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a b s t r a c t

We analyze stability and convergence of sequential implicit methods for coupled flow and geomechanics,
in which the flow problem is solved first. We employ the von Neumann and energy methods for linear
and nonlinear problems, respectively. We consider two sequential methods with the generalized mid-
point rule for tn+a, where a is the parameter of time discretization: namely, the fixed-strain and fixed-
stress splits. The von Neumann method indicates that the fixed-strain split is only conditionally stable,
and that its stability limit is a coupling strength less than unity if a P 0.5. On the other hand, the
fixed-stress split is unconditionally stable when a P 0.5, the amplification factors of the fixed-stress split
are different from those of the undrained split and are identical to the fully coupled method. Uncondi-
tional stability of the fixed-stress split is also obtained from the energy method for poroelastoplasticity.
We show that the fixed-stress split is contractive and B-stable when a P 0.5.

We also estimate the convergence behaviors for the two sequential methods by the matrix based and
spectral analyses for the backward Euler method in time. From the estimates, the fixed-strain split may
not be convergent with a fixed number of iterations particularly around the stability limit even though it
is stable. The fixed-stress split, however, is convergent for a fixed number of iterations, showing better
accuracy than the undrained split. Even when we cannot obtain the exact local bulk modulus (or exact
rock compressibility) at the flow step a priori due to complex boundary conditions or the nonlinearity
of the materials, the fixed-stress split can still provide stability and convergence by an appropriate esti-
mation of the local bulk modulus, such as the dimension-based estimation, by which the employed local
bulk modulus is less stiff than the exact local bulk modulus.

We provide numerical examples supporting all the estimates of stability and convergence for the fixed-
strain and fixed-stress splits.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Coupled flow and mechanics have been studied in many engi-
neering fields, such as mechanical, civil, bio-, and reservoir engi-
neering (e.g., [1–11]). For example, reservoir geomechanics plays
a critical role in compaction drive oil recovery, surface subsidence,
stress dependent permeability of the matrix and fractures, well-
bore stability, and production of tar-sand and heavy oil [12–15].
However, conventional reservoir simulation has oversimplified
the mechanical effects using the rock compressibility, taken as a
constant coefficient or a simple function of porosity, which cannot
quantify the deformation and stress fields accurately. In order to

solve coupled flow and mechanics accurately, there are two repre-
sentative strategies: fully coupled and sequential implicit methods.

� Fully coupled methods (monolithic schemes). We solve the cou-
pled problem simultaneously in a time-stepping algorithm,
where an implicit scheme is typically adopted [8,16–24]. This
approach typically achieves unconditional stability and conver-
gence when the coupled problem is well-posed.
� Sequential implicit methods. We partition the coupled problem

and solve sub-problems sequentially. Each sub-problem can
take a different implicit time-stepping algorithm [1,12,25].
The partitioning allows for the use of existing robust simulators
for the sub-problems, producing smaller systems of equations
to be solved than the fully coupled methods [26].

Based on when to update each solution, various solution
strategies are used in sequential methods. Examples include the
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loosely coupled methods [3,12] or hybrid schemes of the fully cou-
pled and sequential methods [25]. For all the strategies, stability
and convergence are required for an accurate solution. Since fully
coupled methods provide unconditional stability and high accu-
racy, they have been used in several engineering problems of cou-
pled flow and geomechanics [8,16–24]. However, fully coupled
methods require a unified flow-mechanics simulator, huge compu-
tational cost, and complicated code management, leading to large
systems to solve [1,25,27]. To avoid these disadvantages, sequen-
tial methods are typically employed, providing flexible and effi-
cient code management [1,26,27]. For example, sequential
methods in reservoir geomechanics use the so-called porosity cor-
rection, which sequentially corrects the inconsistency between
the porosity computed from the conventional flow simulation
and the strains from the mechanical simulation [10,28]. These
strategies can be considered as a predictor–corrector approach.
Sequential methods can be easily modified into iterative solution
strategies of the fully coupled method, such as the staggered New-
ton scheme or large time increment methods [29–31]. However,
sequential methods do not necessarily guarantee unconditional
stability and convergence even though the uncoupled sub-
problems are unconditionally stable and convergent. Several
authors have proposed and investigated the stability and conver-
gence of sequential methods [1,3–5,32–34]. In sequential schemes
where mechanics is solved first, the undrained split was proposed
as one of the unconditionally stable sequential schemes for cou-
pled flow and mechanics, whereas the drained split is an obvious
sequential scheme, but is at best conditionally stable [1,3,5,35].

In a separate paper [36], we investigated the stability and con-
vergence of the drained and undrained splits for coupled flow and
mechanics rigorously. Both schemes solve mechanics first, fol-
lowed by flow. For the drained split, the mechanical problem is
solved with no pressure change, which yields conditional stability
and may cause non-convergence even in cases where it is stable.
The undrained split, by contrast, fixes fluid mass during the
mechanics step, which yields unconditional stability. Also, the un-
drained split is convergent for a compressible system (i.e., the fi-
nite Biot modulus), but not convergent for an incompressible
system (i.e., infinite Biot modulus) [36].

In contrast to solving the mechanical problem first, other
sequential methods have been investigated in reservoir engineer-
ing, where the flow problem is solved first [10,12,16,27,28]. The
fluid flow produces a parabolic partial differential equation
(PDE), whereas quasi-static mechanics produces an elliptic PDE.
Since sequential methods are path-dependent [26] and the two
sub-problems have different types of PDEs, changes in the solution
path can yield different characteristics. An obvious split of the cou-
pled problem is to fix the rate of the total strain during solution of
the flow problem. This split is called the fixed-strain split in this
paper, and it is conceptually simple, but it is only conditionally sta-
ble, as will be shown later. Other sequential methods add a relax-
ation term to the compressibility coefficient in order to enhance
stability using the rock compressibility [10,16,28,37,38], and it has
been shown that this strategy yields stable numerical behavior in
the case of linear poroelasticity [10,16,37]. However, limited stabil-
ity and convergence analyses of sequential methods have been re-
ported for general cases such as elastoplasticity.

We perform stability and convergence analyses for sequential
methods which solve the flow problem first. Two sequential meth-
ods are investigated: the fixed-strain and fixed-stress splits, where
the fixed-stress split fixes the rate of total stress. We mainly inves-
tigate single-pass sequential implicit methods to ensure first-order
accuracy in time, which is widely employed for reservoir simula-
tion [39], although the computational mechanics community
might require high-order accuracy in time using a multiple-pass
approach [40].

The procedure used here is the same as that of [36]. For stability
analysis, motivated by the work of Armero and Simo [1], the von
Neumann and energy methods are applied to estimate stability
for the two sequential schemes under the generalized midpoint
rule, where a is the parameter of time discretization (e.g., a = 0.5
for the midpoint rule, a = 1.0 for the backward Euler method).
We will show from the stability estimates that the fixed-strain
split is conditionally stable and oscillatory, and that the stability
only depends on the coupling strength, not time step size. In con-
trast, the fixed-stress split is unconditionally stable when a P 0.5,
and its amplification factors from the von Neumann method are
identical to the fully coupled method. The energy method also
indicates unconditional stability of the fixed-stress split, showing
contractivity and B-stability when a P 0.5.

We also perform convergence analysis for the linear problem.
Matrix algebra and spectral methods are used to obtain a priori er-
ror estimates of the fixed-strain and fixed-stress splits. When we
perform a fixed number of iterations, the fixed-strain split may
not converge (i.e., zeroth-order accuracy in time) even in cases
where it is stable. On the other hand, with a fixed number of iter-
ations, the fixed-stress split provides convergence (i.e., first-order
accuracy in time) even for an incompressible system for which
the undrained split is non convergent [36]. We show numerical
experiments which support all the a priori estimates.

