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Abstract Flow and transport through fractured geologic media often leads to anomalous (non-Fickian)
transport behavior, the origin of which remains a matter of debate: whether it arises from variability in frac-
ture permeability (velocity distribution), connectedness in the flow paths through fractures (velocity correla-
tion), or interaction between fractures and matrix. Here we show that this uncertainty of distribution- versus
correlation-controlled transport can be resolved by combining convergent and push-pull tracer tests
because flow reversibility is strongly dependent on velocity correlation, whereas late-time scaling of break-
through curves is mainly controlled by velocity distribution. We build on this insight, and propose a Lagran-
gian statistical model that takes the form of a continuous time random walk (CTRW) with correlated particle
velocities. In this framework, velocity distribution and velocity correlation are quantified by a Markov pro-
cess of particle transition times that is characterized by a distribution function and a transition probability.
Our transport model accurately captures the anomalous behavior in the breakthrough curves for both
push-pull and convergent flow geometries, with the same set of parameters. Thus, the proposed correlated
CTRW modeling approach provides a simple yet powerful framework for characterizing the impact of veloc-
ity distribution and correlation on transport in fractured media.

1. Introduction

Understanding flow and transport through fractured geologic media is essential for improving forecasts,
management, and risk assessment of many subsurface technologies, including geologic nuclear waste dis-
posal [Bodvarsson et al., 1999], geologic CO2 storage [Szulczewski et al., 2012], oil and gas production from
fractured reservoirs [Kazemi et al., 1976], enhanced geothermal systems [Pruess, 2006], shale-gas develop-
ment [Curtis, 2002; Cueto-Felgueroso and Juanes, 2013], and groundwater contamination and remediation
[Gerke and van Genuchten, 1993; Huyakorn et al., 1994]. Moreover, if we conceptualize fractured geologic
media as a network system, this knowledge can have implications to other physical processes, including dis-
ease spreading through river networks [Rinaldo et al., 2012] and the air transportation system [Nicolaides
et al., 2012], urban traffic [Kerner, 1998], and nutrient transport through preferential paths in biofilms [Wilk-
ing et al., 2013].

There are two main sources of uncertainty for transport through fractured media: uncertainty in the fracture
geometrical properties, including fracture aperture, roughness, location, and connectivity describing frac-
ture geometry [Tsang et al., 1988; Cacas et al., 1990; M�eheust and Schmittbuhl, 2000; de Dreuzy et al., 2001];
and uncertainty in the physical transport processes impacting the flow and transport such as advection, dif-
fusion, dispersion, and adsorption [Neretnieks, 1983; Haggerty and Gorelick, 1995; Becker and Shapiro, 2003].
The fracture geometrical properties and the physical transport processes are interdependent, and may lead
to anomalous transport. Anomalous transport, understood as the nonlinear scaling with time of the mean
square displacement of transported particles, is a characteristic feature of transport through porous and
fractured geologic media [Berkowitz et al., 2006; Bijeljic and Blunt, 2006; Berkowitz and Scher, 1997].

Fracture geometrical properties impact macroscopic transport by controlling the velocity distribution at
multiple scales. Fracture roughness leads to a broad velocity probability density function (PDF) at the frac-
ture scale, and the variability in fracture aperture between fracture planes leads to a broad velocity PDF at
the network scale [Nordqvist et al., 1992; Brown et al., 1998; M�eheust and Schmittbuhl, 2000]. In the following,
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we will refer to PDF as ‘‘probability distribution’’ or simply ‘‘distribution.’’ In addition, fracture length impacts
velocity correlation, since the velocity within each fracture is usually highly correlated. Therefore, the frac-
ture geometrical properties impact both the transport velocity distribution and velocity correlation. In prac-
tice, however, the fracture geometrical information is very limited and only a few dominant properties, such
as relative fracture aperture and dominant major fractures, are identifiable [Dorn et al., 2012].

Heterogeneous advection, matrix diffusion, hydrodynamic dispersion, and adsorption are four physical transport
mechanisms that impact transport of nonreactive tracers through fractured media. Heterogeneous advection,
which results from the separation of mass into different flow channels, can be partially reversible when the flow
field is reversed. Matrix diffusion is a diffusive mass exchange between fractures and the surrounding rock
matrix, which is not a time-reversible process. Hydrodynamic dispersion describes tracer spreading due to the
combined effect of pore-fluid diffusion and local velocity heterogeneity within the fracture. Adsorption refers to
the adhesion of dissolved tracers to solid surfaces. All these physical phenomena can be understood as either
an advective or a diffusive process. Heterogeneous advection is an advective process, and matrix diffusion,
hydrodynamic dispersion, and adsorption can be understood as diffusive processes. The competition between
advective and diffusive processes is therefore manifested by the reversibility of flow, which in turn is controlled
by velocity correlation. Advection is a time-reversible process: when flow is reversed, the spreading caused by
heterogeneous advection collapses back. In contrast, diffusion is a time-irreversible process: particle spreading
cannot be collapsed by reversing the flow. The advective versus diffusive-controlled breakthrough curve tailing
has been tested by using tracers of different diffusivity and difference pumping rates [Moench, 1995; Becker and
Shapiro, 2000; Reimus and Callahan, 2007]. These physical transport mechanisms also impact the Lagrangian
velocity distribution. For example, heterogeneous advection induces a broad velocity distribution via the combi-
nation of slow paths and fast paths, matrix diffusion via the trapping of tracers in the rock matrix, and adsorption
via the adhesion of particles onto the rock surface.

In summary, the complex interplay between fracture geometrical properties and physical transport proc-
esses determines the average particle transport behavior via velocity distribution and velocity correlation.
Recent studies have shown that tracer transport through fractured and porous media is strongly modulated
by the particle velocity distribution and velocity correlation [Le Borgne et al., 2008; Kang et al., 2011a; de
Anna et al., 2013; Kang et al., 2014]. Here, we develop a stochastic model of transport that recognizes the
impact of both velocity distribution and velocity correlation as an integral part of its ability to make predic-
tions of transport at the field scale.

2. Field Experiments

A signature of anomalous transport in the field is the late-time tailing of breakthrough curves (BTCs), that is,
time series of tracer concentration at the pumping well. Breakthrough curves are affected by both the
underlying fracture geometrical properties and the physical transport processes such as advection, diffu-
sion, dispersion, and adsorption. Thus, they are sensitive to both velocity distribution and velocity
correlation.

