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Abstract. Flow and transport through fractured geologic media often4

leads to anomalous (non-Fickian) transport behavior, the origin of which re-5

mains a matter of debate: whether it arises from variability in fracture per-6

meability (velocity distribution), connectedness in the flow paths through7

fractures (velocity correlation), or interaction between fractures and matrix.8

Here we show that this uncertainty of distribution- vs. correlation-controlled9

transport can be resolved by combining convergent and push-pull tracer tests10

because flow reversibility is strongly dependent on velocity correlation, whereas11

late-time scaling of breakthrough curves is mainly controlled by velocity dis-12

tribution. We build on this insight, and propose a Lagrangian statistical model13

that takes the form of a continuous time random walk (CTRW) with cor-14

related particle velocities. In this framework, velocity distribution and ve-15

locity correlation are quantified by a Markov process of particle transition16

times that is characterized by a distribution function and a transition prob-17

ability. Our transport model accurately captures the anomalous behavior in18

the breakthrough curves for both push-pull and convergent flow geometries,19

with the same set of parameters. Thus, the proposed correlated CTRW mod-20

eling approach provides a simple yet powerful framework for characterizing21

the impact of velocity distribution and correlation on transport in fractured22

media.23
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1. Introduction

Understanding flow and transport through fractured geologic media is essential for im-24

proving forecasts, management and risk assessment of many subsurface technologies, in-25

cluding geologic nuclear waste disposal [Bodvarsson et al., 1999], geologic CO2 storage26

[Szulczewski et al., 2012], oil and gas production from fractured reservoirs [Kazemi et al.,27

1976], enhanced geothermal systems [Pruess , 2006], shale-gas development [Curtis , 2002;28

Cueto-Felgueroso and Juanes , 2013], and groundwater contamination and remediation29

[Gerke and van Genuchten, 1993; Huyakorn et al., 1994]. Moreover, if we conceptual-30

ize fractured geologic media as a network system, this knowledge can have implications31

to other physical processes, including disease spreading through river networks [Rinaldo32

et al., 2012] and the air transportation system [Nicolaides et al., 2012], urban traffic33

[Kerner , 1998], and nutrient transport through preferential paths in biofilms [Wilking34

et al., 2013].35

There are two main sources of uncertainty for transport through fractured media: un-36

certainty in the fracture geometrical properties, including fracture aperture, roughness,37

location and connectivity describing fracture geometry [Tsang et al., 1988; Cacas et al.,38

1990; Méheust and Schmittbuhl , 2000; de Dreuzy et al., 2001]; and uncertainty in the39

physical transport processes impacting the flow and transport such as advection, diffu-40

sion, dispersion and adsorption [Neretnieks , 1983; Haggerty and Gorelick , 1995; Becker41

and Shapiro, 2003]. The fracture geometrical properties and the physical transport pro-42

cesses are interdependent, and may lead to anomalous transport. Anomalous transport,43

understood as the nonlinear scaling with time of the mean square displacement of trans-44
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ported particles, is a characteristic feature of transport through porous and fractured45

geologic media [Berkowitz et al., 2006; Bijeljic and Blunt , 2006; Berkowitz and Scher ,46

1997].47

Fracture geometrical properties impact macroscopic transport by controlling the velocity48

distribution at multiple scales. Fracture roughness leads to a broad velocity probability49

density function (PDF) at the fracture scale, and the variability in fracture aperture50

between fracture planes leads to a broad velocity PDF at the network scale [Nordqvist51

et al., 1992; Brown et al., 1998; Méheust and Schmittbuhl , 2000]. In the following, we52

will refer to PDF as “probability distribution” or simply “distribution”. In addition,53

fracture length impacts velocity correlation, since the velocity within each fracture is54

usually highly correlated. Therefore, the fracture geometrical properties impact both55

the transport velocity distribution and velocity correlation. In practice, however, the56

fracture geometrical information is very limited and only a few dominant properties, such57

as relative fracture aperture and dominant major fractures, are identifiable [Dorn et al.,58

2012].59

Heterogeneous advection, matrix diffusion, hydrodynamic dispersion and adsorption are60

four physical transport mechanisms that impact transport of nonreactive tracers through61

fractured media. Heterogeneous advection, which results from the separation of mass62

into different flow channels, can be partially reversible when the flow field is reversed.63