2. Mathematical model

We restate the mathematical model and operator splitting ex-
plained in Kim et al. [36] in order to remind the readers of them.
In this paper, we assume isothermal single-phase flow, small
deformation (i.e., infinitesimal transformations), isotropic geoma-
terial, and no stress-dependence of flow properties. We follow
the mathematical model and discretization schemes described in
[36]. The physical model is based on poroelasticity and poroelasto-
plasticity theories (see, e.g. [41]). The governing equations for cou-
pled flow and geomechanics come from the mass conservation and
linear-momentum balance. Under the quasi-static assumption, the
governing equation for mechanical deformation can be expressed
as

Divrþ qbg ¼ 0; ð1Þ

where Div(�) is the divergence operator, r is the Cauchy total stress
tensor, g is the gravity vector, qb = /qf + (1 � /)qs is the bulk den-
sity, qf is fluid density, qs is the density of the solid phase, and /
is the true porosity. The true porosity is defined as the ratio of the
pore volume to the bulk volume in the deformed configuration. A
stress–strain relation must be specified for the mechanical behavior
of the porous medium. Changes in total stress and fluid pressure are
related to changes in strain and fluid content by Biot’s theory [6,41–
44]. From Coussy [41], the poroelasticity equations take the follow-
ing form:

r� r0 ¼ Cdr : e� bðp� p0Þ1; ð2Þ
1

qf ;0
ðm�m0Þ ¼ bev þ

1
M
ðp� p0Þ; ð3Þ

where the subscript 0 means reference state, Cdr is the rank-4
drained elasticity tensor, 1 is the rank-2 identity tensor, p is fluid
pressure, m is fluid mass per unit bulk volume, M is the Biot mod-
ulus, and b is the Biot coefficient. Note that we have [41]

1
M
¼ /0cf þ

b� /0

Ks
; ð4Þ

b ¼ 1� Kdr

Ks
; ð5Þ
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where cf is the fluid compressibility (1/Kf), Kf is the bulk modulus of
the fluid, Ks is the bulk modulus of the solid grain, and Kdr is the
drained bulk modulus. Also, note that we use the convention that
tensile stress is positive. Here, e is the linearized strain tensor under
the assumption of infinitesimal transformation:

e ¼ Grads u ¼ 1
2
ðGraduþ Gradt uÞ: ð6Þ

It is convenient to express the strain and stress tensors in terms of
their volumetric and deviatoric parts,

e ¼ 1
3
ev1þ e; ð7Þ

r ¼ rv1þ s; ð8Þ

where ev = tre is the volumetric strain (the trace of the strain ten-
sor), e is the deviatoric part of the strain tensor, rv ¼ 1

3 trr is the vol-
umetric (mean) total stress, and s is the deviatoric total stress
tensor.

Under the assumption of small deformations, the fluid mass
conservation equation is

@m
@t
þ Divw ¼ qf ;0f ; ð9Þ

where w is the fluid mass flux (fluid mass flow rate per unit area
and time), and f is a volumetric source term. Using Eq. (3), we write
Eq. (9) in terms of pressure and volumetric strain:

1
M
@p
@t
þ b

@ev

@t
þ Div

w
qf ;0
¼ f : ð10Þ

By noting the relation between volumetric stress and strain,

ðrv � rv;0Þ þ bðp� p0Þ ¼ Kdrev ; ð11Þ

we can rewrite Eq. (10) in terms of pressure and volumetric (mean)
total stress,

1
M
þ b2

Kdr

 !
@p
@t
þ b

Kdr

@rv

@t
þ Div

w
qf ;0
¼ f : ð12Þ

The two equivalent expressions of the flow problem (Eqs. (10) and
(12)) are useful in explaining the relationship between reservoir
flow simulation and geomechanical coupling. Later, Eqs. (10) and
(12) motivate the two sequential methods, the fixed-strain and
fixed-stress splits, respectively. The fluid velocity relative to the so-
lid phase v = w/qf,0 is given by Darcy’s law:

v ¼ �kp

l
ðGradp� qf gÞ; ð13Þ

where kp is the positive-definite absolute-permeability tensor, and
l is fluid viscosity. To complete the description of the coupled flow
and geomechanics mathematical problem, we need to specify initial
and boundary conditions. For flow, we consider the boundary con-
ditions p ¼ �p (prescribed pressure) on Cp, and v � n ¼ �v (prescribed
volumetric flux) on Cv, where n is the outward unit normal to the
boundary, @X. For well-posedness of the problem, we assume that
Cp \ Cv = ;, and Cp [ Cv = @X. The boundary conditions for
mechanics are u ¼ �u (prescribed displacement) on Cu and
r � n ¼ �t (prescribed traction) on Cr. Again, we assume Cu \ Cr = ;,
and Cu [ Cr = @X. The initial displacements and strains are, by def-
inition, equal to zero. The initial condition of the coupled problem is
pjt=0 = p0 and rjt=0 = r0. The initial stress field should satisfy
mechanical equilibrium and reflect the history of stress paths in
the formation of the reservoir.

For space discretization, we use the finite element method for
the mechanics and the finite volume method for flow, which can
eliminate spurious spatial instability at early time for a compress-
ible system [35,45–47].

3. Operator splitting

There are two representative sequential implicit methods when
the flow problem is solved first using implicit time discretization
followed by implicit solution of the mechanical problem, namely,
the fixed-strain and fixed-stress splits. The left and right diagrams
of Fig. 1 illustrate the solution procedures by the fixed-strain and
fixed-stress splits, respectively.

3.1. Fixed-strain split

For the fixed-strain approach, the original operator is split as
follows:

un

pn

� �
!
Ap

sn u�

pnþ1

� �
!
Au

sn unþ1

pnþ1

" #
; where

Ap
sn : _mþDivw¼qf ;0f ; d _e¼0;

Au
sn : Divrþqbg¼0; p : prescribed;

(

ð14Þ

where we solve the flow problem first using implicit time discreti-
zation, followed by solution of the mechanical problem using an
appropriate implicit time discretization scheme. In the fixed-strain
split, d _e ¼ 0 means that the volumetric strain term b _ev in the accu-
mulation term of the flow problem (Eq. (10)) is evaluated explicitly.
We first solve the flow problem while fixing the rate of the strain
everywhere (i.e., d _e ¼ 0). Then we solve the mechanical problem.
Note that the pressure is prescribed when we solve the mechanical
problem because we determine the pressure at tn+1 from the previ-
ous flow problem. It is worth noting that the mechanical problem
uses the drained rock properties, and that the pressure corrections
act as ‘‘loads’’ [10].

3.2. Fixed-stress split

In this scheme, the flow problem is solved first while fixing the
rate of the total stress ðd _r ¼ 0Þ. That is, the volumetric total stress
term ðb=KdrÞ _rv in the accumulation term of Eq. (12) is evaluated
explicitly when solving the flow problem.

The original operator is split as follows:

un

pn

� �
!
Ap

ss u�

pnþ1

� �
!
Au

ss unþ1

pnþ1

" #
; where

Ap
ss : _mþDivw¼qf ;0f ; d _r¼0;

Au
ss : Divrþqbg¼0; p : prescribed:

(

ð15Þ

The initial conditions of Ap
ss are determined from the initial time

conditions of the original coupled problem, which satisfy

Div _rt¼0 ¼ 0; Divrt¼0 þ qbg ¼ 0: ð16Þ

In the fixed-stress split, no full matrix inversion or multiplica-
tion is required, since the rate of total mean stress is kept constant
by introducing the term b2/Kdr locally in each element (see Eq.

Fig. 1. Iteratively coupled methods for flow and geomechanics. Left: fixed-strain
split. Right: fixed-stress split. _ðÞ is the time derivative.
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(12)). In this sense, when the fixed-stress split is applied as an iter-
ative approach, the method coincides with the algorithm proposed
by Settari and Mourits [10] (albeit for linear poroelasticity only). In
elastoplasticity, b2/Kdr is evaluated from the tangent moduli Cep

(e.g., b2
=Kdr ¼ 1

9 1tDep1, where Dep is the matrix notation of Cep in
three dimensions). When b2/Kdr is treated explicitly and evaluated
at tn, a return mapping is not required due to the use of Cn

ep even
though the plastic dissipation is considered during the flow step.
Furthermore, it is not necessary to calculate the displacement
and stress at the intermediate step because the quasi-static
mechanical problem is elliptic. Thus, the computational cost of
the fixed-stress split is the same as that of the fixed-strain split.

Remark 1. We can directly apply the fixed-strain and fixed-stress
splits to the matrix partitioning for a linear (or linearized) problem
or to the porosity correction in nonlinear reservoir simulation, as
explained in Kim et al. [48]. For porosity correction, the two split
methods employ different rock compressibility terms for flow
simulation, so the correction terms obtained from mechanics
simulation are different [10,28,37,48].

4. Stability analysis for linear poroelasticity

We use the von Neumann method to analyze the stability of the
fixed-strain and fixed-stress splits in one dimension. We examine
the unbounded growth or decay of the numerical error under the
Fourier representation [49].