We build on the seminal observation by Tsang [1995], who suggested that the combination of different
tracer tests could be used to reduce the uncertainty in the characterization of fractured media. Here, we
propose a framework to combine single-well (push-pull) and two-well (convergent) tests to give new con-
straints on distribution versus correlation-controlled non-Fickian transport.

2.1. Field Site and Tracer-Test Setup
We conducted a series of field tracer tests under forced hydraulic gradient in a saturated fractured granite
formation at the Ploemeur observatory (H1 network) [Le Borgne et al., 2004; Ruelleu et al., 2010] (Figure 1).
The site is located at the contact between the underlying fractured granite and the overlying mica schist.
The matrix permeability of granite is extremely low and, therefore, groundwater flows mainly through the
network of fractures.

For this study, we used two boreholes, B1 (83 m deep) and B2 (100 m deep), which are 6 m apart. Previous
work [Le Borgne et al., 2007; Dorn et al., 2012, 2013] has identified four major conductive fractures intersect-
ing B1, labeled B1-1 (24 m deep), B1-2 (50 m), B1-3 (63 m), and B1-4 (79 m), and four major conductive frac-
tures intersecting B2, labeled B2-2 (56 m), B2-3 (59 m), B2-4 (79 m), and B2-5 (97 m). We designed and
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conducted convergent and push-pull tests at two different fractures: B1-2 and B1-4. Regional flow may influ-
ence the reversibility of the flow [Lessoff and Konikow, 1997; Altman et al., 2002]. Direct measurements of
ambient flow were obtained at the experimental site using the finite volume point dilution method using
packers to isolate the fractures where the tracer tests were performed [Brouyère et al., 2008]. The ambient
flow measured in B1-2 fracture was found to be below the detection limit (1027 m3=s), while that measured
in B1-4 was about 1026 m3=s. Although these are local estimates, this suggests that ambient flow is too
small (� 0:06 L=min) to affect flow field generated by the injection/withdrawal rates (5–6 L=min). As a
tracer, we used fluorescein, which is widely used for groundwater tracing and known to be nonreactive,
insensitive to pH and salinity, and moderately resistant to adsorption and photochemical bleaching [Smart
and Laidlaw, 1977].

2.1.1. Convergent Tracer Test
In the convergent test, we inject a known mass of tracer into an injection borehole (B1) and measure the
tracer concentration at the pumping borehole (B2) (Figures 2a–2c). To place the tracer at the target fracture,
we installed a double-packer at the injection borehole at two different depths, targeting the B1-2 and B1-4
fractures in separate experiments. To form a stationary, radial convergent flow configuration, a constant

Figure 2. Schematic of the tracer tests conducted. (a,b,c) Convergent test with tracer placement at borehole B1 and pumping from bore-
hole B2. Two different fracture planes at different depths (B1–2 and B1–4) are used for two separate tests. (d,e,f) Push-pull test from bore-
hole B1. The same two fracture planes (B1–2 and B1–4) are used.

(a) (b)

FRANCE

UK

SPAIN

Ploemeur

Figure 1. (a) Outcrop of fractured granite at the Ploemeur field site. Inset: map showing the location of Ploemeur, France. (b) Photo from
the installation of double packer system in B1 borehole.
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pumping rate was established at borehole B2 throughout the experiment. Once a stationary pressure field
is achieved, we inject the tracer at borehole B1 for a short duration compared to the total duration of the
experiment, and at a small injection rate (<1% of the pumping rate at B2). When the injection of tracer is
completed, we recirculate the fluid inside the double-packer system to prevent the possible remaining
tracer from continuing to leak into the formation. We have monitored the well concentration during the
experiment and confirmed the tracer concentration was small enough during the early stage of the
experiment.

2.1.2. Push-Pull Tracer Test
In the push-pull test, we first inject a known mass of tracer into borehole B1, and continue to inject fresh
water for a fixed duration of time (‘‘push’’ phase). We then reverse the flow and pump water from the same
borehole with the same flow rate (‘‘pull’’ phase), and measure the arrival tracer concentration (Figures 2d-
2f). Again, a double-packer system was installed to isolate the injection into the desired fracture plane.

2.2. Field Test Results
Additional details on the conditions and parameters of the field experiments are given in Table 1, and the
measured BTCs are shown in Figure 3. As expected, the BTCs are broader for the convergent tests than for
the push-pull tests, given that in the latter the spreading during the ‘‘push’’ phase is partially recovered

Table 1. Details of the Conditions and Parameters of the Four Tracer Experiments

Experimental Parameters

Experiments

B1–2 Convergent B1–2 Push-Pull B1–4 Convergent B1–4 Push-Pull

Tracer injection fracture B1–2 B1–2 B1–4 B1–4
Withdrawal borehole/fracture B2 B1–2 B2 B1–4
Flow configuration Convergent Push-pull Convergent Push-pull
Tracer injection depth 50.5 m 50.5 m 78.7 m 78.7 m
Packer system at B1 Double packer Double packer Double packer Double packer
Packer system at B2 Single packer Single packer Single packer Single packer
Injection rate 1 L/min 6 L/min 1 L/min 5 L/min
Injection duration 15 min 30 min 15 min 80 min
Withdrawal rate 120 L/min 6 L/min 100 L/min 5 L/min
Injected mass 5 g 0.1 g 1.5 g 0.4 g
Peak arrival time 30 min 57 min 35 min 140 min
Peak concentration 590 ppb 353 ppb 312 ppb 690 ppb
Mass recovery 96 % 89 % 99 % 87 %
Late-time tailing slope � 1.7 � 1.85
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Figure 3. Measured breakthrough curves (BTC) for the tracer tests we conducted, in the form of a normalized time (peak arrival at dimen-
sionless time of 1) and normalized concentration (such that the area under the BTC is identically equal to 1). The tracer concentration is
measured every 20 s. (a) BTCs for fracture plane B1–2. (b) BTCs for fracture plane B1–4.
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during the ‘‘pull’’ phase. Indeed, the degree to which the initial tracer spreading is reversed is an indication
of the strength of velocity correlation.

