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Abstract
We perform detailed stability and convergence analyses of sequential-implicit solution methods for coupled fluid flow and reser-
voir geomechanics. We analyze four different sequential-implicit solution strategies, where each sub-problem (flow and me-
chanics) is solved implicitly. Two schemes in which the mechanical problem is solved first, namely, the drained and undrained
splits, and two schemes, where the flow problem is solved first, namely, the fixed-strain and fixed-stress splits. The Von Neu-
mann method is used to obtain the linear-stability criteria of the four sequential schemes, and numerical simulations are used
to test the validity and sharpness of these criteria for representative problems. The analysis indicates that the drained and
fixed-strain splits, which are commonly used, are conditionally stable, and that the stability limits depend only on the strength
of coupling between flow and mechanics and are independent of the timestep size. So, the drained and fixed-strain schemes
cannot be used when the coupling between flow and mechanics is strong. Moreover, numerical solutions obtained using the
drained and fixed-strain sequential suffer from oscillations, even when the stability limit is honored. For problems where the
deformation may be plastic (nonlinear) in nature, the drained and fixed-strain sequential schemes become unstable when the
system enters the plastic regime. On the other hand, the undrained and fixed-stress sequential schemes are unconditionally
stable regardless of the coupling strength, and they do not suffer from oscillations. While both the undrained and fixed-stress
schemes are unconditionally stable, for the cases investigated we found that the fixed-stress split converges more rapidly than
the undrained split. Based on these findings, we strongly recommend the fixed-stress sequential-implicit method for modeling
coupled flow and geomechanics in reservoirs.

Introduction
Reservoir geomechanics is concerned with the study of fluid flow and the mechanical response of the reservoir. Reservoir
geomechanical behavior plays a critical role in compaction drive, subsidence, well failure, stress dependent permeability, as
well as tar sand and heavy oil production (see, e.g., Lewis and Sukirman (1993); Settari and Mourits (1998); Settari and Walters
(2001); Thomas et al. (2003); Li and Chalaturnyk (2005); Dean et al. (2006); Jha and Juanes (2007)). The reservoir simulation
community has traditionally emphasized flow modeling and oversimplified the mechanical response of the formation through
the use of the rock compressibility, taken as a constant coefficient or a simple function of porosity. In order to quantify the
deformation and stress fields due to changes in the fluid pressure field and to account for stress dependent permeability effects,
rigorous and efficient modeling of the coupling between flow and geomechanics is required.

In recent years, the interactions between flow and geomechanics have been modeled using various coupling schemes (Settari
and Mourits, 1998; Settari and Walters, 2001; Mainguy and Longuemare, 2002; Minkoff et al., 2003; Thomas et al., 2003; Tran
et al., 2004, 2005; Dean et al., 2006; Jha and Juanes, 2007). Coupling methods are classified into four types: fully coupled,
iteratively coupled, explicitly coupled, and loosely coupled (Settari and Walters, 2001; Dean et al., 2006). The characteristics
of the coupling methods are:

1. Fully coupled. The coupled governing equations of flow and geomechanics are solved simultaneously at every time step.
(Lewis and Sukirman, 1993; Wan et al., 2003; Gai, 2004; Phillips and Wheeler, 2007a,b; Jean et al., 2007). For nonlinear
problems, an iterative (e.g., Newton–Raphson) scheme is usually employed to compute the numerical solution. The fully
coupled method is unconditionally stable, but it is computationally very expensive. Development of a fully coupled
flow-mechanics reservoir simulator, which is needed for this approach, is quite costly.

2. Iteratively coupled. These are sequential (staggered) solution schemes. Either the flow, or mechanical, problem is solved
first, then the other problem is solved using the intermediate solution information (Prevost, 1997; Settari and Mourits,
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1998; Settari and Walters, 2001; Mainguy and Longuemare, 2002; Thomas et al., 2003; Tran et al., 2004; Gai, 2004;
Tran et al., 2005; Wheeler and Gai, 2007; Jha and Juanes, 2007; Jean et al., 2007). For each time step, several iterations
are performed, each involving sequential updating of the flow and mechanics problems until the solution converges
to within an acceptable tolerance. For a given time step, at convergence, the fully coupled and sequential solutions are
expected to be the same, if they both employ the same spatial discretization schemes of the flow and mechanics problems.
In principle, a sequential scheme offers several advantages (Mainguy and Longuemare, 2002), including working with
separate modules for flow and mechanics, each with its own advanced numerics and engineering functionality. Sequential
treatment also facilitates the use of different computational domains for the flow and mechanical problems. In practice,
the domain of the mechanical problem is usually larger than that for flow because the details of the stress and strain fields
at reservoir boundaries can be an important part of the problem (Settari and Walters, 2001; Thomas et al., 2003).

3. Explicitly coupled. This is also called the non-iterative (single-pass) sequential method. This is a special case of the
iteratively coupled method, where only one iteration is taken (Park, 1983; Zienkiewicz et al., 1988; Armero and Simo,
1992; Armero, 1999).

4. Loosely coupled. The coupling between the two problems is resolved only after a certain number of flow time steps
(Bevillon and Masson, 2000; Gai et al., 2005; Dean et al., 2006; Samier and Gennaro, 2007). This method can be less
costly compared with the other strategies. However, reliable estimates of when to update the mechanical response are
required.

Given the enormous software development and computational cost of a fully coupled flow–mechanics approach, it is desir-
able to develop sequential–implicit coupling methods that can be competitive with the fully implicit method (i.e., simultaneous
solution of the flow and mechanics problems), in terms of numerical stability and computational efficiency. Sequential, or
staggered, coupling schemes offer wide flexibility from a software engineering perspective, and they facilitate the use of spe-
cialized numerical methods for dealing with mechanics and flow problems (Felippa and Park, 1980; Settari and Mourits, 1998).
As opposed to the fully coupled approach, with sequential-implicit schemes one can use separate software modules for the
mechanics and flow problems, whereby the two modules communicate through a well defined interface (Felippa and Park,
1980; Samier and Gennaro, 2007). Then, the robustness and efficiency of each module – flow and geomechanics – are available
for the coupled flow-mechanics problem. In order for a sequential-implicit simulation framework to succeed, it should possess
stability and convergence properties that are competitive with the corresponding fully coupled strategy.

We analyze the stability and convergence behaviors of sequential (staggered) implicit schemes for coupled mechanics and
flow in oil reservoirs. In addition to building on the developments in the reservoir simulation community, we take advantage of
the significant efforts in the geotechnical and computational mechanics communities in pursuit of stable and efficient sequential-
implicit schemes for coupled poromechanics (or the analogous thermo-mechanics) problems (Park, 1983; Zienkiewicz et al.,
1988; Huang and Zienkiewicz, 1998; Farhat et al., 1991; Armero and Simo, 1992; Armero, 1999).