4.1. Fixed-strain split

The fixed-strain split fixes the variation of the strain rate, that is

Den ¼ Den�1; ð17Þ

where D(�)n = (�)n+1 � (�)n, and n is the time level. We discretize the
one dimensional governing equations without source terms in
space using a second-order finite volume method for flow, and C0

linear finite elements for mechanics. We label the elements with in-
dex j. The nodes bounding to element j are labeled with a half-in-
dex: j� 1

2 and jþ 1
2. We denote the pressure unknown at element j

by Pn
j and the displacement unknown at node jþ 1

2 by Un
jþ1

2
. We

use a generalized midpoint rule, so the unknowns are evaluated
at time tn+a as Pn+a = aPn+1 + (1 � a)Pn and Un+a = aUn+1 + (1 � a)Un.
Let h be the element size, and Dt the time step size, both assumed
constant. Then, full discretization in one dimension for the fixed-
strain split yields

h
M

DPn
j

Dt
þ bh

Dt
�

DUn�1
j�1

2
� DUn�1

jþ1
2

h

 !
� kp

lh
Pnþa

j�1 � 2Pnþa
j þ Pnþa

jþ1

� �
¼ 0;

ð18Þ

� Kdr

h
Unþa

j�3
2
� 2

Kdr

h
Unþa

j�1
2
þ Kdr

h
Unþa

jþ1
2

� �
� b Pnþa

j�1 � Pnþa
j

� �
¼ 0: ð19Þ

Introducing solutions of the form Un
j ¼ cneiðjÞhÛ and Pn

j ¼ cneiðjÞhP̂,

where c is the amplification factor, eð�Þ ¼ expð�Þ; i ¼
ffiffiffiffiffiffiffi
�1
p

, and
h 2 [�p,p], we have

Un
j

Pn
j

" #
¼ cn eiðjÞhÛ

eiðjÞhP̂

" #
: ð20Þ

Substituting Eq. (20) into Eqs. (18) and (19), we obtain

1
M hðc�1Þcþ kpDt

lh 2ðð1�aÞþacÞcð1�coshÞ bðc�1Þ2isin h
2

b2isin h
2

Kdr
h 2ð1�coshÞ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Gsn

P̂

Û

" #
¼

0
0

� �
:

ð21Þ

Since the matrix needs to be singular, detGsn = 0. Then the charac-
teristic equation is obtained and can be written as

Fa
snðcÞ ¼

Kdr

M
þ Kdr

kpDt

lh2 a2ð1� cos hÞ
 !

c2

þ �Kdr

M
þ Kdr

kpDt

lh2 ð1� aÞ2ð1� cos hÞ þ b2

 !
c� b2 ¼ 0:

ð22Þ

Note that the constant term of Fa
snðcÞ; �b2, is negative, so one root is

positive and the other one is negative. The condition for linear sta-
bility is max (jcj) 6 1, which is obtained for Fa

snðc ¼ 1ÞP 0 and
Fa

snðc ¼ �1ÞP 0. From Eq. (22), we get

Fa
snðc ¼ 1Þ ¼ kpDt

lh2 a2ð1� cos hÞP 0; ð23Þ

Fa
drðc ¼ �1Þ ¼ 2

Kdr

M
þ ð2a� 1ÞKdr

kpDt

lh2 2ð1� cos hÞ � 2b2 P 0:

ð24Þ

Eq. (23) is valid for all h. Eq. (24) is valid for all h depending on
the weight a, as follows:

For 0:56 a6 1 : s� b2M
Kdr
6 1; ð25Þ

For 0< a< 0:5 : s� b2M
Kdr
6 1 and

Dt

h2 6
Kdr

M
�b2

� �
l

2ð1�2aÞKdrkp
;

ð26Þ

where s is the coupling strength [36]. Eq. (25) indicates that the sta-
bility of the fixed-strain split depends on the coupling strength only
and is independent of time step size, when 0.5 6 a 6 1. In the case
that 0 < a < 0.5, we obtain an additional condition for stability with
restriction on the time step size. Since one of the c’s is negative,
oscillation is anticipated even when the fixed-strain split is stable.

Remark 2. For the backward Euler time discretization, a = 1, the
characteristic equation of the fixed-strain split (Eq. (22)) is
identical to that of the drained split. Notice, however, that the
fixed-strain split with the midpoint rule a = 0.5 is conditionally
stable, even though the drained split with the midpoint rule is
unconditionally unstable.

4.2. Fixed-stress split

The fixed-stress split fixes the variation of the total stress rate,
which yields

Den ¼ b
Kdr
ðDPn � DPn�1Þ þ Den�1: ð27Þ

Then the discrete form of the fixed-stress split becomes

1
M
þ b2

Kdr

 !
h

DPn
j

Dt
� b2

Kdr
h

DPn�1
j

Dt
þ bh

Dt
�

DUn�1
j�1

2
� DUn�1

jþ1
2

h

 !

� kp

lh
Pnþa

j�1 � 2Pnþa
j þ Pnþa

jþ1

� �
¼ 0; ð28Þ

� Kdr

h
Unþa

j�3
2
� 2

Kdr

h
Unþa

j�1
2
þ Kdr

h
Unþa

jþ1
2

� �
� b Pnþa

j�1 � Pnþa
j

� �
¼ 0: ð29Þ

Substituting Eq. (20) into Eqs. (28) and (29), we obtain

Gss
P̂

Û

" #
¼

0
0

� �
; ð30Þ
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where

Applying detGss = 0, we get

c ¼ 0;
1
M þ b2

Kdr

� �
� kpDt

lh2 ð1� aÞ2ð1� cos hÞ
1
M þ b2

Kdr

� �
þ kpDt

lh2 a2ð1� cos hÞ
: ð31Þ

Then, the condition of linear stability yields

For 0:5 6 a 6 1 : Unconditionally stable; ð32Þ

For 0 < a < 0:5 :
Dt

h2 6
l

2ð1� 2aÞkp

1
M
þ b2

Kdr

 !
: ð33Þ

Hence, the fixed-stress split is unconditionally stable when
0.5 6 a 6 1. For 0 < a < 0.5, the time step size is limited for stability.
When a = 1, the c’s are non-negative, which indicates non-oscilla-
tory behavior. The amplification factors (c’s in Eq. (31)) are differ-
ent from those for the undrained split. Interestingly, they are
identical to those for the fully coupled method.

Let the bulk modulus used in the flow problem that gives opti-
mal iteration convergence, when iterations are taken for a given
time step, be called the exact local bulk modulus. Then, in linear
elasticity, the constrained modulus K1D

dr is used as the exact local
bulk modulus for Terzaghi’s problem, which is horizontally con-
strained, while the 3D drained bulk modulus K3D

dr is used for a fully
unconstrained problem in 3D. K1D

dr and K3D
dr are given as

K1D
dr ¼

Eð1� mÞ
ð1þ mÞð1� 2mÞ ; K3D

dr ¼
E

3ð1� 2mÞ ; ð34Þ

where E and m are Young’s modulus and Poisson’s ratio, respec-
tively. Thus, the exact local bulk modulus varies between K3D

dr and
K1D

dr in linear elasticity, depending on the boundary conditions.

Remark 3. Although the exact local bulk moduli for the above two
examples are determined a priori based on the linear elastic
domains with simple boundary conditions, we might not obtain
the exact local bulk modulus a priori in the case where the
mechanical problem has arbitrary complicated boundary condi-
tions in multiple dimensions or inelasticity (e.g., elastoplasticity).
Let Kest

dr be an estimated local Kdr. We define g ¼ Kdr=Kest
dr as the

deviation factor between the exact and estimated local drained
bulk moduli. Then, following the same procedure of the von
Neumann method with the backward Euler time discretization, we
obtain the condition for the linear stability as

g P
1
2

1� 1
s

� �
; ð35Þ

where one of the amplification factors is negative if g < 1, but all the
amplification factors are positive if g > 1. From Eq. (35), g P 0.5 pro-
vides unconditional stability for linear problems.

Let K1D
dr ; K2D

dr , and K3D
dr be the Kdr’s in one, two, and three dimen-

sions, respectively. In other words, K1D
dr is the constrained modulus,

K2D
dr in the two dimensional plane-strain case is 1

4 1T
2Dps12, and K3D

dr in
three dimensions is the drained bulk modulus, which is 1

9 1T
3Ddr13.

These expressions are based on matrix–vector notation [40], where
1T

2 ¼ ½1;1;0�; 1T
3 ¼ ½1;1;1;0;0;0�; Dps is a 3 � 3 matrix given by the

drained moduli in the two dimensional plane-strain case, and Ddr is
a 6 � 6 matrix involving the drained moduli [40].

Suppose we use Kest
dr ¼ K3D

dr for incompressible fluid and solid
grains (i.e., an incompressible system) when the exact local Kdr is
K1D

dr . In this case, s =1 and g = 3(1 � m)/(1 + m). Since 0 6 m 6 0.5,
1.0 6 g 6 3.0, which provides unconditional stability with mono-
tonic behavior under the backward Euler method. On the other
hand, we obtain g = (1 + m)/3(1 � m) when we assume the opposite
case where we use Kest

dr ¼ K1D
dr when the exact local Kdr is K3D

dr . In this
case, instabilities may occur because 0.33 6 g 6 1.0 (e.g., g = 0.33
when m = 0.0), and we may experience oscillatory behaviors even
though the scheme is stable. Hence, a less stiff Kest

dr than the exact
local Kdr yields unconditional stability with monotonicity because
it guarantees 1.0 6 g 6 3.0. Thus, it is appropriate to choose
K1D

dr ; K2D
dr , and K3D

dr as Kest
dr ’s for one, two, and three dimensional

problems, respectively.