Analyzing the two convergent tests, we note that the power-law late-time scalings are different, exhibiting
a slope of �1.75 for B1-2 and �1.85 for B1-4. This difference reflects different velocity distributions, and can
be interpreted as different levels of heterogeneity. The gentler slopes in the BTCs indicate a broader range
(higher probability) toward small velocities.

Motivated by these field observations, we review existing theoretical transport models, and develop a new
model that takes into account both velocity distribution and velocity correlation.

3. Existing Models of Transport

Various approaches have been proposed to model flow and transport through fractured media, ranging
from equivalent porous medium approaches that represent the fractured medium as a single continuum
[Neuman et al., 1987; Tsang et al., 1996], to discrete fracture networks that explicitly represent fractures as
entities embedded in the surrounding matrix [Kiraly, 1979; Cacas et al., 1990; Moreno and Neretnieks, 1993;
Juanes et al., 2002; Molinero et al., 2002; Karimi-Fard et al., 2004; Martinez-Landa and Carrera, 2005; Molinero
and Samper, 2006; Martinez-Landa et al., 2012; de Dreuzy et al., 2012a; Schmid et al., 2013]. Dual-porosity
models are, in some sense, in between these two extremes, and conceptualize the fractured-porous
medium as two overlapping continua, which interact via an exchange term [Bibby, 1981; Feenstra et al.,
1985; Maloszewski and Zuber, 1985; Gerke and van Genuchten, 1993].

Stochastic models that account for the observed non-Fickian global transport behavior in fractured media
include continuous-time random walks (CTRW) [Berkowitz and Scher, 1997; Geiger et al., 2010; Kang et al.,
2011b,a], fractional advection-dispersion equations (fADE) [Benson et al., 2000], multirate mass transfer
(MRMT) [Haggerty and Gorelick, 1995; Carrera et al., 1998; Le Borgne and Gouze, 2008], stochastic convective
stream tube (SCST) models [Becker and Shapiro, 2003], and Boltzmann equation approaches [Benke and
Painter, 2003]. All of these models are valid under their own assumptions and have played an important
role in advancing the understanding of transport through fractured media. Among these models, the
MRMT and SCST approaches have been applied to model non-Fickian tracer transport in both push-pull
and convergent tests at the same site [Haggerty et al., 2001; McKenna et al., 2001; Becker and Shapiro, 2003].

Below, we briefly revisit the basic formulations of the classical advection-dispersion, stochastic-convective
streamtube, and multirate mass transfer models for radial flow geometries, and discuss their ability to cap-
ture BTCs for convergent and push-pull tests.

3.1. Advection-Dispersion Equation (ADE) Model
The classical advection-dispersion equation (ADE) in radial coordinates is given by

@cðr; tÞ
@t

1
kv

r
@cðr; tÞ
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2
akv

r
@2cðr; tÞ
@r2 50; (1)

where a is dispersivity and kv5Q=ð2pbeffÞ with Q the volumetric flow rate and beff the mass balance aper-
ture. The mass balance aperture, beff , can be defined as Qhsai= p ½rð0Þ1rc�22rð0Þ2

� �� �
for a convergent

tracer test, where hsai is the mean solute arrival time, r(0) is the pumping point, and rc the distance between
the tracer injection point and the withdrawal point [Tsang, 1992]. The mass balance aperture, beff , repre-
sents an average aperture along the flow paths for tracer transport. Since we will use a Lagrangian model-
ing approach in the following, we formulate the advection-dispersion model in terms of radial particle
trajectories. This can be done by rewriting (1) in terms of a conserved variable in radial coordinates,

pðr; tÞ52pbeff rcðr; tÞ; (2)

which is the particle density per unit radial length. Inserting the latter into (1) we obtain
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The equivalent Langevin equation is given by
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drðtÞ
dt
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where nrðtÞ is a Gaussian white noise of zero mean and unit variance. Here and in the following, we employ
the Ito interpretation of the Langevin equation (4) [Risken, 1989]. The particle density is given in terms of
the radial trajectories as pðr; tÞ5hd½r2rðtÞ�i, and by virtue of (2), we obtain for the concentration
distribution

cðr; tÞ5 1
2pbeff r

hd½r2rðtÞ�i: (5)

The angular brackets h�i denote the average over all solute particles.

The solute breakthrough curve at a distance rc from the injection point r (0) is given in terms of the probabil-
ity density function of the particles’ first arrival times at the radius r5rð0Þ1rc ,

sa5inf tj jrðtÞ2rð0Þj � rcf g; (6)

which is defined by

f ðsÞ5hdðs2saÞi: (7)

The mean solute arrival time at a radius rc is given by

hsai5
½rð0Þ1rc�22rð0Þ2

2kv
; (8)

which is also the peak arrival time.

3.2. Stochastic Convective Stream Tube (SCST) Model
Stochastic convective streamtube models assume that transport occurs along independent streamtubes.
Transport within streamtubes is one-dimensional, and there is no mass exchange between individual
streamtubes [Dagan and Bressler, 1979; Cirpka and Kitanidis, 2000; Ginn, 2001; Becker and Shapiro, 2003].
Thus, these models are sometimes called minimum mixing models. For uniform mean flow, transport in a
single radial streamtube of type x is given by [Ginn, 2001; Becker and Shapiro, 2003]

@cxðx; tÞ
@t
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r
@cxðr; tÞ
@r
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akx

r
@2cxðr; tÞ
@r2

50; (9)

where kx is given by kx5Qx=ð2pbx/xÞ with Qx the flow rate, bx the typical aperture and /x the porosity
of the streamtube, and a is the dispersivity. The total solute concentration c(r, t) is given by the average of
cxðr; tÞ over all streamtubes

cðr; tÞ5
ð

dxPðxÞcxðr; tÞ; (10)

where PðxÞ denotes the PDF of streamtubes. Macroscopic solute dispersion here is caused predominantly
by velocity contrasts between streamtubes. Transport is fully reversible for a 5 0. The only irreversible trans-
port mechanism in this framework is dispersion along the streamtubes.

