 1229–1256. http://

dx.doi.org/10.1002/nag.174.

Phillips, P.J. and Wheeler, M.F. 2007a. A Coupling of Mixed and Contin-

uous Galerkin Finite Element Methods for Poroelasticity I: The Con-

tinuous in Time Case. Comput. Geosci. 11 (2): 131–144. http://

dx.doi.org/10.1007/s10596-007-9045-y.

Phillips, P.J. and Wheeler, M.F. 2007b. A Coupling of Mixed and Contin-

uous Galerkin Finite Element Methods for Poroelasticity II: The Dis-

crete-in-Time Case. Comput. Geosci. 11 (2): 145–158. http://

dx.doi.org/10.1007/s10596-007-9044-z.

Rutqvist, J., Birkholzer, J.T., and Tsang, C.F. 2008. Coupled Reservoir-

Geomechanical Analysis of the Potential for Tensile and Shear Failure

Associated with CO2 Injection in Multilayered Reservoir-Caprock

Systems. Int. J. Rock Mech. Min. Sci. 45 (2): 132–143. http://

dx.doi.org/10.1016/j.ijrmms.2007.04.006.

Rutqvist, J., Borgesson, L., Chijimatsu, M., et al. 2001. Thermohydrome-

chanics of Partially Saturated Geological Media: Governing Equations

and Formulation of Four Finite Element Models. Int. J. Rock Mech. Min.

Sci. 38 (1): 105–127. http://dx.doi.org/10.1016/S1365-1609(00)00068-

X.

Rutqvist, J. and Moridis, G.J. 2009. Numerical Studies on the Geomechan-

ical Stability of Hydrate-Bearing Sediments. SPE J. 14 (2): 267–282.

http://dx.doi.org/10.2118/126129-PA.

Settari, A. and Mourits, F. 1994. Coupling of Geomechanics and Reservoir

Simulation Models. In Computer Methods and Advances in Geome-

chanics, eds. H. J. Siriwardane and M. M. Zaman, 2151–2158. Bal-

kema, Rotterdam, the Netherlands.

Settari, A. and Mourits, F. 1998. A Coupled Reservoir and Geomechanical

Simulation System. SPE J. 3 (3): 219–226. http://dx.doi.org/10.2118/

50939-PA.

Simo, J. 1991. Nonlinear Stability of the Time-Discrete Variational Prob-

lem of Evolution in Nonlinear Heat Conduction, Plasticity and Visco-

plasticity. Comput. Methods Appl. Mech. Eng. 88 (1): 111–131. http://

dx.doi.org/10.1016/0045-7825(91)90235-X.

Simo, J. and Govindjee, S. 1991. Nonlinear B-Stability and Symmetry

Preserving Return Mapping Algorithms for Plasticity and Viscoplastic-

ity. Int. J. Numer. Anal. Methods Geomech. 31 (1): 151–176. http://

dx.doi.org/10.1002/nme.1620310109.

Sukirman, Y. and Lewis, R.W. 1993. A Finite Element Solution of a Fully

Coupled Implicit Formulation for Reservoir Simulation. Int. J. Numer.
Anal. Methods Geomech. 17 (10): 677–698. http://dx.doi.org/10.1002/

nag.1610171002.

Szulczewski, M.L., MacMinn, C.W., Herzog, H.J., et al. 2012. The Life-

time of Carbon Capture and Storage as a Climate-Change Mitigation

Technology. Proc. Natl. Acad. Sci. USA. 109 (14): 5185–5189. http://

dx.doi.org/10.1073/pnas.1115347109.

Terzaghi, K., Peck, R.B., and Mesri, G. 1996. Soil Mechanics in Engineer-
ing Practice. New York, New York: John Wiley & Sons.

Truty, A. and Zimmermann, T. 2006. Stabilized Mixed Finite Element

Formulations for Materially Nonlinear Partially Saturated Two-Phase

Media. Comput. Methods Appl. Mech. Eng. 195 (13–16): 1517–1546.

http://dx.doi.org/10.1016/j.cma.2005.05.044.

Vermeer, P.A. and Verruijt, A. 1981. An Accuracy Condition for Consoli-

dation by Finite Elements. Int. J. Numer. Anal. Methods Geomech. 5

(1): 1–14. http://dx.doi.org/10.1002/nag.1610050103.

Wan, J. 2002. Stabilized Finite Element Methods for Coupled Geome-

chanics and Multiphase Flow. PhD dissertation, Stanford University,

Stanford, California (November 2002).

Wan, J., Durlofsky, L.J., Hughes, T.J.R., et al. 2003. Stabilized Finite

Element Methods for Coupled Geomechanics Reservoir Flow Simula-

tions. Presented at the SPE Reservoir Simulation Symposium, Hous-

ton, Texas, 3–5 February. SPE-79694-MS. http://dx.doi.org/10.2118/

79694-MS.

White, A.J. and Borja, R.I. 2008. Stabilized Low-Order Finite Elements

for Coupled Solid-Deformation/Fluid-Diffusion and Their Application

to Fault Zone Transients. Comput. Methods Appl. Mech. Eng. 197

(49–50): 4353–4366. http://dx.doi.org/10.1016/j.cma.2008.05.015.