Matrix diffusion is a diffusive mass exchange between fractures and the surrounding rock64

matrix, which is not a time-reversible process. Hydrodynamic dispersion describes tracer65

spreading due to the combined effect of pore-fluid diffusion and local velocity heterogene-66

ity within the fracture. Adsorption refers to the adhesion of dissolved tracers to solid67
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surfaces. All these physical phenomena can be understood as either an advective or a68

diffusive process. Heterogeneous advection is an advective process, and matrix diffusion,69

hydrodynamic dispersion, and adsorption can be understood as diffusive processes. The70

competition between advective and diffusive processes is therefore manifested by the re-71

versibility of flow, which in turn is controlled by velocity correlation. Advection is a72

time-reversible process: when flow is reversed, the spreading caused by heterogeneous ad-73

vection collapses back. In contrast, diffusion is a time-irreversible process: particle spread-74

ing cannot be collapsed by reversing the flow. The advective versus diffusive-controlled75

breakthrough curve tailing has been tested by using tracers of different diffusivity and dif-76

ference pumping rates [Moench, 1995; Becker and Shapiro, 2000; Reimus and Callahan,77

2007]. These physical transport mechanisms also impact the Lagrangian velocity distri-78

bution. For example, heterogeneous advection induces a broad velocity distribution via79

the combination of slow paths and fast paths, matrix diffusion via the trapping of tracers80

in the rock matrix, and adsorption via the adhesion of particles onto the rock surface.81

In summary, the complex interplay between fracture geometrical properties and phys-82

ical transport processes determines the average particle transport behavior via velocity83

distribution and velocity correlation. Recent studies have shown that tracer transport84

through fractured and porous media is strongly modulated by the particle velocity distri-85

bution and velocity correlation [Le Borgne et al., 2008; Kang et al., 2011a; de Anna et al.,86

2013; Kang et al., 2014]. Here, we develop a stochastic model of transport that recognizes87

the impact of both velocity distribution and velocity correlation as an integral part of its88

ability to make predictions of transport at the field scale.89
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2. Field experiments

A signature of anomalous transport in the field is the late-time tailing of breakthrough90

curves (BTCs), that is, time series of tracer concentration at the pumping well. Break-91

through curves are affected by both the underlying fracture geometrical properties and92

the physical transport processes such as advection, diffusion, dispersion and adsorption.93

Thus, they are sensitive to both velocity distribution and velocity correlation.94

We build on the seminal observation by Tsang [1995], who suggested that the combina-95

tion of different tracer tests could be used to reduce the uncertainty in the characterization96

of fractured media. Here, we propose a framework to combine single-well (push-pull) and97

two-well (convergent) tests to extract transport parameters.98

2.1. Field site and tracer-test setup

We conducted a series of field tracer tests under forced hydraulic gradient in a saturated99

fractured granite formation at the Ploemeur observatory (H+ network) [de Dreuzy et al.,100

2006; Ruelleu et al., 2010] (Figure 1). Geologically, the site is located at the contact101

between the underlying fractured granite and the overlying mica schist. The matrix102

permeability of granite is extremely low and, therefore, groundwater flows mainly through103

the network of fractures.104

For this study, we used two boreholes, B1 (83 m deep) and B2 (100 m deep), which are105

6 m apart. Previous work [Le Borgne et al., 2007; Dorn et al., 2012, 2013] has identified106

four major conductive fractures intersecting B1, labelled B1-1 (24 m deep), B1-2 (50 m),107

B1-3 (63 m) and B1-4 (79 m), and four major conductive fractures intersecting B2, labelled108

B2-2 (56 m), B2-3 (59 m), B2-4 (79 m) and B2-5 (97 m). We designed and conducted109

convergent and push-pull tests at two different fractures: B1-2 and B1-4. Regional flow110
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may influence the reversibility of the flow [Lessoff and Konikow , 1997; Altman et al.,111

2002]. Direct measurements of ambient flow were obtained at the experimental site using112

the finite volume point dilution method using packers to isolate the fractures where the113

tracer tests were performed [Brouyère et al., 2008]. The ambient flow measured in B1-2114

fracture was found to be below the detection limit (10−7 m3/s), while that measured in115