The Lagrangian formulation of transport in a single streamtube x is identical to (4) because transport
along a streamtube is given by the radial advection-dispersion equation (9). In many realistic flow and
transport scenarios, radial dispersion can be disregarded because its effect on solute spreading is negli-
gible compared with advective heterogeneity. For a 5 0, the Langevin equation (4) for a single stream-
tube x reduces to

drxðtÞ
dt

5
kx

rxðtÞ
: (11)

Consequently, in the case of an instantaneous solute injection, and using (5), we obtain the following
expression for the total solute concentration (10),
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cðr; tÞ5 1
2pbr

ð
dxPðxÞ/21

x d½r2rxðtÞ�: (12)

The solute arrival time sx at a distance rc in a single streamtube is given by

sx5
½rc1rð0Þ�22rð0Þ2

2kx
: (13)

The total solute breakthrough is given by averaging the deterministic arrival times sx over the ensemble of
streamtubes, which is characterized by the distribution PkxðkÞ of kx,

f ðsÞ5
ð

dkPkxðkÞd½s2sxðkÞ�: (14)

For a push-pull tracer test, we immediately see that the breakthrough curve is given by f ðsÞ5dðt22tpÞ,
where tp is the push time. The solute arrival time at the injection point is simply twice the push time
because of the full reversibility of transport, as described by (11).

3.3. Multirate Mass Transfer (MRMT) Model
The MRMT model considers solute transport under mass transfer between a single mobile zone and a series
of immobile zones. Fast solute transport in the mobile zone and solute retardation in the immobile zones
can lead to non-Fickian spatial distributions and breakthrough curves, and in general to an increase of sol-
ute dispersion. Solute mass conservation in the mobile domain is expressed in radial coordinates by
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@r2
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(15)

where /m and /im are the (average) porosities of the mobile and immobile continua, respectively,
kv5Q=ð2pb/mÞ with Q the flow rate and b the width of the injection interval, and a is the dispersi-
vity. Mass transfer between the mobile and immobile regions is linear and thus, assuming zero initial
conditions in the immobile regions, the mobile cmðr; tÞ and immobile cimðr; tÞ solute concentrations
are related by [Dentz and Berkowitz, 2003]

cimðr; tÞ5
ðt

0
dt0uðt2t0Þcmðr; t0Þ; (16)

where uðtÞ is the memory function that encodes the specific mass transfer mechanism [Haggerty and Gore-
lick, 1995; Harvey and Gorelick, 1995; Carrera et al., 1998; Dentz and Berkowitz, 2003; Dentz et al., 2011a]. For
linear first-order mass exchange, uðtÞ determines the distribution of transfer rates between mobile and
immobile regions [Haggerty and Gorelick, 1995]. For diffusive mass transfer, it encodes the geometries and
the characteristic diffusion scales of the immobile regions [Dentz et al., 2011a]. Combining (15) and (16), we
write the temporally nonlocal single-equation MRMT model
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50:

(17)

It has been shown that the MRMT model is equivalent to CTRW models characterized by uncoupled transi-
tion length and time distributions, and to time fractional advection-dispersion models [Dentz and Berkowitz,
2003; Schumer et al., 2003; Benson and Meerschaert, 2009]. The MRMT model was employed by Haggerty
et al. [2001] to intepret breakthrough curves for radial push-pull tracer tests in fractured dolomite. Le Borgne
and Gouze [2008] used a CTRW implementation of MRMT to simulate breakthrough curves for radial push-
pull tracer tests. The MRMT models and its equivalent CTRW and fADE formulations describe solute disper-
sion as an irreversible process. In these modeling frameworks, retardation events that essentially cause mac-
roscopic solute dispersion are independent. Thus, transport is irreversible upon flow reversal.

As in the previous section, we formulate the radial MRMT model (17) in a Lagrangian framework. Following
the approach employed in Le Borgne and Gouze [2008], we implement MRMT in terms of the continuous
time random walk
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tn115tn1Ds1gnDs; (18b)

where the nn are identical independently distributed Gaussian random variables with zero mean and unit
variance, and Ds is an operational time increment. The dimensionless random time increments gn are identi-
cal independently distributed random variables with the distribution density wðgÞ. For gn � 0, the system
(18) is identical to the discretized version of (4) in the Ito interpretation.

The continuous time random walk (18) is equivalent to (17) in the limit of small Ds with the identification
[Dentz and Berkowitz, 2003]

uðtÞ5 /m

/im
L21 12w	ðkDsÞð11kDsÞ

kDsw	ðkDsÞ

� �
; (19)

where L21f�g denotes the inverse Laplace transform, w	ðkÞ is the Laplace transform of wðtÞ, and k the Lap-
lace variable. Here and in the following, Laplace-transformed quantities are marked by an asterisk.

The distribution of solute arrival times for both convergent and push-pull tracer tests is obtained from the
individual particle arrival times sa5infðtnj jrn2r0j > rcÞ as

f ðsÞ5dðs2saÞ; (20)

where the overbar ð�Þ denotes the average over the ensemble of all particles characterized by the stochastic
series of dimensionless retention times fgng. Notice that the arrival time distribution in the push-pull case
does not reduce to a delta-density, as in the SCST model. Solute transport is irreversible in the MRMT
approach that we presented.

3.4. Comparison of ADE, SCST, and MRMT Models
The traditional ADE formulation presented in subsection 3.1 does not have the ability to capture anomalous
transport, manifested as a power-law tailing in BTCs. To overcome this limitation, SCST and MRMT models
have been applied to explain BTCs for convergent and push-pull tests. To show the fundamental difference
between the two models, we run both convergent and push-pull simulations with the two models. For the
MRMT model, we employ the Pareto waiting time distribution

wðgÞ5 b
g0

g
g0

� �212b

; g > g0; (21)

with 0 < b < 2. For the distribution of the kx in the SCST approach we employ the distribution

PkxðkÞ5
b
k0

k
k0

� �b21

; k < k0: (22)

The distributions (21) and (22) for the MRMT and SCST models, respectively, give identical slopes for the
long time behavior of the BTCs in the convergent tracer tests. In Figure 4, we show the modeling results for
MRMT and SCST models. We can see the clear distinction between the two models. Since MRMT does not
have a mechanism to capture the reversibility of advective spreading, the BTCs of convergent and push-
pull tests are almost identical. In contrast, the stream tube model assumes perfect correlation in velocity,
and we observe perfect reversibility in the BTC for the push-pull tracer test in the absence of local disper-
sion within streamtubes. In reality, there always exists both irreversible diffusive and reversible advective
processes, and our objective is to develop a stochastic model that recognizes the competition between the
two processes.