Most of the sequential methods developed in the geotechnical community assume that the mechanical problem is solved
first. In this context, two different schemes have been used. One method is called the drained split (the isothermal split in the
thermo-elastic problem (Armero and Simo, 1992)), and the other one is the undrained split (Zienkiewicz et al., 1988; Armero,
1999; Jha and Juanes, 2007) (the adiabatic split in the thermo-elastic problem (Armero and Simo, 1992)). The drained-split
scheme freezes the pressure when solving the mechanical deformation problem. This scheme is only conditionally stable, even
though each of the sub-problems is solved implicitly (Armero, 1999). The undrained-split strategy, on the other hand, freezes the
fluid mass content when solving the mechanics problem. Armero (1999) showed that the undrained split honors the dissipative
character of the continuum problem of coupled mechanics and flow in porous media, and that it is unconditionally stable with
respect to time evolution, independently of the schemes used for spatial discretization. Of course, numerical solution strategies
must employ appropriate spatial discretization schemes for the flow (pressure) and mechanics (displacement vector). The
undrained-split scheme has been successfully applied to solve coupled linear (Zienkiewicz et al., 1988; Huang and Zienkiewicz,
1998) and nonlinear (Armero, 1999) problems.

In the reservoir engineering community, the focus has largely been on extending general-purpose (robust behavior with wide
engineering functionality) reservoir flow simulators to account for geomechanical deformation effects. As a result, sequential
coupling schemes are popular. However, not all sequential coupling schemes are created equal. An obvious split corresponds to
freezing the displacements during the solution of the flow problem, and then solving the mechanics problem with the updated
pressure field. Unfortunately, this ‘fixed-strain’ scheme is conditionally stable. Here, we show that the fixed-strain split has
stability characteristics that are quite similar to the ‘drained’ split.

Settari and Mourits (1998) described a sequential-implicit coupling strategy, in which the flow and mechanics problems
communicate through a porosity correction. Since then, published simulation results and engineering experience have shown
that their method has good stability and convergence properties, especially for linear poroelasticity problems. However, no
formal stability analysis of the Settari and Mourits scheme was available. Here, we perform such a stability analysis. Specif-
ically, we show that their scheme is a special case of the ‘fixed-stress’ split, which we prove to be unconditionally stable.
Moreover, we demonstrate that the fixed-stress split is quite effective for nonlinear deformation problems, as well. Wheeler
and Gai (2007) employed advanced numerical methods for the spatial discretization of coupled poroelasticity and single-phase
flow. Specifically, they used a finite-element method for flow and a continuous Galerkin scheme for the displacement-vector
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field. They used a sequential scheme to couple the flow and mechanics problems, in which they first solve the flow problem
by lagging the stress field, and then they solve the mechanics problem. Their coupling scheme is quite similar to that used by
(Settari and Mourits, 1998) and enjoys good stability properties. Wheeler and Gai (2007) provide a-priori convergence rate
estimates of this fixed-stress coupling scheme for single-phase flow and poroelasticity.

Mainguy and Longuemare (2002) described three different strategies to sequentially couple compressible fluid flow in the
presence of poroelastic deformation in oil reservoirs. For each sequential strategy, they showed the corresponding ‘porosity
correction’ term that must be used to account for geomechanical effects. Namely, they dervied the porosity correction in
terms of (1) volumetric strain, (2) pore volume, and (3) total mean-stress. While no stability analysis of the various sequential
schemes was provided, they demonstrated that the pore-compressibility factor can be used as a relaxation parameter to speed
up the convergence rate of sequential-implicit schemes (Mainguy and Longuemare, 2002).

There is a growing recognition that different sequential-implicit solution strategies for coupling fluid-flow and geomechan-
ical deformation in reservoirs often lead to vastly different behaviors, in terms of stability, accuracy, and efficiency. Here, we
perform detailed analysis of both the stability and convergence properties of the various sequential schemes for coupling flow
and geomechanical deformation. Moreover, detailed analysis of the applicability of sequential schemes to coupled nonlinear
deformation (e.g., plasticity) and flow is also performed. Specifically, we analyze the stability and convergence behaviors of
four sequential coupling schemes: drained, undrained, fixed-strain, and fixed-stress. Both poroelastic and poro-elastoplastic
mechanics are analyzed in the presence of a slightly compressible, single-phase fluid.

Our stability analysis shows that the drained and fixed-strain split methods are conditionally stable; moreover, their stability
limit is independent of time step size and depends only on the coupling strength. So, problems with strong coupling cannot be
solved by the drained or fixed-strain schemes, regardless of the time-step size. On the other hand, we show that the undrained
and fixed-stress split methods are unconditionally stable, and that they are free of oscillations with respect to time. We also
show that the undrained and fixed-stress sequential-implicit methods are convergent and monotonic for nonlinear elasto-plastic
problems.

Mathematical Model
We adopt a classical continuum representation, where the fluid and solid are viewed as overlapping continua. The physical
model is based on poroelasticity and poroelastoplasticity theories Coussy (1995). We assume isothermal single-phase flow of
a slightly compressible fluid, small deformation (i.e., infinitesimal transformation), isotropic geomaterial, and no stress depen-
dence of flow properties, such as porosity or permeability. The governing equations for coupled flow and reservoir geomechan-
ics come from mass and linear-momentum conservation laws. Under the quasi-static assumption for earth displacements, the
governing equation for mechanical deformation of the solid–fluid system can be expressed as

Div σ + ρbg = 0, (1)

where Div(·) is the divergence operator, σ is the Cauchy total stress tensor, g is the gravity vector, ρb = φρf +(1−φ)ρs is the
bulk density, ρf is fluid density, ρs is the density of the solid phase, and φ is the true porosity. The true porosity is defined as
the ratio of the pore volume and the bulk volume in the deformed configuration. A stress–strain relation must be specified for
the mechanical behavior of the porous medium. Changes in total stress and fluid pressure are related to changes in strain and
fluid content by Biot’s theory (Biot, 1941; Geertsma, 1957; Coussy, 1995; Lewis and Schrefler, 1998; Borja, 2006). Following
Coussy (1995), the poroelasticity equations can be written as

σ − σ0 = Cdr : ε − b(p − p0)1, (2)
1

ρf,0
(m − m0) = bεv +

1
M

(p − p0), (3)

where subscript 0 refers to the reference state, Cdr is the rank-4 drained elasticity tensor, 1 is the rank-2 identity tensor, p is
fluid pressure, m is fluid mass per unit bulk volume, M is the Biot modulus, and b is the Biot coefficient. Note that we use the
convention that tensile stress is positive. Assuming that the infinitesimal transformation assumption is applicable, the linearized
strain tensor, ε, can be expressed as

ε = Grads u =
1
2
(Gradu + Gradt u). (4)

Note that (Coussy, 1995)

1
M

= φ0cf +
b − φ0

Ks
, (5)

b = 1 − Kdr

Ks
, (6)

where cf is the fluid compressibility (1/Kf ), Kf is the bulk modulus of the fluid, Ks is the bulk modulus of the solid grain,
and Kdr is the drained bulk modulus. The strain and stress tensors can be expressed in terms of their volumetric and deviatoric
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parts as follows:

ε =
1
3
εv1 + e, (7)

σ = σv1 + s, (8)

where εv = trε is the volumetric strain (trace of the strain tensor), e is the deviatoric part of the strain tensor, σv = 1
3 trσ is the

volumetric (mean) total stress, and s is the deviatoric total stress tensor.
Under the assumption of small deformations, the fluid mass conservation equation is

∂m

∂t
+ Div q = ρf,0f, (9)

where q is the fluid mass flux, and f is a volumetric source term. The fluid volume flux (velocity), v = q/ρf,0, relative to the
deforming skeleton, is given by Darcy’s law (Coussy, 1995):

v = − 1
Bf

k

μ
(Grad p − ρfg), (10)

where k is the absolute permeability tensor, μ is fluid viscosity, and Bf = ρf,0/ρf is the formation volume factor of the fluid
(Aziz and Settari, 1979).