5. Contractivity of the nonlinear continuum problem

5.1. Constitutive relation and maximum plasticity

Coussy [41] models the constitutive equations between the
mechanics and the flow in elastoplasticity under isothermal condi-
tions as

r� r0 ¼ Cdr : ðe� epÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
r0

�bðp� p0Þ1; ð36Þ

1
qf ;0
ðm�m0Þ � /p ¼ bðev � ep;vÞ þ

1
M
ðp� p0Þ; ð37Þ

where ep is the linearized plastic strain tensor due to inelasticity,
ep,v = trep, and /p is the plastic porosity. r0 is the effective stress ten-
sor. The elastic strain ee is defined as e � ep, and ee,v = tree. The plas-
tic porosity and plastic strain can be related to each other by
assuming that _/p ¼ b _ep;v . Here, we assume that b = b [3], which
yields

d/p ¼ bdep;v : ð38Þ

For hardening, we introduce the hardening variable n and force
j as

j� j0 ¼ �H � n; ð39Þ

where H is a positive definite hardening modulus matrix. n and j
are vectors of the strain-like and stress-like plastic internal vari-
ables, respectively [41].

In the mechanical problem with elastoplasticity, the global ver-
sion of the maximal plastic work, associative flow rule, is written
asZ

X
ððp0 � r0Þ : _ep þ ðg� jÞ � _nÞdX 6 0; 8ðp0;gÞ 2 E; ð40Þ

where p0 and g are admissible (arbitrary) effective stress and hard-
ening force. The generalized elastic domain E is defined as

E :¼ fR :¼ ðr0;jÞ 2 S� Rnint : fYðr0;jÞ 6 0;r0ij 2 L2ðXÞ;ji 2 L2ðXÞg;
ð41Þ

where r0ij and ji are the components of r0 and j, respectively. ndim is
the dimension of the domain X, and nint is the dimension of j.

Gss ¼
1
M þ b2

Kdr

� �
c� b2

Kdr

� �
hðc� 1Þ þ kpDt

lh 2ðð1� aÞ þ acÞcð1� cos hÞ bðc� 1Þ2i sin h
2

b2i sin h
2

Kdr
h 2ð1� cos hÞ

2
4

3
5:
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S ¼ Rðndimþ1Þndim=2 is the vector space of symmetric rank-two tensors.
E contains the origin (0,0), and fY is a convex function, the yield sur-
face. R = (r0,j) is a generalized effective stress which is constrained
to lie within the elastic domain. The bilinear form, hh�, �ii, is defined
as

hhR;Pii ¼
Z

r0C�1
dr p0 þ j �H�1g

� �
dX; ð42Þ

which forms the norm as 2kRk2
E ¼ hhR;Rii.

5.2. Contractivity of the coupled problem

We summarize contractivity of the coupled problem, shown in
[3,36,41]. We introduce two appropriate norms for contractivity of
the coupled problem. One is motivated by the complementary
Helmholtz free energy, expressed as

kfk2
T ¼

1
2

Z
X

r0 : C�1
dr r0 þ j �H�1jþ 1

M
p2

� �
dX; ð43Þ

T :¼ f :¼ðr0;j;pÞ 2 S�Rnint �R : r0ij 2 L2ðXÞ; ji 2 L2ðXÞ; p2 L2ðXÞ
n o

;

ð44Þ

Note that p 2 L2(X) since we use the finite volume method for space
discretization of the flow problem. The other norm is motivated by
the Helmholtz free energy, expressed as

kvk2
N ¼

1
2

Z
X

ee : Cdree þ n �HnþM
me

qf ;0
� bee;v

 !2
0
@

1
AdX; ð45Þ

N :¼ v :¼ðee;n;meÞ 2 S�Rnint �R : eeij
2 L2ðXÞ;ni 2 L2ðXÞ;me 2 L2ðXÞ

n o
;

ð46Þ

where eeij and ni are the components of ee and n, respectively.
Let (u0,p0,n0) and ð~u0; ~p0; ~n0Þ be two arbitrary initial conditions,

and let (u,p,n) and ð~u; ~p; ~nÞ be the corresponding solutions, yielding
(r0,m,j,ep) and ð~r0; ~m; ~j; ~epÞ, respectively. Denote the difference
between the two solutions by dð�Þ ¼ ð�Þ � ~ð�Þ. From the constitutive
relations and maximum plastic work, we obtain, shown in [36],

kdfkT ¼ kdvkN ; ð47ÞZ
X
ðdr0 : d _ep þ dj � d _nÞdX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dd
p

P 0: ð48Þ

Let the left term of Eq. (48) be Dd
p. Then, the coupled problem

contains the contractivity property relative to the norms k � kN
and k � kT [3,36,41] as

kfðtÞ � ~fðtÞkT 6 kf0 � ~f0kT ; ð49Þ
kvðtÞ � ~vðtÞkN 6 kv0 � ~v0kN : ð50Þ

5.3. Non-contractivity of the fixed-strain split

We investigate whether the fixed-strain split is contractive, or
not. Introducing two arbitrary initial conditions, the fixed-strain
split can be written as

dun

dpn

� �
!
Ap

sn du�

dpnþ1

� �
!
Au

sn dunþ1

dpnþ1

" #
; where

Ap
sn : _dmþDivdv ¼0; dd _e¼ 0;
Au

sn : Divdr¼0; dp¼0
) Divdr0 ¼0:

8><
>:

ð51Þ

Eq. (51) has homogeneous boundary conditions with no source
terms. Since the pressure in the mechanical problem is prescribed,

the pressure is not affected by perturbations of the initial condition,
thus dp = 0. When solving the flow problem, Ap

sn, we obtain

dkdvk2
N

dt
¼ @kdvk

2
N

@dee
: d _ee þ

@kdvk2
N

@dn
� d _nþ @kdvk

2
N

@dme

_dme

¼
Z

X
dr0 : d _ee � dj � d _n�M

dme

qf ;0
� bdee;v

 !
bd _ee;v

"

þ M
qf ;0

dme

qf ;0
� bee;v

 !
_dme

#
dX

¼
Z

X
dr : d _eþ dp

qf ;0

_dm

" #
dX�

Z
X
½dr0 : d _ep þ dj � d _n�dX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dd
pP0

¼
Z

X
½dr : _de� dv � k�1ldv �dX� Dd

pi0ð _dm

¼ �dv � k�1ldv from Eq: ð51Þ ð52Þ

where v 2 ½Hðdiv;XÞ�ndim . Note that we consider maximum plastic
dissipation, Dd

p P 0, when solving the flow problem.
From Eq. (52), the fixed-strain split does not inherit the con-

tractivity relative to the norm k � kN at the stage of Ap
sn. As a result,

the fixed-strain split is not contractive with respect to the full
problem.

When solving the mechanical problem after the flow problem,
Au

sn, we obtain

dkdvk2
N

dt
¼
Z

X
dr0 : d _ee � dj � d _nþ 1

M
dpd _p

� �
dX

¼
Z

X
dr0 : d _edX�

Z
X
½dr0 : d _ep þ dj � d _n�dX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dd
pP0

ðfrom d _p ¼ 0Þ

¼ �Dd
p 6 0

Z
X

dr0 : d _edX ¼ 0 from Eq: ð51Þ
� �

: ð53Þ

5.4. Contractivity of the fixed-stress split

Again we consider two arbitrary initial conditions and study the
contractivity of the fixed-stress split. In the fixed-stress split, the
original operator is decomposed as follows:

dun

dpn

� �
!
Ap

ss du�

dpnþ1

� �
!
Au

ss dunþ1

dpnþ1

" #
; where

Ap
ss : _dmþDivdv ¼0; dd _r¼0;
Au

ss : Divdr¼0; dp¼0;
) Divdr0 ¼0;

8><
>:

ð54Þ

which has homogeneous boundary conditions with no source
terms. Using Eq. (16), the initial conditions of Ap

ss in Eq. (54) become

Divd _rt¼0 ¼ 0; DivdrðtÞt¼0 ¼ 0: ð55Þ

First, we show contractivity of the fixed-stress split when solv-
ing the flow problem Ap

ss. In Ap
ss of Eq. (54), dd _r ¼ 0 yields

_drðtÞ � _drt¼0 ¼ 0. Combining this result with the initial condition
in Eq. (55)1, we have

Divd _rðtÞ ¼ Div _drt¼0 ¼ 0: ð56Þ

Since the divergence operator Div is not a function of time un-
der infinitesimal transformation, Divd _rðtÞ ¼ @tDivdrðtÞ. Then Eq.
(55)2 and (56) lead to

DivdrðtÞ ¼ DivdrðtÞt¼0 ¼ 0: ð57Þ

Eq. (57) and the homogeneous boundary condition yieldZ
X

dr : d _edX ¼ 0: ð58Þ
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The contractivity of the fixed-stress split is shown as

dkdvk2
N

dt
¼
Z

X
dr : d _eþ dp

qf ;0
d _m

" #
dX�

Z
X
½dr0 : d _ep þ dj � d _n�dX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dd
pP0

¼ �
Z

X
dv � k�1ldvdX� Dd

p 6 0ðfrom Eq: ð58ÞÞ: ð59Þ

Thus, the fixed-stress scheme is contractive relative to the norm
k � kN when solving the flow problem. Since the mechanical prob-
lem in the fixed-stress split, Au

ss, is the same as that in the fixed-
strain split, Au

sn, the fixed-stress split satisfies contractivity in the
norm k � kN when solving the mechanical problem as indicated
by Eq. (53).