B1-4 was about 10−6 m3/s. Although these are local estimates, this suggests that ambient116

flow is too small (≤ 0.06 L/m) to affect flow field generated by the injection/withdrawal117

rates (5 to 6 L/m). As a tracer, we used fluorescein, which is widely used for groundwater118

tracing and known to be non-reactive, insensitive to pH and salinity, and moderately119

resistant to adsorption and photochemical bleaching [Smart and Laidlaw , 1977].120

2.1.1. Convergent tracer test121

In the convergent test, we inject a known mass of tracer into an injection borehole122

(B1) and measure the tracer concentration at the pumping borehole (B2) (Fig. 2(a,b,c)).123

To place the tracer at the target fracture, we installed a double-packer at the injection124

borehole at two different depths, targeting the B1-2 and B1-4 fractures in separate exper-125

iments. To form a stationary, radial convergent flow configuration, a constant pumping126

rate was established at borehole B2 throughout the experiment. Once a stationary pres-127

sure field is achieved, we inject the tracer at borehole B1 for a short duration compared to128

the total duration of the experiment, and at a small injection rate (<1% of the pumping129

rate at B2). When the injection of tracer is completed, we recirculate the fluid inside the130

double-packer system to prevent the possible remaining tracer from continuing to leak131

into the formation. We have monitored the well concentration during the experiment132
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and confirmed the tracer concentration was small enough during the early stage of the133

experiment.134

2.1.2. Push-pull tracer test135

In the push-pull test, we first inject a known mass of tracer into borehole B1, and136

continue to inject fresh water for a fixed duration of time (“push” phase). We then137

reverse the flow and pump water from the same borehole with the same flow rate (“pull”138

phase), and measure the arrival tracer concentration (Fig. 2(d,e,f)). Again, a double-139

packer system was installed to isolate the injection into the desired fracture plane.140

2.2. Field test results

Additional details on the conditions and parameters of the field experiments are given141

in Table 1, and the measured BTCs are shown in Figure 3. As expected, the BTCs are142

broader for the convergent tests than for the push-pull tests, given that in the latter the143

spreading during the “push” phase is partially recovered during the “pull” phase. Indeed,144

the degree to which the initial tracer spreading is reversed is an indication of the strength145

of velocity correlation.146

Analyzing the two convergent tests, we note that the power-law late-time scalings are147

different, exhibiting a slope of ∼1.75 for B1-2 and ∼1.85 for B1-4. This difference reflects148

different velocity distributions, and can be interpreted as different levels of heterogeneity.149

The gentler slopes in the BTCs indicate a broader range (higher probability) towards150

small velocities.151

Motivated by these field observations, we review existing theoretical transport models,152

and develop a new model that takes into account both velocity distribution and velocity153

correlation.154
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3. Existing models of transport

Various approaches have been proposed to model flow and transport through fractured155

media, ranging from equivalent porous medium approaches that represent the fractured156

medium as a single continuum [Neuman et al., 1987; Tsang et al., 1996], to discrete frac-157

ture networks that explicitly represent fractures as entities embedded in the surrounding158

matrix [Kiraly , 1979; Cacas et al., 1990; Moreno and Neretnieks , 1993; Juanes et al.,159

2002; Molinero et al., 2002; Karimi-Fard et al., 2004; Martinez-Landa and Carrera, 2005;160

Molinero and Samper , 2006; Martinez-Landa et al., 2012; de Dreuzy et al., 2012a; Schmid161

et al., 2013]. Dual porosity models are, in some sense, in between these two extremes, and162

conceptualize the fractured–porous medium as two overlapping continua, which interact163

via an exchange term [Bibby , 1981; Feenstra et al., 1985; Maloszewski and Zuber , 1985;164

Gerke and van Genuchten, 1993].165

Stochastic models that account for the observed non-Fickian global transport behavior166

in fractured media include continuous-time random walks (CTRW) [Berkowitz and Scher ,167

1997; Geiger et al., 2010; Kang et al., 2011b, a], fractional advection-dispersion equations168

(fADE) [Benson et al., 2000], multirate mass transfer (MRMT) [Haggerty and Gorelick ,169