Using Equation 3, we write Equation 9 in terms of pressure and volumetric strain:

1
M

∂p

∂t
+ b

∂εv

∂t
+ Div

q

ρf,0
= f. (11)

By noting the relation between volumetric stress and strain,

(σv − σv,0) + b(p − p0) = Kdrεv, (12)

we write Equation 11 in terms of pressure and the total (mean) stress,(
1
M

+
b2

Kdr

)
∂p

∂t
+

b

Kdr

∂σv

∂t
+ Div

q

ρf,0
= f. (13)

Equations 11 and 13 are two equivalent expressions of mass conservation (i.e., flow problem) in a deforming porous
medium. Substitution of Darcy’s law in Equations 11 and 13 leads, respectively, to pressure-strain and pressure-stress forms
of the flow equation. The two forms of mass conservation are equivalent. However, using one form versus the other in a
sequential-implicit scheme to couple flow with mechanics leads to very different stability and convergence behaviors. Later, we
use these expressions (Eqs. 11 and 13) to show the exact forms of the operator-splitting strategies (solving two sub-problems -
flow and mechanics - sequentially) studied in this paper.

To complete the description of the coupled flow and geomechanics mathematical problem, we need to specify initial and
boundary conditions. For the flow problem, we consider the boundary conditions p = p̄ (prescribed pressure) on Γp, and
v ·n = v̄ (prescribed volumetric flux) on Γv , where n is the outward unit normal to the boundary, ∂Ω. For well-posedness, we
assume that Γp ∩ Γv = ∅, and Γp ∪ Γv = ∂Ω.

The boundary conditions for the mechanical problem are u = ū (prescribed displacement) on Γu and σ ·n = t̄ (prescribed
traction) on Γσ . Again, we assume Γu ∩ Γσ = ∅, and Γu ∪ Γσ = ∂Ω.

Initialization of the geomechanical model is a difficult task in itself (Fredrich et al., 2000). The initial stress field should
satisfy mechanical equilibrium, and be consistent with the history of the stress-strain paths. Here, we take the initial condition
of the coupled problem as p|t=0 = p0 and σ|t=0 = σ0.

Discretization
The finite-volume method is widely used in reservoir flow simulation community (Aziz and Settari, 1979). On the other
hand, nodal-based finite-element methods are quite popular in the geotechnical engineering and thermomechanics communities
(Zienkiewicz et al., 1988; Lewis and Sukirman, 1993; Lewis and Schrefler, 1998; Armero and Simo, 1992; Armero, 1999; Wan
et al., 2003; White and Borja, 2008). In the finite-volume method for the flow problem, the pressure is located at the cell center.
In the nodal-based finite-element method for the mechanical problem, the displacement vector is located at vertices (Hughes,
1987). This space discretization strategy has the following characteristics: local mass conservation at the element level, a
continuous displacement field, which allows for tracking the deformation, and convergent approximations with the lowest-order
discretization (Jha and Juanes, 2007). Since we assume a slightly compressible fluid, the given space discretization provides a
stable pressure field (Phillips and Wheeler, 2007a,b). It is well known that for incompressible (solid-fluid) systems, nodal based
finite-element methods incur spurious pressure oscillations if equal-order approximations of pressure and displacement (e.g.,
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piecewise continuous interpolation) are used (Vermeer and Verruijt, 1981; Murad and Loula, 1992, 1994; White and Borja,
2008). Stabilization techniques for such spurious pressure oscillations have been studied by several authors (Murad and Loula,
1992, 1994; Wan, 2002; Truty and Zimmermann, 2006; White and Borja, 2008).

We partition the domain into nonoverlapping elements (grid blocks), Ω = ∪nelem
j=1 Ωj , where nelem is the number of elements.

Let Q ⊂ L2(Ω) and U ⊂ (H1(Ω))d (where d = 2, 3 is the number of space dimensions), be the functional spaces of the
solution for pressure, p, and displacements, u. Let Q0 and U0 be the corresponding function spaces for the test functions
ϕ and η, for flow and mechanics, respectively (Jha and Juanes, 2007), and let Qh, Qh,0, Uh and Uh,0 be the corresponding
finite-dimensional subspaces. Then, the discrete approximation of the weak form of the governing equations 1 and 9 becomes:
Find (uh, ph) ∈ Uh ×Qh such that∫

Ω

Grads ηh : σh dΩ =
∫

Ω

ηh · ρbg dΩ +
∫

Γσ

ηh · t̄ dΓ ∀ηh ∈ Uh,0, (14)

1
ρf,0

∫
Ω

ϕh
∂mh

∂t
dΩ +

∫
Ω

ϕh Div vh dΩ =
∫

Ω

ϕhf dΩ, ∀ϕh ∈ Qh,0. (15)

The pressure and displacement fields are approximated as follows:

ph =
nelem∑
j=1

ϕjPj , (16)

uh =
nnode∑
b=1

ηbU b, (17)

where nnode is the number of nodes, Pj are the element pressures, and U b are the displacement vectors at the element nodes
(vertices).