The limitations of MRMT and SCST (as well as ADE and classical CTRW) in reproducing the time-reversibility
behavior of both types of tracer tests could be relieved if the models were applied in multidimensions, with
spatially variable permeability fields. This, however, would rapidly increase model complexity, the number
of model parameters, and would require more field data to reliably constrain those parameters. The objec-
tive of our work is to propose a parsimonious theoretical model that accounts for reversible and irreversible
processes in 1-D radial coordinates.
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4. Continuous Time Random Walks (CTRW) With Correlated Velocities

As discussed in subsection 3.4, the SCST and MRMT frameworks represent transport models that exhibit full revers-
ibility and complete irreversibility, respectively. The breakthrough curves obtained from convergent and push-pull
tracer tests at the Ploemeur fractured aquifer, however, exhibit neither full reversibility nor complete irreversibility
(Figure 3). Here we develop a stochastic model based on a correlated CTRW approach [Le Borgne et al., 2008; Kang
et al., 2011a; de Anna et al., 2013; Kang et al., 2014], with the following two design criteria: Lagrangian velocity corre-
lation that captures flow reversibility, and particle velocity distribution that captures velocity heterogeneity.

4.1. Model Formulation
The starting point for the model is the Langevin equation (4) in differential form

drðtÞ5 kv dt
rðtÞ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a

kv dt
rðtÞ

s
nrðtÞ: (23)

By defining the differential space increment d#5kv dt=rðtÞ [Dentz et al., 2009; Dentz and Bolster, 2010], equa-
tion (23) transforms into

drð#Þ5d#1
ffiffiffiffiffiffiffiffiffiffiffi
2ad#
p

nrð#Þ; (24a)

dtð#Þ5 rð#Þ
kv

d#: (24b)

Discretizing this system in # and setting D#5‘ gives the following system of equations for the particle tra-
jectories in space and time coordinates, or in other words, a CTRW,

rn115rn1‘1
ffiffiffiffiffiffiffi
2a‘
p

nn; (25a)

tn115tn1
‘rn

kv
: (25b)

Notice that this CTRW is characterized by a radially dependent time increment. It is by definition equivalent
to (3) in the limit of small ‘
 L, with L a macroscopic observation scale.

We generalize this CTRW heuristically in order to account for variability in radial particle velocities that may
be induced by spatial variability in hydraulic conductivity and retardation properties of the medium. Notice

that the transport velocity
depends on both hydraulic
conductivity and porosity. Le
Borgne et al. [2008] and Kang
et al. [2011a] demonstrated
that the impact of flow hetero-
geneity on large-scale solute
transport can be quantified in
terms of CTRWs whose time
increments form a Markov
chain based on the observa-
tion that the series of Lagran-
gian particle velocities form a
Markov process.

We define here a radial-
correlated CTRW that allows to
vary the velocity correlation
(persistence of particle veloc-
ities) and velocity distribution
(PDF of particle velocities), to
represent and quantify both
correlation and distribution-
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Figure 4. Comparison of the breakthrough curves (BTC) for the MRMT and SCST models
characterized by the distributions (21) and (22) with b51:75; g050:005 and k05200, respec-
tively. The BTCs for the convergent and push-pull scenarios are almost identical in the
MRMT approach because solute spreading is irreversible. In contrast, the BTC for the conver-
gent and push-pull scenarios in the SCST model are drastically different: in the absence of
local dispersion, the BTC in the push-pull scenario is a delta distribution due to the perfect
velocity correlation within each streamtube, i.e., full reversibility.
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induced anomalous transport features, and to discriminate between them [Dentz and Bolster, 2010]. Thus,
we generalize the stochastic process (25b) of particle times according to

tn115tn1
‘rn

kv
gn; (25c)

where the dimensionless time increments fgng form a Markov chain characterized by the marginal distribu-
tion density w0ðgÞ of initial increments g0 and the one-step transition probability density w1ðgjg0Þ. The
Chapman-Kolmogorov equation for the n-step transition time density wnðgjg0Þ reads

wnðgjg0Þ5
ð1

0
dg

00
wn2mðgjg

00 Þwmðg
00 jg0Þ: (26)

The density wnðgÞ of random increments gn after n steps is given by

wnðgÞ5
ð1

0
dg0wnðgjg0Þw0ðg0Þ: (27)

We set here w0ðgÞ5wðgÞ equal to the steady state density, which is an eigenfunction of the transition
density w1ðgjg0Þ and therefore wnðgÞ5wðgÞ. This is equivalent to assuming that particles sample veloc-
ities from the steady state Lagrangian velocity distribution from the beginning. Equations (25a) and
(25c) constitute the equations of motion of solute particles in the proposed radial correlated CTRW
approach, where wðgÞ determines the velocity distribution and w1ðgjg0Þ determines the velocity
correlation.

4.2. Limiting Cases
In the following, we briefly determine the limits of the system (25a) and (25c) for fully correlated and fully
uncorrelated dimensionless time increments fgng.

4.2.1. Fully Correlated Case
In the limit of fully correlated fgng, i.e., w1ðgjg0Þ5dðg2g0Þ, where d denotes the Kronecker delta, equations
(25a) and (25c) reduce to

rn115rn1‘1
ffiffiffiffiffiffiffi
2a‘
p

nn; (28a)

tn115tn1
‘rn

kx
; (28b)

where we defined the constant kx5kv=gx with gx the perfectly persistent increment, which is distributed
according to wðgÞ. Each gx, or kx, represents a streamtube in the sense of the SCST model. In fact, just as
(25a) and (25b) are equivalent to (3), so is system (28), which constitutes the equivalence of (28) and (9).
Therefore, the fully correlated case of the proposed model is equivalent to the SCST model.

4.2.2. Fully Uncorrelated Case
In the limit of fully uncorrelated fgng, i.e., w1ðgjg0Þ5wðgÞ, the system (25a) and (25b) is equivalent to the fol-
lowing nonlocal radial advection dispersion equation

@cðr; tÞ
@t

1

ðt

0
dt0

/kv

r
@

@r
Mðr; t2t0Þcðr; t0Þ2 a/kv

r
@2

@r2
Mðr; t2t0Þcðr; t0Þ

	 

50; (29)

with the radially dependent memory function

Mðr; tÞ5L21 kgkðrÞw	½kgkðrÞ�
12w	½kgkðrÞ�

� �
: (30)

We defined gkðrÞ5‘r=kv for compactness. The memory function depends explicitly on the radial position
through the radially dependent time scale gkðrÞ. Notice that this radial CTRW model is in general different
from the radial MRMT model (17).