1995; Carrera et al., 1998; Le Borgne and Gouze, 2008], stochastic convective stream tube170

(SCST) models [Becker and Shapiro, 2003], and Boltzmann equation approaches [Benke171

and Painter , 2003]. All of these models are valid under their own assumptions, and have172

played an important role in advancing the understanding of transport through fractured173

media. Among these models, the MRMT and SCST approaches have been applied to174

model non-Fickian tracer transport in both push-pull and convergent tests at the same175

site [Haggerty et al., 2001; McKenna et al., 2001; Becker and Shapiro, 2003].176
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Below, we briefly revisit the basic formulations of the classical advection-dispersion,177

stochastic-convective streamtube and multirate mass transfer models for radial flow ge-178

ometries, and discuss their ability to capture BTCs for convergent and push-pull tests.179

3.1. Advection-dispersion equation (ADE) model

The classical advection-dispersion equation (ADE) in radial coordinates is given by180

∂c(r, t)

∂t
+
kv
r

∂c(r, t)

∂r
− αkv

r

∂2c(r, t)

∂r2
= 0, (1)

where α is dispersivity and kv = Q/(2πbeff) with Q the volumetric flow rate and181

beff the mass balance aperture. The mass balance aperture, beff, can be defined as182

Q〈τa〉/ (π ([r(0) + rc]
2 − r(0)2)) for a convergent tracer test, where 〈τa〉 is the mean solute183

arrival time, r(0) is the pumping point, and rc the distance between the tracer injection184

point and the withdrawal point [Tsang , 1992]. The mass balance aperture, beff, repre-185

sents an average aperture along the flow paths for tracer transport. Since we will use186

a Lagrangian modeling approach in the following, we formulate the advection-dispersion187

model in terms of radial particle trajectories. This can be done by rewriting (1) in terms188

of a conserved variable in radial coordinates,189

p(r, t) = 2πbeffrc(r, t), (2)

which is the particle density per unit radial length. Inserting the latter into (1) we obtain190

∂p(r, t)

∂t
+

∂

∂r

kv
r
p(r, t)− ∂2

∂r2

αkv
r
p(r, t) = 0. (3)

The equivalent Langevin equation is given by191
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dr(t)

dt
=

kv
r(t)

+

√
2αkv
r(t)

ξr(t), (4)

where ξr(t) is a Gaussian white noise of zero mean and unit variance. Here and in the192

following, we employ the Ito interpretation of the Langevin equation (4) [Risken, 1989].193

The particle density is given in terms of the radial trajectories as p(r, t) = 〈δ[r − r(t)]〉,194

and by virtue of (2), we obtain for the concentration distribution195

c(r, t) =
1

2πbeffr
〈δ[r − r(t)]〉. (5)

The angular brackets 〈·〉 denote the average over all solute particles.196

The solute breakthrough curve at a distance rc from the injection point r(0) is given in197

terms of the probability density function of the particles’ first arrival times at the radius198

r = r(0) + rc,199

τa = inf {t| |r(t)− r(0)| ≥ rc} , (6)

which is defined by200

f(τ) = 〈δ(τ − τa)〉. (7)

The mean solute arrival time at a radius rc is given by201

〈τa〉 =
[r(0) + rc]

2 − r(0)2

2kv
, (8)

which is also the peak arrival time.202
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3.2. Stochastic convective stream tube (SCST) model

Stochastic convective streamtube models assume that transport occurs along indepen-203

dent streamtubes. Transport within streamtubes is one-dimensional, and there is no mass204

exchange between individual streamtubes [Dagan and Bressler , 1979; Cirpka and Kitani-205

dis , 2000; Ginn, 2001; Becker and Shapiro, 2003]. Thus, these models are sometimes called206

minimum mixing models. For uniform mean flow, transport in a single radial streamtube207

of type ω is given by [Ginn, 2001; Becker and Shapiro, 2003]208

∂cω(x, t)

∂t
+
kω
r

∂cω(r, t)

∂r
− αkω

r

∂2cω(r, t)

∂r2
= 0, (9)

where kω is given by kω = Qω/(2πbωφω) with Qω the flow rate, bω the typical aperture and209