We restrict our analysis to pressure shape-functions that are piecewise constant, so that ϕj takes a constant value of 1 over
element j and 0 at all other elements. Therefore, Equation 15 can be interpreted as a mass conservation statement element-by-
element. The second term can be integrated by parts to arrive at the sum of integral fluxes, Vh,ij , between element i and its
adjacent elements j: ∫

Ω

ϕi Div vh dΩ = −
∫

∂Ωi

vh · ni dΓ = −
nface∑
j=1

∫
Γij

vh · ni dΓ = −
nface∑
j=1

Vh,ij . (18)

The inter-element flux can be evaluated using a two-point, or a multipoint, flux approximation (Aavatsmark, 2002).
The displacement interpolation functions are the usual C0-continuous isoparametric functions, such that ηb takes a value

of 1 at node b, and 0 at all other nodes. Inserting the interpolation from Equations 16–17, and testing Equations 14–15 against
each individual shape function, the semi-discrete finite-element/finite-volume equations can be written as:∫

Ω

BT
a σh dΩ =

∫
Ω

ηaρbg dΩ +
∫

Γσ

ηat̄ dΓ ∀a = 1, . . . , nnode, (19)

∫
Ωi

1
M

∂Pi

∂t
dΩ +

∫
Ωi

b
∂εv

∂t
dΩ −

nface∑
j=1

Vh,ij =
∫

Ωi

f dΩ, ∀i = 1, . . . , nelem, (20)

where Equation 20 is obtained from Equations 3, 15, and 18.
The matrix Ba is the linearized strain operator, which in 2D takes the form

Ba =

⎡
⎣∂xηa 0

0 ∂yηa

∂yηa ∂xηa

⎤
⎦ . (21)

The stress and strain tensors are expressed in compact engineering notation (Hughes, 1987). For example, in 2D,

σh =

⎡
⎣σh,xx

σh,yy

σh,xy

⎤
⎦ , εh =

⎡
⎣ εh,xx

εh,yy

2εh,xy

⎤
⎦ . (22)

The stress–strain relation for linear poroelasticity takes the form:

σh = σ′
h − bph1, δσ′

h = Dδεh, (23)
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where σ′ is the effective stress tensor, and D is the elasticity matrix which, for 2D plane strain conditions, reads:

D =
E(1 − ν)

(1 + ν)(1 − 2ν)

⎡
⎣ 1 ν

1−ν
ν

1−ν
ν

1−ν 1 ν
1−ν

ν
1−ν

ν
1−ν 1

⎤
⎦ , (24)

where E is Young’s modulus, and ν is Poisson’s ratio.
The coupled equations of quasi-static poromechanics form an elliptic–parabolic system of equations. A fully discrete system

of equations can be obtained by further discretizing in time the mass accumulation term in Equations 19–20. Throughout this
paper, the backward Euler method is used for time discretization.

Solution Strategies
A primary objective of this work is to analyze the stability of sequential-implicit solution schemes for coupled flow and me-
chanics in porous media, where the two problems of flow and mechanics are solved in sequence such that each problem is
solved using implicit time discretization. We analyze four sequential-implicit solution strategies, namely, drained, undrained,
fixed-strain, and fixed-stress. Because we use the fully coupled scheme as reference, we also summarize its stability property.

The drained and undrained splits solve the mechanical problem first, and then they solve the fluid-flow problem (left diagram
of Figure 1). In contrast, the fixed-strain and fixed-stress splits solve for the fluid flow problem first, and then they solve the
mechanical problem (right diagram of Figure 1).

Figure 1: Iteratively coupled methods for flow and geomechanics. Left figure: drained and undrained split methods. Right figure:
fixed-strain and fixed-stress split methods. The symbol ˙( ) denotes time derivative, ∂( )/∂t.

Fully Coupled Method. Let us denote by A the operator of the original problem (Equations 1 and 9). The discrete approxi-
mation of this operator corresponding to the fully coupled method can be represented as:

[
un

pn

]
Afc−→

[
un+1

pn+1

]
, where Afc :

{
Div σ + ρbg = 0,

ṁ + Div q = ρf,0f,
(25)

where ˙( ) denotes time derivative. Using a backward Euler time discretization in Equations 19 and 20, the residual form of the
fully-discrete coupled equations is:

Ru
a =

∫
Ω

BT
a σn+1

h dΩ −
∫

Ω

ηaρn+1
b g dΩ −

∫
Γσ

ηat̄
n+1

dΓ ∀a = 1, . . . , nnode, (26)

Rp
i =

∫
Ωi

1
M

(Pn+1
i − Pn

i ) dΩ +
∫

Ωi

b(εn+1
v − εn

v ) dΩ − Δt

nface∑
j=1

V n+1
h,ij − Δt

∫
Ωi

fn+1 dΩ ∀i = 1, . . . , nelem. (27)

where Ru
a and Rp

i are the residuals for mechanics (node a) and flow (element i), respectively. The superscript n indicates
the time level. The set of Equations 26–27 is to be solved for the nodal displacements un+1 = {Un+1

b } and element pres-
sures pn+1 = {Pn+1

j } (a total of d × nnode + nelem unknowns). Given an approximation of the solution (un+1,(k),pn+1,(k)),
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where (k) denotes the iteration level, Newton’s method leads to the following system of Equations for the corrections:[
K −LT

L F

]
︸ ︷︷ ︸

J

[
δu
δp

]n+1,(k)

= −
[
Ru

Rp

]n+1,(k)

, (28)

where J is the Jacobian matrix, K is the stiffness matrix, L is the coupling poromechanics matrix, and F = Q + ΔtT is the
flow matrix (Q is the compressibility matrix, and T the transmissibility matrix). The entries of the different matrices are:

Kab =
∫

Ω

BT
a DBb dΩ, (29)

Lib =
∫

Ω

ϕib(Grad ηb)T dΩ, (30)

Qij =
∫

Ω

ϕiM
−1ϕj dΩ, (31)

and Tij is the transmissibility between gridblocks i and j. The fully coupled method computes the Jacobian matrix J , and
determines δu and δp simultaneously, iterating until convergence.

Drained Split. In this scheme, the solution is obtained sequentially by first solving the mechanics problem, and then the
flow problem. The pressure field is frozen when the mechanical problem is solved. The drained-split approximation of the
operator A can be written as[

un

pn

]
Au

dr−→
[
un+1

pn

]
Ap

dr−→
[
un+1

pn+1

]
, where

{
Au

dr : Div σ + ρbg = 0, δp = 0,

Ap
dr : ṁ + Div q = ρf,0f, ε̇ : determined.

(32)

One solves the mechanical problem with no pressure change, then the fluid flow problem is solved with a frozen displacement
field. We write the drained split as[

K −LT

L F

] [
δu
δp

]
=

[
K 0
L F

] [
δu
δp

]
−

[
0 LT

0 0

] [
δu
δp

]
. (33)

where we have dropped the explicit reference to the time step n + 1 and iteration (k). In the drained split (δp = 0), we solve
the mechanics problem first as Kδu = −Ru. Then, the flow problem is solved as F δp = −Rp − Lδu. In this scheme, the
fluid is allowed to flow when the mechanical problem is solved.

Undrained Split. In contrast to the drained method, the undrained split uses a different pressure predictor for the mechanical
problem, which is computed by imposing that the fluid mass in each grid block remain constant during the mechanical step
(δm = 0). The original operator A is split as follows:[

un

pn

]
Au

ud−→
[
un+1

pn+ 1
2

]
Ap

ud−→
[
un+1

pn+1

]
, where

{
Au

ud : Div σ + ρbg = 0,, δm = 0,

Ap
ud : ṁ + Div q = ρf,0f, ε̇ : determined.