Yin, S., Dusseault, M.B., and Rothenburg, L. 2009. Thermal Reservoir

Modeling in Petroleum Geomechanics. Int. J. Numer. Anal. Methods

Geomech. 33 (4): 449–485. http://dx.doi.org/10.1002/nag.723.

Zhang, C., Rothfuchs, T., Su K., et al. 2007. Experimental Study of the

Thermo-Hydro-Mechanical Behaviour of Indurated Clays. Phys.

Chem. Earth 32 (8–14): 957–965. http://dx.doi.org/10.1016/j.pce.

2006.04.038.

Zienkiewicz, O.C., Paul, D.K., and Chan, A.H.C. 1988. Unconditionally

Stable Staggered Solution Procedure for Soil-Pore Fluid Interaction

Problems. Int. J. Numer. Meth. Eng. 26 (5): 1039–1055. http://

dx.doi.org/10.1002/nme.1620260504.

Jihoon Kim is a research scientist at the Lawrence Berkeley
National Laboratory, Berkeley, California. He studies geome-
chanical responses to geothermal energy extraction; gas pro-
duction from gas hydrate, tight gas, and shale gas reservoirs;
and nuclear-waste disposal. Kim also focuses on numerical
modeling and simulation of coupled flow/geomechanics/
geophysics processes, including hydraulic fracturing. He holds
a PhD in petroleum engineering from Stanford University.

Hamdi A. Tchelepi is Professor of Energy Resources Engineer-
ing at Stanford University. He codirects the Center for

1138 December 2013 SPE Journal

http://dx.doi.org/10.1002/nag.1610170804
http://dx.doi.org/10.1002/nag.1610170804
http://dx.doi.org/10.1002/nme.1469
http://dx.doi.org/10.1061/(ASCE)0733-9399(2001)127: 6(582)
http://dx.doi.org/10.2516/ogst:2002023
http://dx.doi.org/10.1016/j.pce.2006.04.030
http://dx.doi.org/10.2118/5529-PA
http://dx.doi.org/10.1016/j.ijggc.2010.10.004
http://dx.doi.org/10.1016/j.ijggc.2010.10.004
http://dx.doi.org/10.1016/0045-7825(92)90193-N
http://dx.doi.org/10.1016/0045-7825(92)90193-N
http://dx.doi.org/10.1002/nme.1620370407
http://dx.doi.org/10.1002/nme.1620370407
http://dx.doi.org/10.1002/nag.645
http://dx.doi.org/10.1002/nag.645
http://dx.doi.org/10.1108/02644409610151575
http://dx.doi.org/10.1108/02644409610151575
http://dx.doi.org/10.1016/S0045-7825(01)00420-0
http://dx.doi.org/10.1016/S0045-7825(01)00420-0
http://dx.doi.org/10.1002/nag.174
http://dx.doi.org/10.1002/nag.174
http://dx.doi.org/10.1007/s10596-007-9045-y
http://dx.doi.org/10.1007/s10596-007-9045-y
http://dx.doi.org/10.1007/s10596-007-9044-z
http://dx.doi.org/10.1007/s10596-007-9044-z
http://dx.doi.org/10.1016/j.ijrmms.2007.04.006
http://dx.doi.org/10.1016/j.ijrmms.2007.04.006
http://dx.doi.org/10.1016/S1365-1609(00)00068-X
http://dx.doi.org/10.1016/S1365-1609(00)00068-X
http://dx.doi.org/10.2118/126129-PA
http://dx.doi.org/10.2118/50939-PA
http://dx.doi.org/10.2118/50939-PA
http://dx.doi.org/10.1016/0045-7825(91)90235-X
http://dx.doi.org/10.1016/0045-7825(91)90235-X
http://dx.doi.org/10.1002/nme.1620310109
http://dx.doi.org/10.1002/nme.1620310109
http://dx.doi.org/10.1002/nag.1610171002
http://dx.doi.org/10.1002/nag.1610171002
http://dx.doi.org/10.1073/pnas.1115347109
http://dx.doi.org/10.1073/pnas.1115347109
http://dx.doi.org/10.1016/j.cma.2005.05.044
http://dx.doi.org/10.1002/nag.1610050103
http://dx.doi.org/10.2118/79694-MS
http://dx.doi.org/10.2118/79694-MS
http://dx.doi.org/10.1016/j.cma.2008.05.015
http://dx.doi.org/10.1002/nag.723
http://dx.doi.org/10.1016/j.pce.2006.04.038
http://dx.doi.org/10.1016/j.pce.2006.04.038
http://dx.doi.org/10.1002/nme.1620260504
http://dx.doi.org/10.1002/nme.1620260504


Computational Earth and Environmental Science and SUPRI-B.
Tchelepi’s research interests include multiscale modeling of
flow in natural porous media. He holds a PhD degree in petro-
leum engineering from Stanford University.

Ruben Juanes is the ARCO Associate Professor in Energy Stud-
ies in the Department of Civil and Environmental Engineering

at the Massachusetts Institute of Technology (MIT), Cambridge,
Massachusetts. Before joining the MIT faculty in 2006, he was an
acting assistant professor at Stanford University and an assistant
professor at the University of Texas at Austin. Juanes works on
multiphase flow through porous media and coupled flow-geo-
mechanics. He holds a PhD degree from the University of Cali-
fornia at Berkeley.

December 2013 SPE Journal 1139