φω the porosity of the streamtube, and α is the dispersivity. The total solute concentration210

c(r, t) is given by the average of cω(r, t) over all streamtubes211

c(r, t) =

∫
dωP(ω)cω(r, t), (10)

where P(ω) denotes the PDF of streamtubes. Macroscopic solute dispersion here is caused212

predominantly by velocity contrasts between streamtubes. Transport is fully reversible213

for α = 0. The only irreversible transport mechanism in this framework is dispersion214

along the streamtubes.215

The Lagrangian formulation of transport in a single streamtube ω is identical to (4)216

because transport along a streamtube is given by the radial advection-dispersion equa-217

tion (9). In many realistic flow and transport scenarios, radial dispersion can be dis-218
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regarded because its effect on solute spreading is negligible compared with advective219

heterogeneity. For α = 0, the Langevin equation (4) for a single streamtube ω reduces to220

drω(t)

dt
=

kω
rω(t)

. (11)

Consequently, in the case of an instantaneous solute injection, and using (5), we obtain221

the following expression for the total solute concentration (10),222

c(r, t) =
1

2πbr

∫
dωP(ω)φ−1

ω δ[r − rω(t)]. (12)

The solute arrival time τω at a distance rc in a single streamtube is given by223

τω =
[rc + r(0)]2 − r(0)2

2kω
. (13)

The total solute breakthrough is given by averaging the deterministic arrival times τω over224

the ensemble of streamtubes, which is characterized by the distribution Pkω(k) of kω,225

f(τ) =

∫
dkPkω(k)δ[τ − τω(k)]. (14)

For a push-pull tracer test, we immediately see that the breakthrough curve is given by226

f(τ) = δ(t−2tp), where tp is the push time. The solute arrival time at the injection point227

is simply twice the push time because of the full reversibility of transport, as described228

by (11).229

3.3. Multirate mass transfer (MRMT) model
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The MRMT model considers solute transport under mass transfer between a single230

mobile zone and a series of immobile zones. Fast solute transport in the mobile zone231

and solute retardation in the immobile zones can lead to non-Fickian spatial distributions232

and breakthrough curves, and in general to an increase of solute dispersion. Solute mass233

conservation in the mobile domain is expressed in radial coordinates by234

φm
∂cm(r, t)

∂t
+
φmkv
r

∂cm(r, t)

∂r
− αφmkv

r

∂2cm(r, t)

∂r2
= −φim

∂cim(r, t)

∂t
(15)

where φm and φim are the (average) porosities of the mobile and immobile continua,235

respectively, kv = Q/(2πbφm) with Q the flow rate and b the width of the injection interval,236

and α is the dispersivity. Mass transfer between the mobile and immobile regions is linear237

and thus, assuming zero initial conditions in the immobile regions, the mobile cm(r, t) and238

immobile cim(r, t) solute concentrations are related by [Dentz and Berkowitz , 2003]239

cim(r, t) =

∫ t

0

dt′ϕ(t− t′)cm(r, t′), (16)

where ϕ(t) is the memory function that encodes the specific mass transfer mechanism240

[Haggerty and Gorelick , 1995; Harvey and Gorelick , 1995; Carrera et al., 1998; Dentz and241

Berkowitz , 2003; Dentz et al., 2011a]. For linear first-order mass exchange, ϕ(t) deter-242

mines the distribution of transfer rates between mobile and immobile regions [Haggerty243

and Gorelick , 1995]. For diffusive mass transfer, it encodes the geometries and the char-244

acteristic diffusion scales of the immobile regions [Dentz et al., 2011a]. Combining (15)245

and (16), we write the temporally non-local single-equation MRMT model246
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φm
∂cm(r, t)

∂t
+ φim

∂

∂t

∫ t

0

dt′ϕ(t− t′)cm(r, t′)

+
φmkv
r

∂cm(r, t)

∂r
− αφmkv

r

∂2cm(r, t)

∂r2
= 0. (17)