(34)

The undrained strategy allows the pressure to change locally when the mechanical problem is solved. From Equation 3, the
undrained condition (δm = 0) yields

0 = bδεv +
1
M

δp, (35)

and the pressure is updated locally in each element using

pn+ 1
2 = pn − bM(εn+ 1

2
v − εn

v ). (36)

For the mechanical problem, Equation 2 is discretized as follows:

σn+ 1
2 − σ0 = Cdr : εn+ 1

2 − b(pn+ 1
2 − p0)1. (37)

After substituting Equation 36 in Equation 37, the mechanical problem can be expressed in terms of displacements using the
undrained bulk modulus, Cud = Cdr + b2M1 ⊗ 1. We write the undrained split as follows:[

K −LT

L F

] [
δu
δp

]
=

[
K + LT Q−1L 0

L F

] [
δu
δp

]
−

[
LT Q−1L LT

0 0

] [
δu
δp

]
. (38)

Note that the undrained condition is written as Qδp + Lδu = 0. This implies (K + LT Q−1L)δu = −Ru during the
mechanical step. The matrix multiplication for calculating LT Q−1L is not required, since this calculation simply entails using
the undrained moduli. Then, the fluid flow problem is solved, with F δp = −Rp − Lδu. The additional computational cost is
negligible because the calculation of pn+1/2 is explicit.
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Fixed-strain Split. In this scheme, the flow problem is solved first. The original operator A is approximated and split in the
following manner.[

un

pn

]
Ap

sn−→
[
un+ 1

2

pn+1

]
Au

sn−→
[
un+1

pn+1

]
, where

{
Ap

sn : ṁ + Div q = ρf,0f, δε̇v = 0,

Au
sn : Div σ + ρbg = 0, p : determined.

(39)

From the fixed-strain split, δε̇v = 0, which implies that ε̇
n+1/2
v = ε̇n

v , so the volumetric strain term bε̇v in the accumulation
term of Equation 11 for the flow problem is computed explicitly. We write the fixed-strain split as follows:[

K −LT

L F

] [
δu
δp

]
=

[
K −LT

0 F

] [
δu
δp

]
−

[
0 0
−L 0

] [
δu
δp

]
. (40)

We first solve the flow problem F δp = −Rp while freezing the strain field (i.e. δε̇ = 0, or equivalently −Lδu = 0). Then,
we solve the mechanical problem as Kδu = −Ru + LT δp. It is worth noting that the mechanical problem uses the drained
rock properties, and that the pressure corrections act as “loads” (Settari and Mourits, 1998).

Fixed-stress Split. In this case, the flow problem is solved first, but now freezing the total mean stress field (δσ̇v = 0 ⇒ σ̇
n+1/2
v =

σ̇n
v ), so the volumetric stress term (b/Kdr)σ̇v in the accumulation term of Equation 13 for the flow problem is computed ex-

plicitly.
The original operator A is decomposed as follows:[

un

pn

]
Ap

ss−→
[
un+ 1

2

pn+1

]
Au

ss−→
[
un+1

pn+1

]
, where

{
Ap

ss : ṁ + Div q = ρf,0f, δσ̇v = 0,

Au
ss : Div σ + ρbg = 0, p : determined.

(41)

If we fixed the rate of the entire stress tensor field during the solution of the flow problem, the condition to be satisfied is
−Lδu + LK−1LT δp = 0. We write the fixed-stress split as[

K −LT

L F

] [
δu
δp

]
=

[
K −LT

0 F + LK−1LT

] [
δu
δp

]
−

[
0 0
−L LK−1LT

] [
δu
δp

]
. (42)

Thus, in the fixed-stress split, we first solve the flow problem with (F + LK−1LT )δp = −Rp. In the fixed mean-stress split,
however, the full matrix inversion and multiplication LK−1LT is not required, since the rate of mean stress is kept constant
by introducing the term b2/Kdr locally in each element (see Equation 13). Once the flow problem is solved, we solve the
mechanical problem exactly as for the fixed-strain split.

Fixed-strain and Fixed-stress Methods vs. the Pore Compressibility Approach. In traditional reservoir simulation, the
pressure equation typically employs a ‘pore compressibility’, cp, expressed as

(φ0cf + φ0cp)
∂p

∂t
+ Div v = f. (43)

The pore compressibility is not an intrinsic parameter of the rock, since it depends on the deformation scenario and the boundary
conditions of the coupled problem. It is used in traditional reservoir simulation as a simplified way to account for changes in the
state of stress and strain in the reservoir (Settari and Mourits, 1998; Settari and Walters, 2001). From Equations 5, 11, and 43,
the fixed-strain split takes φ0cp|sn as (b − φ0)/Ks, and bε̇v as a correction source term due to mechanical effects. Similarly,
from Equations 5, 13, and 43, the fixed-stress split takes φ0cp|ss = (b−φ0)/Ks +b2/Kdr, and b/Kdrσ̇v as a correction source
term from the mechanical solution. The expression for the pore compressibility associated with the fixed-stress split coincides
with the one proposed by Settari and Mourits (1998) (albeit for linear poroelasticity only). Other values of cp can be used in
order to enhance the stability and convergence of a sequential-implicit scheme. This possibility has been studied, in the context
of linear poroelasticity, by Bevillon and Masson (2000), and Mainguy and Longuemare (2002).

In order to properly account for geomechanical effects, a correction needs to be included as a source term. This source term
is known as porosity correction, ΔΦ (Mainguy and Longuemare, 2002) and takes the following two equivalent expressions:

ΔΦ =
(

φ0cp +
φ0 − b

Ks

)
ṗ − bε̇v (from Equation 11), (44)

=
(

φ0cp +
φ0

Ks
− b

Kdr

)
ṗ −

(
1

Kdr
− 1

Ks

)
σ̇v (from Equation 13). (45)

Even though the ‘pore compressibility’ has been recognized as a stabilization term, a complete stability analysis and comparison
study of sequential methods including plasticity is lacking. In the next section, we analyze the stability and accuracy of the four
sequential methods presented here.
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Stability Analysis for Linear Poroelasticity
Von Neumann Stability Analysis. We use the Von Neumann method to analyze the stability of sequential-implicit coupling
strategies. This method is frequently used to analyze the stability of linear, or linearized, problems with respect to time (see, e.g.
Strikwerda (2004); Miga et al. (1998); Wan et al. (2005)). The details of the stability analysis are given elsewhere (Kim, 2009).
Here, we simply report the expressions (either explicit or quadratic equations) of the amplification factors γ for one-dimensional
problems:

Fully coupled : γfc =

⎧⎪⎨
⎪⎩

0,
Kdr

M + b2

Kdr

M + b2 + Kdr
kΔt
μ

1
h2 2(1 − cos θ)

≤ 1,
(46)

Drained split :
[
Kdr

M
+ Kdr

kΔt

μ

1
h2

2(1 − cos θ)
]

γ2
dr −

[
Kdr

M
− b2

]
γdr − b2 = 0, (47)

Undrained split : γud =

⎧⎪⎪⎨
⎪⎪⎩

0,
Kdr+b2M

M + b2MkΔt
μ

1
h2 2(1 − cos θ)

Kdr+b2M
M + (Kdr+b2M)kΔt

μ
1
h2 2(1 − cos θ)

≤ 1,
(48)

Fixed-strain split :
[
Kdr

M
+ Kdr

kΔt

μ

1
h2

2(1 − cos θ)
]

γ2
sn −

[
Kdr

M
− b2

]
γsn − b2 = 0, (49)

Fixed-stress split : γss =

⎧⎪⎨
⎪⎩

0,
Kdr

M + b2

Kdr

M + b2 + Kdr
kΔt
μ

1
h2 2(1 − cos θ)

≤ 1.
(50)

In these expressions, Δt and h are the timestep size and spatial grid spacing, respectively, and θ is the phase parameter in the
Von Neumann method.