4.3. Model Implementation
The proposed CTRW with correlated transition times (25a) and (25c) is solved using random walk particle
tracking. The model has three key transport characteristics: the probability distribution of the dimensionless

Water Resources Research 10.1002/2014WR015799

KANG ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 10



time increments, wðgÞ, the one step transition probability that quantifies the velocity correlation, w1ðgjg0Þ,
and the local dispersivity, a. Here we present how to characterize wðgÞ and w1ðgjg0Þ, and explain in detail
the random walk particle tracking algorithm used to solve for the BTCs in the convergent and push-pull
scenarios.

4.3.1. Transition Probability and Correlation
To independently control velocity distribution and velocity correlation, we describe the Markov process
fgng with the steady state distribution, wðgÞ. The continuous nondimensional transition times g are dis-
cretized into N classes, g 2 [N

j51ðgj; gj11�, such that the transition probabilities between the classes are
represented by the N 3 N transition matrix T, with components

Tij5

ðgi11

gi

dg
ðgj11

gj

dg0w1ðgjg0Þwðg0Þ=
ðgj11

gj

dg0wðg0Þ: (31)

The transition matrix satisfies Tn1m5TnTm. Here, we choose equiprobable binning such thatðgi11

gi

dgwðgÞ5 1
N
: (32)

With this condition, T is a doubly stochastic matrix, which therefore satisfies

XN

i51

Tij5
XN

j51

Tij51: (33)

For a large number of transitions, the transition matrix converges toward the uniform matrix,

lim
n!1

Tn
h i

ij
5

1
N
; (34)

whose eigenvalues are 1 and 0. Thus, correlation can be measured by the convergence of T toward the uni-
form matrix. The correlation length is determined by the decay rate of the second largest eigenvalue v2 (the
largest eigenvalue of a stochastic matrix is always 1). The correlation function is defined by CðnÞ5vn

2, which
can be written as

CðnÞ5exp 2
n

nc

� �
; nc52

1
ln ðjv2jÞ

; (35)

where nc is the correlation step number. Thus, we define the dimensionless correlation length k as

k5
nc‘

rc
(36)

with ‘ the spatial discretization of the correlated CTRW model. Note that the discretization length ‘ should
be smaller than the velocity correlation length, krc .

Here we consider a simple transition matrix model, in which all diagonal entries are fixed to a constant a,
and the remaining entries are equal to ð12aÞ=ðN21Þ,

Tij5adij1
12a
N21

ð12dijÞ: (37)

This transition matrix imposes the same correlation function for all starting velocities, and the diagonal
value of a � 1 determines the correlation strength. A value of a 5 1 implies perfect correlation, which ren-
ders the N-dimensional unity matrix, Tij5dij . For a51=N, all transitions are equally probable, and the transi-
tion matrix is equal to the uniform matrix with Tij51=N; see Figure 5b. The transition matrix (37) has the
eigenvalues v151 and

v25
Na21
N21

; (38)

such that we obtain for the dimensionless correlation length (36)
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k5
‘

rc

1

ln N21
Na21

� � �N�1 ‘

rc

1
ln a21ð Þ : (39)

Thus, the correlation length k is uniquely determined by the value of a.

For the steady state transition time distribution, wðgÞ, we use the truncated Pareto distribution,

wðgÞ5 bg212b

g2b
‘ 2g2b

u

; g‘ < g � gu: (40)

We fix the mean of the transition time distribution to 1, which ensures that the mean arrival time in the cor-
related CTRW model (25c) is equal to the one in the homogeneous model (25b). Note that one could also
choose to scale the peak arrival time with that of the homogeneous model, rather than fixing the mean
arrival time. Furthermore, we enforce a given ratio of rg5gu=g‘ such that the power-law range covers the
power-law regime observed in the breakthrough curves (see Figure 3). This determines g‘ as

g‘5
12b

b

12r2b
g

r12b
g 21

: (41)

This bounds the value of g‘ between ln ðrgÞ=ðrg21Þ, which is the limit of (41) for b! 0, and ðrg11Þ=ð2rgÞ,
which is the value of (41) for b 5 2. For large contrasts rg � 1; g‘ is approximately in ðln ðrÞ=r; 1=2�.

The transition time distribution (40) is illustrated in Figure 5. The slope b of the truncated Pareto distribution
describes the heterogeneity of the velocity distribution. As b decreases, the transport becomes more anom-
alous because the probability of experiencing large transition times increases. Therefore, smaller b can be
understood to represent higher flow heterogeneity, as is well known in the CTRW modeling framework [Ber-
kowitz et al., 2006].

In summary, the proposed transport model controls the velocity distribution and the velocity correlation
with two independent parameters: the slope of the Pareto distribution, b, and the normalized correlation
length k.

4.3.2. Simulation of Convergent Tracer Tests
For the simulation of the convergent scenario, all the particles are injected at the injection well at r05ri ,
with ri the radial distance between injection and pumping well. As discussed earlier, during the field tracer
experiments, we flush the volume inside the packer with tracer-free fluid in order to ensure a sharp injec-
tion. Therefore, we use delta injection for both convergent and push-pull simulations. If the injection dura-
tion were not short enough to be approximated as a delta function, the simulation could be easily adapted
by continuously releasing particles during the injection time. The convergent BTCs are obtained by record-
ing the particle travel times at the well radius rw of the pumping well at a radial distance of rc5ri2rw. The
detailed procedure is:

Figure 5. Key transport characteristics of our proposed CTRW model. (a) wðgÞ follows the truncated Pareto distribution (40). The slope of
the power law, b, characterizes the velocity heterogeneity of the fractured medium. As b decreases, the velocity heterogeneity increases.
(b) Number nc of correlation steps given by (35) as a function of parameter a for N 5 100 velocity classes. By changing the value of the
diagonal, a, we can systematically vary the strength of the velocity correlation from the uniform transition matrix that is equivalent to the
uncorrelated velocity field to the identity matrix that represents a fully correlated velocity field.
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1. Assign the desired values to kv, a, b, k, and ‘.