It has been shown that the MRMT model is equivalent to CTRW models characterized247

by uncoupled transition length and time distributions, and to time fractional advection-248

dispersion models [Dentz and Berkowitz , 2003; Schumer et al., 2003; Benson and Meer-249

schaert , 2009]. The MRMT model was employed by Haggerty et al. [2001] to intepret250

breakthrough curves for radial push-pull tracer tests in fractured dolomite. Le Borgne251

and Gouze [2008] used a CTRW implementation of MRMT to simulate breakthrough252

curves for radial push-pull tracer tests. The MRMT models and its equivalent CTRW253

and fADE formulations describe solute dispersion as an irreversible process. In these mod-254

eling frameworks, retardation events that essentially cause macroscopic solute dispersion255

are independent. Thus, transport is irreversible upon flow reversal.256

As in the previous section, we formulate the radial MRMT model (17) in a Lagrangian257

framework. Following the approach employed in Le Borgne and Gouze [2008], we imple-258

ment MRMT in terms of the continuous time random walk259

rn+1 = rn +
kv
rn

∆s+

√
2αkv∆s

rn
ξn, (18a)

tn+1 = tn + ∆s+ ηn∆s, (18b)

where the ξn are identical independently distributed Gaussian random variables with zero260

mean and unit variance, and ∆s is an operational time increment. The dimensionless261

random time increments ηn are identical independently distributed random variables with262
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the distribution density ψ(η). For ηn ≡ 0, the system (18) is identical to the discretized263

version of (4) in the Ito interpretation.264

The continuous time random walk (18) is equivalent to (17) in the limit of small ∆s265

with the identification [Dentz and Berkowitz , 2003]266

ϕ(t) =
φm
φim
L−1

{
1− ψ∗(λ∆s)(1 + λ∆s)

λ∆sψ∗(λ∆s)

}
, (19)

where L−1{·} denotes the inverse Laplace transform, ψ∗(λ) is the Laplace transform of267

ψ(t), and λ the Laplace variable. Here and in the following, Laplace-transformed quanti-268

ties are marked by an asterisk.269

The distribution of solute arrival times for both convergent and push-pull tracer tests270

is obtained from the individual particle arrival times τa = inf(tn| |rn − r0| > rc) as271

f(τ) = δ(τ − τa), (20)

where the overbar (·) denotes the average over the ensemble of all particles characterized272

by the stochastic series of dimensionless retention times {ηn}. Notice that the arrival273

time distribution in the push-pull case does not reduce to a delta-density, as in the SCST274

model. Solute transport is irreversible in the MRMT approach that we presented.275

3.4. Comparison of ADE, SCST and MRMT models

The traditional ADE formulation presented in section 3.1 does not have the ability to276

capture anomalous transport, manifested as a power-law tailing in BTCs. To overcome277

this limitation, SCST and MRMT models have been applied to explain BTCs for conver-278

gent and push-pull tests. To show the fundamental difference between the two models,279
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we run both convergent and push-pull simulation with the two models. For the MRMT280

model, we employ the Pareto waiting time distribution281

ψ(η) =
β

η0

(
η

η0

)−1−β

, η > η0, (21)

with 0 < β < 2. For the distribution of the kω in the SCST approach we employ the282

distribution283

Pkω(k) =
β

k0

(
k

k0

)β−1

, k < k0. (22)

The distributions (21) and (22) for the MRMT and SCST models, respectively, give284

identical slopes for the long time behavior of the BTCs in the convergent tracer tests. In285

Figure 4, we show the modeling results for MRMT and SCST models. We can see the286

clear distinction between the two models. Since MRMT does not have a mechanism to287

capture the reversibility of advective spreading, the BTCs of convergent and push-pull288

tests are almost identical. In contrast, the stream tube model assumes perfect correlation289

in velocity, and we observe perfect reversibility in the BTC for the push-pull tracer test290

in the absence of local dispersion within streamtubes. In reality, there always exists both291

irreversible diffusive and reversible advective processes, and our objective is to develop a292

stochastic model that recognizes the competition between the two processes.293

The limitations of MRMT and SCST (as well as ADE and classical CTRW) in repro-294

ducing the time-reversibility behavior of both types of tracer tests could be relieved if the295

models were applied in multidimensions, with spatially variable permeability fields. This,296

however, would rapidly increase model complexity, the number of model parameters, and297
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would require more field data to reliably constrain those parameters. The objective of298

our work is to propose a parsimonious theoretical model that accounts for reversible and299

irreversible processes in 1D radial coordinates.300

4. Continuous time random walks (CTRW) with correlated velocities

As discussed in Section 3.4, the SCST and MRMT frameworks represent transport301

models that exhibit full reversibility and complete irreversibility, respectively. The break-302

through curves obtained from convergent and push-pull tracer tests at the Ploemeur303

fractured aquifer, however, exhibit neither full reversibility nor complete irreversibility304