The amplification factors are less than one and non-negative for the fully coupled (γfc), undrained (γud), and fixed-stress
(γss) schemes; as a result, unconditional stability and non-oscillatory solutions as a function of time are expected for these
methods. Note that the amplification factors of the fixed-stress split (Eq.50) and the fully coupled scheme (Eq.50) are identical.
Numerical simulations, which are discussed later, confirm that the fixed-stress split enjoys excellent stability and convergence
properties.

Equations 47 and 49 indicate that the amplification factors of the drained and fixed-strain splits are the same. Therefore, the
drained and fixed-strain methods are conditionally stable, and they share the same stability limit, namely,

τ =
b2M

Kdr
≤ 1, (51)

where τ is referred to as the coupling strength, and it is given by the ratio of the bulk stiffness of the fluid and solid skeleton.
The stability results can be extended from one to multiple dimensions, since the coupling between flow and mechanics is due to
the volumetric response, which is a scalar quantity. In one dimension, Kdr is the constrained modulus; in the two dimensional
plane-strain case, Kdr is 1

41
T
2 Dps12; in three dimensions, Kdr is the drained bulk modulus, which is given by 1

91
T
3 Ddr13,

where 1T
2 = [1, 1, 0], 1T

3 = [1, 1, 1, 0, 0, 0], Dps is a 3 × 3 matrix given by Equation 24, and Ddr is a 6 × 6 matrix involving
the drained moduli (Hughes, 1987). The coupling strength can be extended to multi-dimensional, elasto-plasticity as follows:

τ =
b2M

1
91

T
3 Dep13

, (52)

where Dep is the elasto-plastic tangent modulus (in compact engineering notation) in three dimensions.
It is important to note the drained and fixed-strain methods have negative amplification factors, which implies the possibility

of oscillatory numerical behavior as a function of time, even when the stability limit is honored. This is indeed confirmed by
numerical solutions (Kim, 2009).

In reservoir engineering applications, the fluid system (usually oil and water) is assumed to be (at minimum) slightly
compressible. Nevertheless, it is important to understand the stability characteristics of coupled flow-mechanics problems in
the limit of incompressible fluids. When both the fluid and solid (the grains that makes up the rock) are incompressible, the
Biot modulus, M , is infinite. As a result, the coupling strength, τ , as defined here is infinite. In this case, the fixed-stress
split has max(|γ|) < 1 indicating stability. In contrast, the undrained split in this case has distinct amplification factors with
max(|γ|) = 1, which indicates bounded error propagation (stability) but with expected convergence difficulties (Kim, 2009).
Note that in this (incompressible) limit case, both the drained and fixed-strain methods are unconditionally unstable.
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Numerical Simulations. Numerical solutions of simple 1D problems confirm that the undrained and fixed-stress methods
are unconditionally stable and convergent (Kim, 2009). These 1D solutions also confirm that the stability criteria for the
drained and fixed-strain splits are valid and sharp. That is, small violations of the stability limit lead to unstable solutions.
Moreover, consistent with Equation 51, the numerical solutions confirm that the drained and fixed-strain stability limit depends
on the coupling strength only and is independent of the time step size. The details of these simple 1D test cases are given
elsewhere(Kim, 2009).

Below, we describe the results from numerical simulations of three test cases.

Case 1 Injection and production in a 1D poroelastic medium. The driving force is due to injection and production (Figure 2).
The focus is on the behaviors as function of coupling strength. Dilation and compaction take place around the injection
and production wells, respectively.

Case 2 Mandel’s problem in a 2D elastic medium. The driving force is provided by the side-burden (the left picture in Figure 3).

Case 3 Fluid production scenario in 2D with elasto-plastic behavior described by the modified Cam-clay model. Compaction of
the reservoir occurs due to production (the right diagram in Figure 3). Plasticity leads to significant compaction.

Next, the results for the first two cases, which assume linear poroelastic behavior, are presented. The results are based on
one iteration per time step (i.e., solve one problem implicitly, then solve the other problem implicitly), unless noted explicitly
otherwise.

Figure 2: 1D problem with injection and production wells (Case 1).

Table 1: Input data for Case 1
Property Value
Permeability (k) 50 md
Porosity (φ0) 0.3
Constrained modulus (Kdr) 100 MPa
Biot coefficient (b) 1.0
Bulk density (ρb) 2400 kg m−3

Fluid density (ρf,0) 1000 kg m−3

Fluid viscosity (μ) 1.0 cp
Injection rate (Qinj) 100 kg day−1

Production rate (Qprod) 100 kg day−1

Boundary pressure (p̄) 2.125 MPa
Overburden (σ̄) 2.125 MPa
Grid spacing (Δz) 10 m
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Figure 3: Left: Mandel’s problem in 2D with elastic deformation (Case 2). Right: 2D problem driven by single-well production in an
elastoplastic medium (Case 3).

Case 1 The numerical values of the parameters for Case 1 are given in Table 1. Here b = 1.0 (i.e., incompressible solid
grains, Ks = ∞). Given the coupling strength τ , M = τKdr/b2. Figure 4 shows a comparison between the undrained and
fixed-stress schemes for Case 1, at high coupling strength. As shown in the figure, the fixed-stress scheme converges after
one iteration per time step. This behavior is consistent with the fact that the amplification factors of the fully coupled and
fixed-stress split methods are identical. On the other hand, several iterations are required in order for the undrained method to
match (within a very small tolerance) the fully coupled solution. For this linear coupled problem, the fixed-stress split takes
two iterations to match the fully coupled solution when the exact Kdr is used (Kim, 2009). In problems with more complex
boundary conditions, estimating Kdr can be quite difficult and is, in fact, part of the problem. In such problems, the fixed-stress
scheme may require several iterations to converge.

Case 2 – Mandel’s Problem. Mandel’s problem is commonly used to show the validity of simulators for coupled flow and
geomechanics. A description and analytical solution of Mandel’s problem is presented in Abousleiman et al. (1996). The
input parameters are listed in Table 2. Figure 5 shows that the drained method (left figure) is stable when τ is less than one,
while it is unstable when τ is greater than one. Furthermore, severe oscillations are observed even though the drained split is
stable. Due to the oscillations, the early time solution is not computed properly in the drained split even though the late time
solution converges to the analytical results. On the other hand, the undrained method shows unconditional stability and yields
a monotonic solution that matches the analytical solution at all times. Figure 6 indicates that the fixed-strain split (left figure) is
stable for τ < 1, while it is unstable when τ > 1. Similarly to the drained split method, the fixed-strain split method can yield
severe oscillations at early time. The fixed-stress split, on the other hand, is stable and non-oscillatory under all conditions.