6. Algorithmic stability of the nonlinear problem

The fixed-strain split is not contractive and cannot provide
unconditional stability. Thus, we only investigate what time inte-
gration scheme can provide unconditional stability for the fixed-
stress split. Let (un,pn,nn) and ð~un; ~pn; ~nnÞ be two arbitrary solutions

at time tn, yielding r0n;mn;jn; en
p

� �
and ~r0n; ~mn; ~jn; ~ep

n

 �

, respec-

tively. We employ B-stability as the unconditional stability condi-
tion for contractive nonlinear problems, which is expressed as

kdvnþ1kN 6 kdvnkN : ð60Þ

First, we show B-stability when solving the flow problem. We
solve the flow problem first based on the algorithmic maximum
plastic work, for which we adopt the generalized midpoint rule de-
scribed in Simo [50], and Simo and Govindjee [51]. The algorithmic
maximum plastic work is written as

hhdRn � dRnþa;�dRnþaii þ hhðaCdrDden; 0Þ; ð�dr0nþa;�djnþaÞii 6 0;

ð61Þ

where again dð�Þ ¼ ð�Þ � ~ð�Þ, (e.g., Dden ¼ Den � D~en). The flow prob-
lem Ap

ss also has the constraint of dd _r ¼ 0, expressed as

drnþ1 � drn ¼ drn � drn�1 ¼ � � � ¼ dr1 � dr0 ð62Þ

The discrete counterpart of the initial conditions in Eq. (55) yields

Divðdr1 � dr0Þ ¼ 0; Divdr0 ¼ 0: ð63Þ

From Eqs. (62) and (63), we obtain

Divdrnþ1 ¼ Divdrn ¼ � � � ¼ 0; ð64Þ

which yields

Divdrnþa ¼ 0: ð65Þ

Combining Eq. (65) with the homogeneous boundary condition in
Ap

ss of Eq. (54), we obtainZ
X

drnþa : Dden dX ¼ 0: ð66Þ

The first term in Eq. (61) can be expressed as

hhdRn � dRnþa;�dRnþaii ¼ �hhaðdRn � dRnþ1Þ; dRnþ1=2

þ a� 1
2

� �
ðdRnþ1 � dRnÞii

¼ a kdRnþ1k2
E � kdRnk2

E

� �
þ að2a� 1ÞkdRnþ1 � dRnk2

E ; ð67Þ

where Rn+1/2 = (Rn + Rn+1)/2. The second term of Eq. (61) can be
written as

hhðaCdrDden;0Þ; ð�dr0nþa
;�djnþaÞii ¼ �

Z
aDden : dr0nþa dX

¼ �a
Z

Dden : ðdrnþa þ bdpnþa1ÞdX

¼ �a
Z

Dden
vbdpnþa dX ðfrom Eq: ð66ÞÞ: ð68Þ

From Eqs. (67) and (68), Eq. (61) yields

kdRnþ1k2
E � kdRnk2

E

� �
þ ð2a� 1ÞkdRnþ1 � dRnk2

E

�
Z

Dden
vbdpnþa dX 6 0: ð69Þ

From the flow equation of Ap
ss, we obtainZ

dpnþa 1
M

dpnþ1 � dpn

Dt
þ b

denþ1
v � den

v
Dt

þ DivðdvnþaÞ
 !

dX ¼ 0:

ð70Þ

Using the following identity,Z
X

dpnþa 1
M
ðdpnþ1 � dpnÞdX ¼ 1

2M
kdpnþ1k2

L2 � kdpnk2
L2

� �
þ ð2a� 1Þ 1

2M
kdpnþ1 � dpnk2

L2 ;

ð71Þ

Eq. (70) yields

1
2M

kdpnþ1k2
L2 � kdpnk2

L2

� �
¼ �ð2a� 1Þ 1

2M
kdpnþ1 � dpnk2

L2

�
Z

dpnþabDden
v dX

� Dt
Z

dvnþa � k�1
p ldvnþa dX; ð72Þ

where dpn+a = �lk�1dvn+a from Darcy’s law.
Then, when we solve the flow problem by the fixed-stress split,

the evolution of the norm k � kN at the discrete time level is shown
from Eqs. (69) and (72) as

kdvnþ1kN � kdvnkN ¼ kdRnþ1k2
E þ

1
2M
kdpnþ1k2

L2 � kdRnk2
E �

1
2M
kdpnk2

L2

6 �ð2a� 1Þ kdRnþ1 � dRnk2
E þ

1
2M
kdpnþ1 � dpnk2

L2

� �
� Dt

Z
dvnþa � k�1

p ldvnþadX; ð73Þ

from which the condition for unconditional stability is 0.5 6 a 6 1.

Remark 4. Return mapping of the maximum plastic dissipation is
required in order to treat b2/Kdr implicitly in the flow problem. In
this case, the flow problem would be iterated according to the
updated b2/Kdr by the return mapping. However, implicit treatment
of b2/Kdr leads to considerable computational cost due to iterations
on the flow problem. Hence, as described in the previous section,
we treat b2/Kdr explicitly (i.e., the previous time step). Accordingly,
the return mapping is not required when solving the flow problem,
leading to the same computational cost as the fixed-strain split.
Then, the return mapping is used only when solving the mechan-
ical problem.

After we solve the flow problem, the discrete stability for
mechanics Au

ss is examined for the following problem:

Divdrnþa ¼ 0; dpnþa ¼ 0 ) Divdr0nþa ¼ 0: ð74Þ

Eq. (61) is applied again for the maximum plastic dissipation.
Under Au

ss, the first term of Eq. (61) is the same as Eq. (67), and
the second term of Eq. (61) is written as
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hhðaCdrDden;0Þ; ð�dr0nþa;�djnþaÞii ¼ �
Z

aDden : dr0nþadX

¼ 0 ðfrom Eq: ð74ÞÞ: ð75Þ

From Eqs. (61), (67) and (75), the algorithmic dissipation is given by

kdRnþ1k2
E � kdRnk2

E

� �
þ ð2a� 1ÞkdRnþ1 � dRnk2

E 6 0: ð76Þ

From Eq. (71), dpn+a = 0 in Eq. (74) provides

1
2M

kdpnþ1k2
L2 � kdpnk2

L2

� �
¼ �ð2a� 1Þ 1

2M
kdpnþ1 � dpnk2

L2 : ð77Þ

Using Eqs. (76) and (77), the evolution of the norm kdvkN for Au
ss is

written as

kdvnþ1kN � kdvnkN ¼ kdRnþ1k2
E þ

1
2M
kdpnþ1k2

L2 � kdRnk2
E �

1
2M
kdpnk2

L2

6 �ð2a� 1Þ kdRnþ1 � dRnk2
E þ

1
2M
kdpnþ1 � dpnk2

L2

� �
;

ð78Þ

from which the condition for unconditional stability of Au
ss is

0.5 6 a 6 1. Therefore, unconditional stability (i.e., B-stability) for
the fixed-stress split is achieved when 0.5 6 a 6 1.

7. Error estimation

Stable sequential schemes yield the same solution as the fully
coupled method when full iterations are taken and the sequential
schemes are convergent. In practice, we take a fixed number of
iterations due to limited computational resources. In this situation,
first-order accuracy in time is desired. For example, in coupled flow
and dynamics, the staggered method can preserve first-order accu-
racy in time based on Lie’s formula [1,52,53]. However, in general,
when a fixed number of iterations is performed, typical sequential
methods do not guarantee convergence [33].

In the previous paper [36], the drained split shows non-conver-
gence under a fixed number of iterations for a slightly compressible
fluid, whereas the undrained split shows convergence. But, the un-
drained split is not convergent when both the fluid and the solid
grains are incompressible. To determine the convergence properties
of the fixed-strain and fixed-stress splits, we employ matrix algebra
and spectral analysis as used in Kim et al. [36]. The linear coupled
problem is considered here for simplicity. We use the finite volume
and finite element methods for flow and mechanics, respectively,
and the backward Euler time discretization.

The error associated with a sequential method can be decom-
posed into two terms as [32]

enþ1;niter
ts

��� ��� 6 xnþ1
t � xnþ1

f

��� ���þ xnþ1
f � xnþ1;niter

s

��� ���
¼ OðDtÞ þ xnþ1

f � xnþ1;niter
s

��� ���; ð79Þ

where ets is the error between the true solution and the numerical
solutions from the sequential method, and k�k is an appropriate norm
(e.g., L2 norm). xt = [ut,pt]. u and p are the displacement and pressure,
respectively. The subscript t (i.e., (�)t) denotes the true solution. The
subscripts f and s (i.e., (�)f and (�)s) denote the fully coupled and
sequential methods, respectively. enþ1

fs ¼ xnþ1
f � xnþ1;niter

s , the error be-
tween the fully coupled and sequential methods. n is the time step,
niter is the iteration number within a time step.