2. Simulate the sequence of particle positions and times according to (25a) and (25c).

3. Sample particle arrival times at rw and obtain the BTC.

4.3.3. Simulation of Push-Pull Tracer Tests
The implementation for the push-pull scenario is similar to the one for the convergent scenario. Here, par-
ticles are injected at r05rw, with rw the radius of the injection well. Particles travel radially outwards until
the push duration tpush. Then, the radial direction is reversed and particles travel back to the injection well
until they reach the well radius rw. The algorithmic steps are identical to those of the convergent test,
except that step 2 is split into its ‘‘push’’ phase and the flow reversal ‘‘pull’’ phase.

5. Model Behavior and Field Application

In this section, we study the model behavior of the proposed correlated CTRW model (25) depending on
the three parameters a (dispersivity), b (velocity distribution), and k (velocity correlation). We then apply the
model to the experimental data presented in section 2 to explore the predictive capabilities of the model
through the simultaneous prediction of BTCs in both convergent and push-pull tracer tests.

5.1. Model Behavior
We first consider the dependence of the peak arrival time on dispersivity a, the velocity distribution as para-
meterized by b, and the velocity correlation as parameterized by k. Notice that the mean arrival time is the
same in all cases because the model implementation detailed in the previous section forces the mean
arrival of the correlated CTRW model (25c) to be equal to the one for the homogeneous CTRW model (25b).
The minimum arrival time is obtained in the perfectly correlated CTRW, i.e., a 5 1 in (37), which gives k51,
and it is approximately

tmin � g‘
r2

c

2kv
; (42)

which can be obtained directly from (25c) by setting gn � g‘, the minimum nondimensional transition time.
For the perfectly correlated model, the minimum arrival time is at the same time the peak arrival. As k
decreases, the peak arrival time increases due to loss of flow coherence, as illustrated in Figure 6a.

The simple estimate (42) for the fully correlated case also indicates how the peak arrival depends on b.
Recall that g‘ depends on b as given in (41): it increases with increasing b up to a maximum of 1/2 for b52.
From this, we conclude that the peak arrival time increases with increasing b, as illustrated in Figure 6. This

Figure 6. Sensitivity analysis for the peak arrival time on the three parameters of our CTRW model. (a) Change in peak arrival times for a5

0:3 with varying k. Different curves represent different degrees of velocity heterogeneity (b50:5; 0:6; 0:8; 1; 1:2; 1:4). (b) Change in peak
arrival times for k50:2 with varying a. Different curves represent different b50:5; 0:6; 0:8; 1; 1:2; 1:4.
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may seem counterintuitive at first. Notice however, that we force the mean of wðgÞ to be equal to 1 for a
given range rg. This means that as the probability of large transition times increases, g‘ must decrease as b
becomes smaller.

Finally, the dispersivity a has essentially no impact on the peak arrival time, as illustrated in Figure 6b. This
is intuitively clear when considering the mean arrival time (8) for the homogeneous model, which at the
same time is the peak arrival time. It is completely independent of a, given that a only impacts the spread-
ing about the mean arrival time.

In Figure 7, we plot tracer BTCs for a set of random walk particle tracking simulations for the convergent
and push-pull scenarios for various combinations of a, b, and k. Different features of the BTCs are sensitive
to variation in a (dispersivity), b (velocity distribution), and k (velocity correlation).

The dispersivity a mainly impacts the early time behavior of the convergent BTCs. As expected, a decrease
in a leads to a slight decrease of the early arrivals due to the reduced particle dispersion (Figure 7a). Neither
the late time tailing nor the peak position is affected by changes in a. For the push-pull scenario, a decrease
in a decreases the relative dispersion of particle arrival times about the peak arrival times (Figure 7b). As for
the push-pull test, the late-time scaling is not affected by the value of a.

For fixed k, an increase in b leads to a decrease in BTC tailing in both the convergent and push-pull scenar-
ios, as expected in the CTRW modeling framework [Berkowitz et al., 2006] (Figures 7c and 7d).

The correlation length k impacts the early time BTC in the convergent scenario. We have already seen in
Figure 6a that the peak arrival time increases with decreasing k. Figure 7e shows that also the relative dis-
tance between the minimum arrival time and the peak arrival decreases with increasing k. This behavior is
caused by the fact that the particles sample a narrower window of the spectrum of transition times because
of increased coherence. This leads to a decrease in the relative dispersion of early arrival times. For the
push-pull scenario illustrated in Figure 7f, the impact of k is more dramatic. The relative spread of arrival
times about the peak arrival time decreases for increasing k, which reflects the partial reversibility of the
transport process in the presence of velocity correlation. In the limit of a perfectly correlated scenario for
k51, i.e., a 5 1 in (37), the BTC is identical to the one for a homogeneous medium, which is fully character-
ized by the dispersivity a (Figure 7f).

It is important to emphasize the difference between varying dispersivity a and correlation length k. While
increasing k and decreasing a have qualitatively similar impacts on the relative early arrival times, their
impacts on the BTC are very different. First, the peak arrival is essentially independent of dispersivity a, but
depends strongly on correlation k. Second, the limit k51 renders the BTC in the push-pull scenario identi-
cal to the one for a homogeneous medium because of full reversibility: no tailing is observed. For a 5 0, the
strong BTC tailing in the push-pull scenario at long times remains unchanged.

5.2. Field Application
We now test whether our CTRW model with correlated velocities is able to capture the transport behavior
observed in the field, as evidenced by the BTC in the tracer tests. In particular, we address the central ques-
tion of whether tracer tests under different flow configurations (convergent and push-pull tests) can be
explained with the same set of model parameters.

We perform a comprehensive comparison between the measured BTCs and the simulated BTCs over the
entire three-dimensional space of possible parameter values for dispersivity a, velocity disorder b, and
velocity correlation k. We compute the unweighted mean square error (MSE), combined for the convergent,
and push-pull tests over the entire range of measured data for each test.