The Mandel–Cryer effect, where a rise in the pressure during early time is observed, can be captured by properly constructed
sequential methods. All solutions from the fully coupled, undrained, and fixed-stress methods are in good agreement with the
analytical solution.

Stability Analysis: Nonlinear Poro-elastoplasticity
Coupling with Elastoplasticity. The coupling between the mechanical and the flow problems in the elastoplastic regime under
isothermal conditions is modeled by the following constitutive equations (Coussy, 1995):

σ − σ0 = Cdr : (ε − εp) − b(p − p0)1, (53)
1

ρf,0
(m − m0) − φp = b(εv − εp,v) +

1
M

(p − p0), (54)
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Figure 4: Behavior of the undrained and fixed-stress splits for cases with very high coupling strength. Case 1 with τ = 12.12. The
fixed-stress method requires one single iteration per time step to match the fully coupled solution, while many more iterations are
required for the undrained method.

Table 2: Input data for Case 2
Property Value
Permeability (k) 50 md
Porosity (φ0) 0.3
Young modulus (E) 2900 MPa
Poisson ratio (ν) 0
Biot coefficient (b) 1.0
Bulk density (ρb) 2400 kg m−3

Fluid density (ρf,0) 1000 kg m−3

Fluid viscosity (μ) 1.0 cp
Initial pressure (pi) 2.125 MPa
Boundary pressure (p̄) 2.125 MPa
Side burden 4×2.125 MPa
Overburden (σ̄) 2.125 MPa
Grid spacing (Δx) 0.005 m
Grid spacing (Δz) 2.0 m
Grid 4 × 25

where εp is the linearized plastic strain tensor due to inelasticity, εp,v = trεp, and φp is the plastic porosity. The plastic porosity
and plastic strain can be related to each other by assuming that φ̇p = βε̇p,v . Here, we assume that β = b (Armero, 1999). Note
that β ≈ b ≈ 1 if the solid grains are incompressible. The relation between the total stress σ and total strain ε is written as

σ − σ0 = Cdr : (ε − εp) − b(p − p0)1 = Cep : ε − b(p − p0)1, (55)

where Cep is the rank-4 elastoplastic tangent tensor. The compact engineering notation for Cep and 1 are Dep and 1T
3 , respec-

tively (this notation is employed in Equation 52). Elastoplasticity renders the mechanical problem highly nonlinear.
Stability analysis of slightly compressible flow and nonlinear mechanical deformation can be performed using the Von

Neumann method through linearization of the problem. The difference with respect to the linear problem is that the coefficients
of the stability conditions, such as Dep and Kdr, are linearized around values from the previous iteration (using Newton’s
method), for example.

Our analysis of the linearized systems shows that the fully coupled, undrained, and fixed-stress methods yield unconditional
stability regardless of Dep and Kdr. However, the drained and fixed-strain methods show strong dependency on the coupling
strength defined in Equation 52. This implies that the drained and fixed-strain methods can be unstable as the medium begins
to yield (plastic regime), even if they satisfy the stability conditions at the beginning of a simulation (elastic regime).

For nonlinear problems, one can apply a sequential solution method before, or after linearization. In this paper, we are
interested in sequential implicit-implicit schemes, where each iteration involves solving two problems in sequence, such that
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Figure 5: Case 2 (Mandel’s problem). Evolution of the pressure at the observation point, as a function of dimensionless time. The
results of the fully coupled, drained, and undrained methods are shown for two values of the coupling strength. Left: τ = 0.90. Right:
τ = 1.10. Δtd = 4cvΔt

(Lz)2
, where cv is the consolidation coefficient defined as cv = k

(1/Kdr+φcf )μ
. Lz is the vertical length of the

reservoir domain
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Figure 6: Case 2 (Mandel’s problem). Evolution of the pressure at the observation point, as a function of dimensionless time. Shown
are the results for the fully coupled, fixed-strain, and fixed-stress splits. Left: τ = 0.90. Right: τ = 1.10.

each problem, which may be nonlinear, is solved implicitly. For a given timestep, a single-pass strategy would entail solving
the first sub-problem implicitly (subject to a given tolerance), updating the appropriate terms to set up the second problem, and
solving the second problem implicitly. We then move to the next time step. One can also iterate by repeating the implicit-
implicit solution sequence.

Numerical Simulations. To test the validity of the results obtained from our linearized stability analysis, we perform numerical
experiments for Case 3. We adopt an associated plasticity formulation (Simo, 1991; Simo and Hughes, 1998; Coussy, 1995).
The yield function fY of the modified Cam-clay model is (Borja and Lee, 1990)

fY =
q′2

M2
mcc

+ σ′
v(σ′

v − pco) = 0, (56)

where q′ is the deviatoric effective stress, σ′
v is the volumetric effective stress, Mmcc is the slope of the critical state line,

and pco is the preconsolidation pressure. The input parameters for Case 3 are listed in Table 3. The parameter λ is the virgin
compression index, and κ is the swell index. The schematic of the return mapping for the modified Cam-clay model is illustrated
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in Figure 7 (refer to Borja and Lee (1990) for more details). We employ full iteration with a consistent return-mapping algorithm
(Simo and Hughes, 1998).

Figure 7: schematic of the return mapping algorithm for the modified Cam-clay model.

Table 3: Input data for Case 3
Property Value
Permeability (k) 50 md
Porosity (φ0) 0.3
Young modulus (E) 350 MPa
Poisson ratio (ν) 0.35
Biot coefficient (b) 1.0
Bulk density (ρb) 2400 kg m−3

Fluid density (ρf,0) 1000 kg m−3

Fluid viscosity (μ) 1.0 cp
Virgin compression index (λ) 0.37
Swell index (κ) 0.054
Critical state slope (Mmcc) 1.4
Preconsolidation pressure (pco,0) −1.0 MPa
Initial pressure (p0) 2.125 MPa
Sideburden (σ̄h) 2.125 MPa
Overburden (σ̄v) 2.125 MPa
Grid spacing (Δx) 10 m
Grid spacing (Δz) 10 m
Grid 5 × 5

Figure 8 shows that the drained and fixed-strain split methods are stable during the early-time elastic regime, which has
a weak coupling strength (τ < 1). However, when plasticity is reached, the solution by the drained method is no longer
stable because the coupling strength increases dramatically. Figure 9 depicts the variation of the coupling strength during the
simulation. It is clear that when the coupling strength increases beyond unity, the solution by the drained and fixed-strain
methods becomes unstable. No solution by the drained and fixed-strain split methods is possible after plasticity. On the other
hand, the fully coupled, undrained, and fixed-stress methods provide stable results well into the plastic regime, as shown in
Figure 8. In particular, the solution of the fully coupled method is matched by the undrained and fixed-stress splits after only
two iterations.