(Figure 3). Here we develop a stochastic model based on a correlated CTRW approach305

[Le Borgne et al., 2008; Kang et al., 2011a; de Anna et al., 2013; Kang et al., 2014],306

with the following two design criteria: Lagrangian velocity correlation that captures flow307

reversibility, and particle velocity distribution that captures velocity heterogeneity.308

4.1. Model formulation

The starting point for the model is the Langevin equation (4) in differential form309

dr(t) =
kvdt

r(t)
+

√
2α
kvdt

r(t)
ξr(t). (23)

By defining the differential space increment dϑ = kvdt/r(t) [Dentz et al., 2009; Dentz and310

Bolster , 2010], equation (23) transforms into311

dr(ϑ) = dϑ+
√

2αdϑξr(ϑ), (24a)

dt(ϑ) =
r(ϑ)

kv
dϑ. (24b)

D R A F T December 10, 2014, 8:12am D R A F T



KANG ET AL.: IMPACT OF VELOCITY CORRELATION AND DISTRIBUTION ON TRANSPORT X - 19

Discretizing this system in ϑ and setting ∆ϑ = ` gives the following system of equations312

for the particle trajectories in space and time coordinates, or in other words, a CTRW,313

rn+1 = rn + `+
√

2α`ξn, (25a)

tn+1 = tn +
`rn
kv
. (25b)

Notice that this CTRW is characterized by a radially dependent time increment. It is by314

definition equivalent to (3) in the limit of small `� L, with L a macroscopic observation315

scale.316

We generalize this CTRW heuristically in order to account for variability in radial317

particle velocities that may be induced by spatial variability in hydraulic conductivity318

and retardation properties of the medium. Notice that the transport velocity depends on319

both hydraulic conductivity and porosity. Le Borgne et al. [2008] and Kang et al. [2011a]320

demonstrated that the impact of flow heterogeneity on large scale solute transport can be321

quantified in terms of CTRWs whose time increments form a Markov chain based on the322

observation that the series of Lagrangian particle velocities form a Markov process.323

We define here a radial correlated CTRW that allows to vary the velocity correlation324

(persistence of particle velocities) and velocity distribution (PDF of particle velocities),325

to represent and quantify both correlation and distribution-induced anomalous transport326

features, and to discriminate between them [Dentz and Bolster , 2010]. Thus, we generalize327

the stochastic process (25b) of particle times according to328

tn+1 = tn +
`rn
kv
ηn, (25c)
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where the dimensionless time increments {ηn} form a Markov chain characterized by the329

marginal distribution density ψ0(η) of initial increments η0 and the one-step transition330

probability density ψ1(η|η′). The Chapman-Kolmogorov equation for the n-step transition331

time density ψn(η|η′) reads332

ψn(η|η′) =

∫ ∞
0

dη′′ψn−m(η|η′′)ψm(η′′|η′). (26)

The density ψn(η) of random increments ηn after n steps is given by333

ψn(η) =

∫ ∞
0

dη′ψn(η|η′)ψ0(η′). (27)

We set here ψ0(η) = ψ(η) equal to the steady state density, which is an eigenfunction of334

the transition density ψ1(η|η′) and therefore ψn(η) = ψ(η). This is equivalent to assuming335

that particles sample velocities from the steady state Lagrangian velocity distribution from336

the beginning. Equations (25a) and (25c) constitute the equations of motion of solute337

particles in the proposed radial correlated CTRW approach, where ψ(η) determines the338

velocity distribution and ψ1(η|η′) determines the velocity correlation.339

4.2. Limiting cases

In the following, we briefly determine the limits of the system (25a) and (25c) for fully340

correlated and fully uncorrelated dimensionless time increments {ηn}.341

4.2.1. Fully correlated case342

In the limit of fully correlated {ηn}, i.e., ψ1(η|η′) = δ(η − η′), where δ denotes the343

Kronecker delta, equations (25a) and (25c) reduce to344
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rn+1 = rn + `+
√