Using the fully coupled method, the problem is written as

F L
�Lt K

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

A

p
u

� �nþ1

� L Q
0 0

� �
|fflfflfflfflffl{zfflfflfflfflffl}

B

p
u

� �n

¼ fp

fu

� �
|fflffl{zfflffl}

f

nþ1;

x ¼ p
u

� �
; F ¼ Q þ DtT;

ð80Þ

where K is the stiffness matrix from the drained moduli, and F is
composed of Q and T [6]. Q and T are the fluid compressibility ma-
trix, which includes the Biot modulus, and the transmissibility ma-
trix of the flow problem, respectively. L is associated with the
coupling coefficient, the Biot coefficient.

Then sequential methods decompose the matrix A into

FþR 0
�Lt K

� �
p
u

� �nþ1;kþ1

�
R �L
0 0

� �
p
u

� �nþ1;k

�
L Q
0 0

� �
p
u

� �n

¼
fp

fu

� �nþ1

;

ð81Þ

where k is the iteration index. R is the matrix associated with the
relaxation matrix for stability in a sequential method. R depends
on a specific sequential method.

Subtracting Eq. (81) from Eq. (80), the errors of pressure and
displacement are written as

efs;p

efs;u

� �nþ1;kþ1

¼
Fþ R 0
�Lt K

� ��1 R �L
0 0

� �
efs;p

efs;u

� �nþ1;k

þ
L Q
0 0

� �
efs;p

efs;u

� �n
 !

¼ ðFþ RÞ�1 0

K�1LtðFþ RÞ�1 K�1

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}M

�
R �L
0 0

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

N

efs;p

efs;u

� �nþ1;k

þ
L Q
0 0

� �
efs;p

efs;u

� �n

0
BBB@

1
CCCA; ð82Þ

where et
fs ¼ ½efs;p; efs;u�t , and en

fs ¼ en;niter
fs .

Let D = MN and H = MB, respectively. Then we obtain

enþ1;niter
fs ¼ Dniter enþ1;0 þ

Xniter

l¼1

Dl�1Hen;niter
fs

¼ Dniter xnþ1
f � xn

f

� �
þ Dniter þ

Xniter

l¼1
Dl�1H

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S

en;niter
fs ; ð83Þ

where en+1,0 is written as xnþ1
f � xn

f

� �
þ xn

f � xn;niter
s

� �
.

Eq. (83) has the same form as the drained split shown in Kim
et al. [36] even though the components of D and S are different
from those of the drained split because of the relaxation matrix
R. As discussed in Kim et al. [36], convergence of sequential meth-
ods requires kDk to be O(Dtm), where m > 0. We investigate kDk for
the fixed-strain and fixed-stress splits in the next section using the
spectral method.

7.1. Error amplification of the fixed-strain split

We perform one dimensional spectral analysis for error ampli-
fication. For the fully coupled method with the backward Euler
time discretization, we have

h
M

Pnþ1
j � Pn

j

Dt
þ bh

Dt
�

Unþ1
j�1

2
� Unþ1

jþ1
2

h

0
@

1
Aþ Un

j�1
2
� Un

jþ1
2

h

 !2
4

3
5

� kp

lh
Pnþ1

j�1 � 2Pnþ1
j þ Pnþ1

jþ1

� �
¼ 0; ð84Þ

� Kdr

h
Unþ1

j�3
2
� 2

Kdr

h
Unþ1

j�1
2
þ Kdr

h
Unþ1

jþ1
2

� �
� b Pnþ1

j�1 � Pnþ1
j

� �
¼ 0: ð85Þ

The fixed-strain split treats the displacement term Un+1 in Eq.
(84) explicitly as Un+1,k, which is obtained from the previous itera-
tion (kth) step. The other variables in Eqs. (84) and (85) are treated
implicitly as Un+1,k+1 and Pn+1,k+1, unknown at the present ((k + 1)th)
step.
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Then the discretized equations by the fixed-strain split are writ-
ten as

h
M

Pnþ1;kþ1
j � Pn

j

Dt
þ bh

Dt
�

Unþ1;k
j�1

2
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 !0
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1
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� kp
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jþ1

� �
¼ 0; ð86Þ

� Kdr

h
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j�3
2

� 2
Kdr

h
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j�1
2
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jþ1
2

� �
� b Pnþ1;kþ1

j�1 � Pnþ1;kþ1
j

� �
¼ 0: ð87Þ

Subtracting Eqs. (86) and (87) from Eqs. (84) and (85), respectively,

h
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Dt
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Dt
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�Kdr

h
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Kdr

h
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U
j�1

2

� Kdr

h
ekþ1

U
jþ1

2

� b ekþ1
Pj�1
� ekþ1

Pj

� �
¼ 0: ð89Þ

Here, we neglect en;niter
P and en;niter

U in Eq. (88), assuming that Pn

and Un in Eq. (86) are the same as those in Eq. (84), because our
purpose is to investigate kDk in Eq. (83) only, the amplification of
error during iterations. Then, we introduce errors of the form
ek

Uj
¼ ck

eeiðjÞhêU and ek
Pj
¼ ck

eeiðjÞhêP , where ce is the error amplification
factor. From Eqs. (88) and (89), we obtain

h
M ce þ

kpDt
l

1
h 2ceð1� cos hÞ b2i sin h

2

ceb2i sin h
2 ce

Kdr
h 2ð1� cos hÞ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Bsn

êk
P

êk
U

" #
¼

0
0

� �
:

ð90Þ

Since the matrix is required to be singular, detBsn = 0, this leads to

ce ¼ 0; � b2

Kdr
1
M þ v2ð1� cos hÞ

 � ; v ¼ kpDt

lh2 : ð91Þ

The ce’s are equivalent to the eigenvalues of the error amplifica-
tion matrix G defined by

ekþ1
Pj

ekþ1
Uj

2
4

3
5 ¼ G

ek
Pj

ek
Uj

" #
: ð92Þ

The two ce’s in Eq. (91) are distinct, and G can be decomposed as
G = PKP�1 [40], where K = diag{ce,1,ce,2} and P is an invertible ma-
trix. By recursion and Eq. (92), the fixed-strain split yields

enþ1;niter
�� �� 6 ðmaxjcejÞ

niterkenþ1;0k; ð93Þ

where enþ1;0 ¼ xnþ1
f � xn;niter

s . From Eq. (91), we obtain

lim
Dt!0

maxjcej ¼
b2M
Kdr
ð–0Þ; ð94Þ

which yields kDk = O(1). Therefore, as Dt approaches zero, en
fs does

not disappear, and the fixed-strain split with a fixed number of iter-
ations is not a convergent scheme. Non-convergence is severe when
kDk approaches unity, which is the stability limit, because Eq. (93)
approaches the equality. kDk 6 1 is also a necessary condition for
stability [33], which yields jcej 6 1. The stability requirement entails
the coupling strength be less than one, which is the same as Eq.
(25).

7.2. Error amplification of the fixed-stress split

When we consider a fixed number of iterations for the fixed-
stress split, the constraint of the fixed-stress rate becomes

rnþ1;kþ1
v � rn

v ¼ rnþ1;k
v � rn

v : ð95Þ

The fixed-stress split solves the flow problem using Eq. (95),
which is written as

enþ1;kþ1
v ¼ enþ1;k

v þ b
Kdr
ðPnþ1;kþ1 � Pnþ1;kÞ: ð96Þ

Then Eq. (86) is replaced by

h
M
þ hb2

Kdr
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� �
¼ 0: ð97Þ

The flow equation of the fixed-stress split is the same as Eq.
(87). Subtracting Eq. (97) from Eq. (84) and assuming again that
Pn and Un in Eq. (97) are the same as those in Eq. (84), we obtain
the error equation for flow as

h
M
þ hb2

Kdr

 !
ekþ1

Pj
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¼ 0: ð98Þ

The error equation for mechanics is the same as Eq. (89). Intro-
ducing errors of the form ek

Uj
¼ ck

eeiðjÞhêU and ek
Pj
¼ ck

eeiðjÞhêP , Eqs. (89)
and (98) yield

1
M hþ hb2

Kdr
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ce� hb2

Kdr
þ kpDt

lh 2ceð1�coshÞ b2isin h
2

ceb2isin h
2 ce

Kdr
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êk
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êk
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" #
¼
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ð99Þ

From detBss = 0, the error amplification factors for the fixed-stress
split are obtained as

ce ¼ 0: ð100Þ

Then G can be expressed using a similarity transform as G = PJP�1

[54], where

J ¼
0 1
0 0

� �
: ð101Þ

Since ce
ss ¼ 0, the fixed-stress split is a convergent scheme with a

fixed number of iterations. Furthermore, for the linear coupled
flow-geomechanics problem, exactly two iterations of the fixed-
stress scheme are needed to converge to the fully coupled solution
because G2 = PJ2P�1 = 0. This assumes that the local Kdr is estimated
exactly in the flow problem.