We also show the results using full Newton iterations (i.e., a sequential solution strategy is employed to solve the linear
system of equations associated with each Newton iteration of the fully coupled system). Figure 10 shows that using such a
strategy, the drained and fixed-strain splits are unstable as we enter the plastic regime, even though they are stable in the elastic
regime. On the other hand, the undrained and fixed-stress splits are stable, even for plastic deformation.

Summary and Conclusions
We employed the Von Neumann method to analyze the stability properties of several sequential-implicit solution strategies for
coupled flow and mechanical deformation in oil reservoirs. Detailed numerical simulations of several representative problems
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Figure 8: Case 3 (2D production test in the elastoplastic regime). Evolution of the dimensionless pressure at the observation point is
shown as a function of dimensionless time (pore volumes produced). Left: fully coupled, drained, and undrained numerical solutions.
Right: fully coupled, fixed-strain, and fixed-stress solutions. The undrained and fixed-stress splits yield stable solution, while the
drained and fixed-strain splits become unstable as the problem enters the plastic regime.
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Figure 9: Variation of the coupling strength τ during the course of the simulation for Case 3. The coupling strength, initially less than
one, jumps to a very high value when the medium enters the plastic regime, rendering the drained and fixed-strain methods unstable.

were used to test the validity of the stability analysis. The study is limited to single-phase flow of a slightly compressible fluid;
however, both elastic and elasto-plastic material behaviors are investigated. The four sequential methods investigated fall in two
categories: those that solve the mechanical problem first (drained and undrained splits), and those that solve the flow problem
first (fixed-strain and fixed-stress splits).

The drained split, in which the pressure is frozen while solving the mechanics problem, and the fixed-strain split, in which
the displacements are frozen while solving the flow problem, are the obvious sequential solution strategies. As we show quite
clearly in this work, however, these two schemes suffer from severe stability and convergence problems. Specifically, the
drained and fixed-strain split methods are conditionally stable; moreover, their stability limit (τ < 1) depends on the coupling
strength only and is independent of timestep size. Thus, physical problems with high coupling strength (i.e., τ > 1) cannot be
solved by the drained or fixed-strain split methods, regardless of the time step size. Even when they are stable, the drained and
fixed-strain splits display oscillatory behavior, which is implied by their negative amplification factors.

In contrast, the undrained and fixed-stress methods show unconditional stability for both elasticity and elasto-plasticity.
These sequential methods can be applied safely to model poro-mechanical problems of practical interest, such as compressible
solid grains and plasticity with hardening. Moreover, in addition to the amplification factors being less than unity, they are
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Figure 10: Case 4 (2D production test in elastoplastic regime). Shown is the evolution of the dimensionless pressure at the observation
point against dimensionless time (pore volumes produced). Left: fully coupled, drained, and undrained numerical solutions. Right:
fully coupled, fixed-strain, and fixed-stress solutions. The model enters the plastic regime at td ≈ 0.018. Beyond this point, the drained
and fixed-strain methods become unstable and fail to produce a solution at all.

positive; as a result, the numerical solutions do not exhibit oscillations in time.
While the undrained split and fixed-stress split have similar stability properties, we have found that for the problems we

studied the fixed-stress scheme converges much faster than the undrained method. This behavior was observed across a wide
range of the coupling strength. Based on these findings, we strongly recommend the fixed-stress split over the other sequential-
implicit methods for modeling coupled geomechanics and flow in oil reservoirs.
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Nomenclature.

Ba Linearized strain operator

Bf Formation volume factor of the fluid

Cdr Rank-4 drained elasticity tensor

Cep Rank-4 elastoplastic tangent tensor

Cud Rank-4 undrained elasticity tensor

Dps Elasticity matrix for the plane strain case in 2D

Ddr Drained modulus matrix (compact engineering notation for Cdr) in 3D

Dep Elastoplastic tangent modulus matrix (compact engineering notation for Cep) in 3D

Div(·) Divergence operator

E Young’s modulus

F Flow matrix

J Jacobian matrix

K Stiffness matrix

Kdr Drained bulk modulus used for the definition of the coupling strength

Kf Bulk modulus of the fluid

Ks Bulk modulus of the solid grain



SPE 119084 17

L Coupling poromechanics matrix

M Biot’s modulus

Mmcc Slope of the critical state line of the modified Cam-clay model

Pj Pressure at the element j

Q Compressibility matrix

Qinj Injection rate

Qprod Production rate

Ru
a , Rp

j Residuals for mechanics (node a) and flow (element j)

T Transmissibility matrix

Tij Transmissibility between gridblocks i and j

U b Displacement vector at the node b

Vh,ij Flux between gridblocks i and j

b Biot’s coefficient

cf Fluid compressibility (1/Kf )

cp Pore compressibility

cv Consolidation coefficient

e Deviatoric part of the strain tensor

‖ePd
‖ L2 norm of the error for the dimensionless pressure

f Volumetric source term for flow

fY Yield function for elastoplasticity

g Gravity vector

h Grid spacing used in the Von Neumann method

k Absolute permeability tensor

m Fluid mass per unit bulk volume

nelem Number of elements

nnode Number of nodes

p Fluid pressure

p̄ Boundary pressure

pco Preconsolidation pressure of the modified Cam-clay model

pi Initial pressure

q Fluid mass flux (fluid mass flow rate per unit area and time)

q′ Deviatoric effective stress

s Deviatoric total stress tensor

u Displacement

v Fluid velocity

Δt Time step size
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Δx Grid spacing in the x axis

Δz Grid spacing in the z axis

Φ Lagrange’s porosity

φ True porosity, Euler’s porosity

φp Plastic porosity

ε Linearized strain tensor

εp Linearized plastic strain tensor

εv Volumetric strain (the trace of the strain tensor)

εp,v Volumetric plastic strain (the trace of the plastic strain tensor)

ϕ Test function for flow

γdr Amplification factor of the drained split

γfc Amplification factor of the fully coupled method

γsn Amplification factor of the fixed-strain split

γss Amplification factor of the fixed-stress split

γud Amplification factor of the undrained split

η Test function for mechanics

κ Swell index of the modified Cam-clay model

λ Virgin compression index of the modified Cam-clay model

μ Fluid viscosity

ν Poisson’s ratio

θ Phase parameter in the Von Neumann method

ρb Bulk density

ρf Fluid density

ρs Density of the solid phase

σ Cauchy total stress tensor

σ′ Effective stress tensor

σ̄ Overburden

σv Volumetric (mean) total stress

σ′
v Volumetric effective stress

τ Coupling strength

1 Rank-2 identity tensor

(·)0 Reference state

(·)d Number of space dimensions

(·)d Dimensionless quantity

(·)n Time level

(·)k Iteration level

˙( ) Time derivative
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