The MSE surfaces for each of the fracture planes (B1-2 and B1-4) are shown in Figure 8 over the b-k space,
for a value of a close to the optimum. These surfaces show the existence of a single minimum in the MSE
surface, corresponding to the optimum choice of model parameters that best matches both the convergent
test and the push-pull test. These values are: a50:03½m�; b50:75½-�, and k50:22½-� for fracture B1-2,
a50:02½m�; b50:85½-�, and k50:06½-� for fracture B1-4.

A weighted MSE can also be applied to estimate the set of parameters [Chakraborty et al., 2009]. This
method utilizes the fact that concentration variance is proportional to concentration for the particle-
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tracking model. The estimated parameters with the weighted MSE gave very similar set of parameters with
unweighted MSE.

This suggests that B1-2 has similar dispersivity (a), slightly higher velocity disorder (smaller b), and signifi-
cantly larger velocity correlation (larger k) than B1-4. One way to qualitatively (but independently) confirm

Figure 7. Impact of parameters a, b, and k of our CTRW model on transport behavior. Left (a,c,e): convergent tests. Right (b,d,f): push-pull
tests. Top (a,b): impact of dispersivity (a50; 0:02; 0:05; 0:1; 0:3) for fixed b50:75 and k50:2. Middle (c,d): impact of velocity distribution
(b50:5; 0:75; 1; 1:5; 2) for fixed value of a50:03 and k50:2. Bottom (e,f): impact of velocity correlation (k50:05; 0:1; 0:3; 0:5;1) for fixed
value of a50:03 and b50:75.
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this result is by comparing the characteristic fracture length in the field with the velocity correlation length
inferred from our model. The estimated velocity correlation length from our model is �1.32 m for the B1-2
tracer test and �0.36 m for the B1-4 tracer test. Interestingly, this is of the same order of magnitude as the
average distance between fracture connections measured independently by GPR imaging on the same site
[Dorn et al., 2012]. This would suggest that fracture flow velocities are well correlated along connections
with other fractures, and that they decorrelate mainly when changing fracture planes. However, this
hypothesis cannot be confirmed from this data set alone.

The actual comparison between our model and the field data is shown in Figure 9. The proposed model
accurately reproduces the BTCs of both push-pull and convergent tests (Figures 9a and 9b)—a quantitative
agreement that is lost when neglecting velocity correlation (Figures 9c and 9d). Therefore, our one-
dimensional CTRW with one-step correlation in velocity is a parsimonious, yet accurate, approximation for
describing macroscopic transport in fractured media.

Although the model results explain the field experiment data from our campaign, the model has some limi-
tations. In our modeling framework, we intrinsically assumed that the velocity distribution for the field of
interest can be represented by a single probability distribution. However, if the study field is nonstationary,
this assumption should be revisited. We also assumed that regional flow was negligible compared to the
flow induced by pumping rates used in the field experiments. In our case, ambient flow rates were esti-
mated from point dilution experiments and found to be two orders of magnitude smaller than injection
and pumping rates. However, if ambient flow were large enough to affect the tracer experiment, this would
influence the reversibility of the flow [Lessoff and Konikow, 1997; Altman et al., 2002]. If necessary, the mod-
eling framework could be extended to incorporate nonstationarity and ambient flow.

6. Summary and Conclusions

In this study, we have proposed a unified framework to characterize transport in fractured media and account
for both velocity distribution and velocity correlation. We first presented results from convergent and push-
pull tracer tests in fractured-granite at the Ploemeur subsurface observatory (H1 network, France). The field
data suggest that velocity distribution and velocity correlation are the key controlling transport properties. In
particular, the BTCs recorded in the field demonstrate the more reversible character of tracer spreading for
the push-pull test compared with the convergent test; an indication of the importance of velocity correlation.

Based on the field evidence, we have proposed a stochastic transport model that incorporates local disper-
sivity, Lagrangian velocity distribution, and Lagrangian velocity correlation as the three key transport proc-
esses, each characterized by a single parameter (a, b, and k, respectively). We have shown analytically that
our model embodies other existing models of transport as particular cases: it is equivalent to the MRMT

Figure 8. Plot of the mean square error (MSE) between modeled and measured BTCs for different model parameters. The error is for the
combined differences of the convergent and push-pull tests. (a) MSE for the B1–2 fracture with a value a50:03. The global minimum is for
a50:03; b50:75 and k50:22. (b) MSE for the B1–4 fracture with a value a50:02. The global minimum is for a50:02; b50:85 and k50:06.
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model under the assumption of negligible velocity correlation, and to the SCST model under the assump-
tion of infinite correlation.

In contrast, the correlated CTRW model proposed in this study is designed to capture the interplay between
velocity distribution and velocity correlation, which we have illustrated with a sensitivity analysis of different
metrics of the BTCs (early arrival time, peak arrival time, and late-time concentration decay) on the model
parameters. The simplicity and versatility of our model has allowed us to perform a robust interpretation of
the field tests, since the BTCs of both convergent and push-pull tests are retrieved accurately with the same
set of parameters.

Our results raise important questions about modeling choices to simulate mixing and spreading in geologic
media. For example, our model is designed to capture both push-pull and convergent BTCs with scale-
independent local dispersivity, in contrast with the traditional Ansatz of a dispersivity that increases with
the observational scale [Gelhar et al., 1992]. Because our model accounts for macroscopic features with k
and b, it may permit removing the (spurious) scale dependence of local dispersivity a.

Finally, because the proposed model distinguishes between the spreading caused by advective processes
(k) and diffusive processes (a), we conjecture that it may provide an avenue to model not only tracer
spreading but also fluid mixing [Le Borgne et al., 2010, 2011; Dentz et al., 2011b; Jha et al., 2011; de Dreuzy
et al., 2012b; Chiogna et al., 2012; Jha et al., 2013]. The prediction of mixing and spreading rates in field-
scale experiments remains, however, an exciting open question.

Figure 9. Comparison of measured and modeled BTCs for both convergent and push-pull tests, modeled with the same set of parameters.
(a) B1–2 fracture; correlated CTRW model with parameters a50:03; b50:75, and k50:22. (b) B1–4 fracture; correlated CTRW model with
parameters a50:02; b50:85, and k50:06. (c) B1–2 fracture; uncorrelated CTRW model with parameters a50:03; b50:95, and k 5 0. (d) B1–
4 fracture; uncorrelated CTRW model with parameters a50:02; b50:65, and k 5 0.
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