Remark 5. The exact local Kdr may be difficult to estimate in the
flow problem, as pointed out in Remark 3. Introducing the
deviation factor g and following the same procedure of the spectral
method described above, we obtain

ce ¼ 0;
b2ðg� 1Þ

Kdr
M þ gb2 þ Kdrv2ð1� coshÞ

; ð102Þ

lim
Dt!0

maxjcej ¼
jg� 1j

1
s þ g

: ð103Þ
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Even though limDt?0maxjcej– 0, maxjcej is much smaller than one
because 1 6 g 6 3, where we follow the dimension-based estimation
for Kest

dr explained after Remark 3. Hence, kefsk decreases exponen-
tially as we increase the number of time steps and reduce the time
step size. Hence, first-order accuracy in time is obtained eventually.

Remark 6. If the fluid and solid grains are incompressible, s =1,
Eq. (103) yields

lim
Dt!0

maxjcej ¼
jg� 1j

g
: ð104Þ

If g approaches 0.5 or 1, we have limDt!0maxjcej 	 1, and we may
face non-convergence even though the solutions are stable. How-
ever, in contrast to the undrained split, the fixed-stress split shows
convergence for incompressibility of the fluid and solid grains be-
cause maxjcej is much smaller than one if 1 6 g 6 3, as explained
in Remark 5.

8. Numerical examples

We perform numerical experiments in order to investigate the
stability and convergence behaviors. We use two test cases to

study stability. The backward Euler time integration is chosen un-
less noted otherwise. Then, the Terzaghi problem is used as a test
case for convergence, followed by two test cases to study the effect
of the deviation factor g.

8.1. Stability

We introduce two test cases to study the stability behaviors of
the fixed-strain and fixed-stress splits, listed as below.

Case 1. Injection and production in a 1D poroelastic medium.
The driving force is due to injection and production
(the left picture in Fig. 2).

Case 2. Fluid production in 2D with elastoplastic behavior
described by the modified Cam-clay model. The com-
paction of the reservoir occurs due to production (the
right picture in Fig. 2).

The numerical results are based on a one-pass (implicit–impli-
cit) strategy per time step (i.e., staggered method) unless noted
explicitly otherwise.

8.1.1. Case 1—1D fluid injection and production
For Case 1, dilation and compaction occur around the injection

and production wells. The total subsidence is zero because the
injection rate Qinj = 100 kg day�1 is the same as the production rate
Qprod = 100 kg day�1, and the domain is homogeneous with 15 grid
blocks. The length of the domain is Lz = 150 m with grid spacing
Dz = 10 m. The overburden is �r ¼ 2:125 MPa and a no-displace-
ment boundary condition is used at the bottom of the domain.
The bulk density of the porous medium is qb = 2400 kg m�1. The
initial fluid pressure is Pi = 2.125 MPa, and the fluid density and
viscosity are qf,0 = 1000 kg m�1 and l = 1.0 cp, respectively. Perme-
ability is kp = 50 md, porosity is /0 = 0.3, the constrained modulus
is Kdr = 100 MPa, and the Biot coefficient is b = 1.0. The observation
well is located at the fifth grid block from the top. A no-flow
boundary condition is applied at the top and bottom. There is no
gravity in the domain. The Biot modulus is left unspecified for dif-
ferent values of the coupling strength s.

Fig. 3 shows the results from the numerical simulations with
the backward Euler time discretization. When the coupling
strength, s, is less than one, both sequential methods are stable.
The fixed-strain split, however, is unstable when s is greater than
one, and it produces an oscillatory solution even when it is stable
(in this case, the oscillations are relatively small). On the other
hand, the fixed-stress split is stable and nonoscillatory in all cases.

Fig. 2. Left: 1D problem with injection and production wells (Case 1). Right: 2D
problem driven by single-well production in an elastoplastic medium (Case 2).
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Fig. 3. Case 1 (1D injection–production problem). Evolution of the dimensionless pressure as a function of dimensionless time (pore volume produced). Shown are the results
for the fully coupled method, the fixed-strain, and fixed-stress splits. Left: coupling strength s = 0.83. Right: coupling strength s = 1.21.
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These numerical behaviors are in agreement with the predictions
from the von Neumann stability analysis.

8.1.2. Midpoint rule for time integration
We consider the midpoint rule for time discretization (a = 0.5

for both mechanics and flow). Here, Kdr = 1 GPa and the other data
are the same as Case 1. Fig. 4 shows the stability behaviors for
a = 0.5 when s = 0.83 (left) and s = 1.11 (right). The fixed-strain
split is stable when s < 1 whereas it is unstable when s > 1, which
supports our a priori stability estimates from the von Neumann
method. Furthermore, while the drained split with the midpoint
rule is unconditionally unstable, as shown in Kim et al. [36], the
fixed-strain split with the midpoint rule is conditionally stable.
The fixed-stress split, however, is unconditionally stable when
s P 1, as shown in the right plot of Fig. 4. This supports the a priori
stability estimate in Eqs. (25) and (32).

8.1.3. The deviation factor g
We use Case 1 with the backward Euler method in order to val-

idate the stability estimate of Eq. (35), where s = 3.33 and s =1.
From Eq. (35), the stability condition becomes g P 0.35 for
s = 3.33 and g P 0.5 for s =1. Fig. 5 shows the pressure history
with respect to time for s = 3.33 and s =1 with g slightly above
and below the limits set by Eq. (35). On the left of Fig. 5, g = 0.33
leads to instability, but g = 0.37 yields a stable solution when
s = 3.33. The right of Fig. 5 also shows that, when s =1, g = 0.48

causes instability whereas g = 0.52 leads to stability. Fig. 5 shows
that the stability estimate of Eq. (35) is quite sharp.

8.1.4. Case 2—Fluid production scenario in 2D with elastoplasticity
We adopt the associated plasticity formulation [41,50,55] for

Case 2, where the yield function fY of the modified Cam-clay model
[56,57] is

fY ¼
q02

M2
mcc

þ r0v r0v � pco


 �
¼ 0; ð105Þ

where q0 is the deviatoric effective stress, r0v is the volumetric effec-
tive stress, Mmcc is the slope of the critical state line, and pco is the
preconsolidation pressure. We adopt the backward Euler time
discretization.

The dimension of the domain is 50 m � 50 m with 5 � 5 grid
blocks under the plane strain mechanical problem. The domain is
homogeneous. The domain has an overburden �r ¼ 2:125 MPa, side
burden �rh ¼ 2:125 MPa on both sides, and no-vertical and no-hor-
izontal displacement boundary at the bottom. The bulk density of
the porous medium is qb = 2400 kg m�1. Initial fluid pressure is
Pi = 2.125 MPa. Fluid density and viscosity are qf,0 = 1000 kg m�1

and l = 1.0 cp, respectively. Permeability is kp = 50 md, and poros-
ity is /0 = 0.3. Young’s modulus is E = 350 MPa, and Poisson’s ratio
is m = 0.35. The Biot coefficient is b = 1.0. For the modified Cam-clay
model, the virgin compression index is K = 0.37, the swell index
is j = 0.054, the critical state slope is Mmcc = 1.4, and the
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Fig. 4. 1D problem with injection and production (Case 1). Kdr = 1 GPa. a = 0.5 for both flow and mechanics is considered. Left: s = 0.83. Right: s = 1.11.
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Fig. 5. Stability behaviors of different g’s and s’s. Left: pressure history at the observation well when s = 3.33. Right: pressure history at the observation well when s =1.
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preconsolidation pressure is pco,0 = �1.0 MPa, where tensile stress
is positive. The production and observation wells are located at
the center of the domain (3,3). The production rate is
Qprod = 1000 kg day�1. A no-flow boundary condition is applied to
the domain. There is no gravity.

In Case 2, compaction occurs because of the production. As a re-
sult, subsidence occurs and the fluid pressure decreases. Fig. 6
shows that the fixed-strain split becomes unstable when it enters
the plastic regime, even though it is stable in the elastic regime.
This is because plasticity increases the coupling strength beyond
unity. The fixed-stress split is, however, stable in the plastic re-
gime. Around td = 0.018, we observe a little non-smoothness in
the pressure solution because we treat the relaxation term b2/Kdr

explicitly. The solution from the fixed-stress split is slightly differ-
ent from the fully coupled solution, since one iteration is per-
formed. But, when two iterations are taken, the solutions by the
fixed-stress split match those from the fully coupled method, as
shown in Fig. 6. That figure also shows that more reservoir com-
paction due to plasticity can slow down the rate of decline in the
reservoir pressure.

8.2. Convergence

The Terzaghi problem—one dimensional consolidation—is used
for convergence analysis.
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Fig. 6. 2D problem with a production well (Case 2). Left: the history of pressure. Right: the history of the coupling strength [48]. FC, FSN and FSS indicate the fully coupled,
fixed-strain, and fixed-stress methods, respectively. The model enters the plastic regime at td 	 0.018. Beyond this point, the fixed-strain split becomes unstable.

Fig. 7. Case 3: Terzaghi’s problem in one dimension.
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Fig. 8. Convergence analysis of Case 3 on pressure (left) and displacement (right). Dtd ¼ 4cvDt=L2
z , where cv is the consolidation coefficient defined as cv ¼ kp

ð1=Kdrþ/cf Þl
. The

fixed-strain split shows zeroth-order accuracy. But, the fixed-stress split yields first-order accuracy.

1602 J. Kim et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 1591–1606



Author's personal copy

Case 3. The Terzaghi problem in a 1D linear poroelastic medium
(Fig. 7). The driving mechanical force is provided by the
overburden. At initial time, pressure increases suddenly
due to overburden. Then, pressure decreases during
simulation because fluid flows out of the domain.

There are drainage boundaries at the top and bottom, where
the boundary fluid pressure is Pbc = 2.125 MPa. The overburden
is �r ¼ 2� 2:125 MPa at the top, and a no-displacement boundary
condition is applied to the bottom. The domain has 20 grid
blocks. The length of the domain is Lz = 40 m with grid spacing
Dz = 2 m. The bulk density of the porous medium is
qb = 2400 kg m�1. Initial fluid pressure is Pi = 2.125 MPa. Fluid
density and viscosity are qf,0 = 1000 kg m�1 and l = 1.0 cp,
respectively. Permeability is kp = 50 md, porosity is /0 = 0.3, the
constrained modulus is Kdr = 100 MPa, and the Biot coefficient is
b = 1.0. No production and injection of fluid is applied. Gravity
is neglected. The coupling strength s is 0.95, where the Biot mod-
ulus is M = 95 MPa. We determine the true (reference) pressure
and displacement fields, using the fully coupled method with
very small time step size in order to minimize the temporal
error.

Fig. 8 shows the errors between the true and numerical solu-
tions using the fixed-strain, fixed-stress, and fully coupled meth-
ods with respect to time step size when a fixed number of
iterations is performed. The errors in dimensionless pressure and
displacement are measured by the L2 norm.

From Fig. 8, the fixed-stress and fully coupled methods are con-
vergent with one iteration, showing that the errors decrease as
O(Dt) as the time step size is refined. This also confirms that the
fixed-stress and fully coupled methods have O(Dt) error in time.
However, the fixed-strain split does not show convergence, but
yields zeroth-order accuracy. Figs. 9 and 10 show the spatial distri-
butions of pressure and displacement by the fixed-strain and fixed-
stress splits, respectively. As the time step size is reduced, the
fixed-strain split with one iteration does not converge to the true
solution but to a different solution (Fig. 9), whereas the fixed-stress
split with one iteration converges to the true solution (Fig. 10). The
numerical results for Case 3 support our a priori error estimates of
the fixed-strain and fixed-stress splits from Eqs. (91) and (100).

When full iterations are performed for Case 3, the fixed-stress
split takes a maximum of two iterations to converge to the solu-
tions from the fully coupled method. Cases 1 and 2 take one and
two iterations, respectively, to match the fully coupled method.
These results are consistent with our a priori estimates of the con-
vergence rate of the fixed-stress split (i.e., G2 = 0 in Eq. (101)). Note
that a few more iterations may be required if there are complex
boundary conditions because we cannot guarantee the exact esti-
mates of the Kdr in the flow problem [48].

8.3. Effect of the deviation factor g

Since the exact local Kdr is not known a priori for complex
boundary conditions and production scenarios or the nonlinear
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Fig. 9. Non-convergence of the fixed-strain split with one iteration for Case 3: pressure (left) and displacement (right).
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Fig. 10. Convergence of the fixed-stress split with one iteration for Case 3: pressure (left) and displacement (right).
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materials, we investigate the effect of the deviation factor g on the
fixed-stress split. We use two test cases adopting the backward Eu-
ler time discretization.

Case 4. Two dimensional consolidation problem with a con-
strained boundary (the left picture in Fig. 11). This is
equivalent to a half domain of the Terzaghi problem
by symmetry. The exact Kdr is K1D

dr . The porous medium
is elastic.

Case 5. Two dimensional consolidation problem with an uncon-
strained boundary (the right picture in Fig. 11). The
exact Kdr is close to K2D

dr . The porous medium is elastic.

For Case 4, the dimension of the domain is 3 m � 14 m with 3 � 7
grid blocks under the plane strain mechanical problem. The domain
is homogeneous. Grid spacings of Dx and Dz are 1 m and 2 m,
respectively. The domain has an overburden �r ¼ 2� 2:125 MPa

on the top, no horizontal displacement boundaries on both sides,
and no vertical or horizontal displacement at the bottom. The bulk
density of the porous medium is qb = 2400 kg m�1. Initial fluid pres-
sure is Pi = 2.125 MPa. The fluid density and viscosity are
qf,0 = 1000 kg m�1 and l = 1.0 cp, respectively. Permeability is
kp = 50 md, and porosity is /0 = 0.3. Young’s modulus is
E = 500 MPa, and Poisson’s ratio is m = 0.0. The Biot coefficient is
b = 1.0. The observation well is located at (2,5). We have a drainage
boundary for flow on the top, where the boundary fluid pressure is
Pbc = 2.125 MPa. No-flow boundary conditions are applied to both
sides and the bottom. Gravity is neglected.

We investigate the convergence behavior of the fixed-stress
split with Kest

dr ¼ K3D
dr and s =1, where M =1. We assume a less

stiff bulk modulus compared with the exact bulk modulus. From
m = 0.0, we obtain g = 3.0, which is the maximum of the deviation
factor according to the dimension-based estimation of Kest

dr .
Fig. 12 shows the convergence behavior of pressure. On the left

Fig. 11. Two test cases to investigate the effect of different g’s. Case 4: the consolidation problem with a constrained boundary (left picture). Case 5: the consolidation
problem with an unconstrained boundary (right picture).
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of Fig. 12, we confirm first-order accuracy explained in Remark 5.
The right side of Fig. 12 clearly shows that the pressure profile
along the X–Y line in Fig. 11 converges to the true solution by
the fixed-stress split when g = 3.0.

For Case 5, the domain has a side burden �rh ¼ 2:125 MPa on
both sides instead of the no-horizontal displacement condition in
Case 4. The other data are the same as Case 4. We take two stiffer
and one less stiff bulk moduli for Kest

dr compared with the exact bulk
modulus. If we select K1D

dr for Kest
dr ;g is close to the stability limit of

0.5, because the exact Kdr is close to K2D
dr . For this reason, we con-

sider Kest
dr ¼ 0:95� K1D

dr and Kest
dr ¼ 1:05� K1D

dr , yielding g 	 0.48
and g 	 0.52, respectively. In Fig. 13, Kest

dr ¼ 0:95� K1D
dr provides

stability, showing severe oscillations, but Kest
dr ¼ 1:05� K1D

dr causes
instability. However, Fig. 13 shows that the solution of Kest

dr ¼ K3D
dr

matches the solution of the exact Kdr and that it is monotonic, cap-
turing the initial rise of pressure (Mandel–Cryer effect). Thus, it is
better to take a less stiff bulk modulus when the exact Kdr is not
known a priori. The fixed-stress split uses the dimension-based
estimation for Kest

dr , which yields high accuracy without oscillations.

9. Conclusions

We consider two sequential-implicit methods for coupled flow
and geomechanics, whereby we solve the flow problem first. One is
the fixed-strain split, and the other is the fixed-stress split. For a
priori stability estimates, we use the von Neumann and energy
methods with the generalized midpoint rule at tn+a for poroelastic-
ity and poroelastoplasticity, respectively. For a priori error esti-
mates, we employ matrix algebra and spectral analysis based on
the backward Euler method.

From those estimates, the fixed-strain split shows similar sta-
bility and convergence behaviors to the drained split. The fixed-
strain split is stable if a P 0.5 and the coupling strength is less than
one. Even when it is stable, the fixed-strain split is oscillatory, and
not convergent especially as s approach 1 around the stability lim-
it. On the other hand, the fixed-stress split is unconditionally stable
for a P 0.5, showing that the amplification factors are the same as
the fully coupled method. For poroelastoplasticity, the energy
method shows that the fixed-stress split is unconditionally stable
(i.e., B-stable) when a P 0.5.

The fixed-stress split shows the same stability behaviors as the
undrained split, but the two splits show different behaviors regard-

ing convergence and accuracy. Specifically, the fixed-stress split is
still convergent for an incompressible system M =1, whereas the
undrained split is not convergent. Also, the fixed-stress split needs
only two iterations for convergence of the linear problem regardless
of coupling strength and pressure diffusivity if we can estimate the
local Kdr exactly at the flow step. On the other hand, the undrained
split is less accurate for large pressure diffusivity and high coupling
strength. Even though we cannot estimate the exact local Kdr in the
flow problem under complex boundary conditions or the nonlinear-
ity of the materials, the dimension-based estimation of Kdr provides
stability and first-order accuracy of the fixed-stress split, which is
also valid even for an incompressible system. Moreover, the fixed-
stress split yields less stiff problems, but the undrained split
involves stiffer problems which require stronger linear solvers.
Therefore, we strongly recommend the fixed stress split.
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