2α`ξn, (28a)

tn+1 = tn +
`rn
kω
, (28b)

where we defined the constant kω = kv/ηω with ηω the perfectly persistent increment,345

which is distributed according to ψ(η). Each ηω, or kω, represents a streamtube in the346

sense of the SCST model. In fact, just as (25a) and (25b) are equivalent to (3), so347

is system (28), which constitutes the equivalence of (28) and (9). Therefore, the fully348

correlated case of the proposed model is equivalent to the SCST model.349

4.2.2. Fully uncorrelated case350

In the limit of fully uncorrelated {ηn}, i.e., ψ1(η|η′) = ψ(η), the system (25a) and (25b)351

is equivalent to the following non-local radial advection dispersion equation352

∂c(r, t)

∂t
+

∫ t

0

dt′

[
φkv
r

∂

∂r
M(r, t − t′)c(r, t′) − αφkv

r

∂2

∂r2
M(r, t − t′)c(r, t′)

]
= 0, (29)

with the radially dependent memory function353

M(r, t) = L−1

{
ληk(r)ψ

∗[ληk(r)]

1− ψ∗[ληk(r)]

}
. (30)

We defined ηk(r) = `r/kv for compactness. The memory function depends explicitly on354

the radial position through the radially dependent time scale ηk(r). Notice that this radial355

CTRW model is in general different from the radial MRMT model (17).356
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4.3. Model implementation

The proposed CTRW with correlated transition times (25a) and (25c) is solved using357

random walk particle tracking. The model has three key transport characteristics: the358

probability distribution of the dimensionless time increments, ψ(η), the one step transition359

probability that quantifies the velocity correlation, ψ1(η|η′), and the local dispersivity, α.360

Here we present how to characterize ψ(η) and ψ1(η|η′), and explain in detail the random361

walk particle tracking algorithm used to solve for the BTCs in the convergent and push-362

pull scenarios.363

4.3.1. Transition probability and correlation364

To independently control velocity distribution and velocity correlation, we describe365

the Markov process {ηn} with the steady state distribution, ψ(η). The continuous non-366

dimensional transition times η are discretized into N classes, η ∈
⋃N
j=1(ηj, ηj+1], such that367

the transition probabilities between the classes are represented by the N × N transition368

matrix T, with components369

Tij =

∫ ηi+1

ηi

dη

∫ ηj+1

ηj

dη′ψ1(η|η′)ψ(η′)

/∫ ηj+1

ηj

dη′ψ(η′). (31)

The transition matrix satisfies Tn+m = TnTm. Here, we choose equiprobable binning370

such that371

∫ ηi+1

ηi

dηψ(η) =
1

N
. (32)

With this condition, T is a doubly stochastic matrix, which therefore satisfies372
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N∑
i=1

Tij =
N∑
j=1

Tij = 1. (33)

For a large number of transitions, the transition matrix converges towards the uniform373

matrix,374

[
lim
n→∞

Tn
]
ij

=
1

N
, (34)

whose eigenvalues are 1 and 0. Thus, correlation can be measured by the convergence of375

T towards the uniform matrix. The correlation length is determined by the decay rate of376

the second largest eigenvalue χ2 (the largest eigenvalue of a stochastic matrix is always 1).377

The correlation function is defined by C(n) = χn2 , which can be written as378

C(n) = exp

(
− n

nc

)
, nc = − 1

ln(|χ2|)
, (35)

where nc is the correlation step number. Thus, we define the dimensionless correlation379

length λ as380

λ =
nc`

rc
(36)

with ` the spatial discretization of the correlated CTRW model. Note that the discretiza-381

tion length ` should be smaller than the velocity correlation length, λrc.382

Here we consider a simple transition matrix model, in which all diagonal entries are383

fixed to a constant a, and the remaining entries are equal to (1− a)/(N − 1),384
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Tij = aδij +
1− a
N − 1

(1− δij). (37)

This transition matrix imposes the same correlation function for all starting velocities,385

and the diagonal value of a ≤ 1 determines the correlation strength. A value of a = 1386

implies perfect correlation, which renders the N–dimensional unity matrix, Tij = δij.387

For a = 1/N , all transitions are equally probable, and the transition matrix is equal to388

the uniform matrix with Tij = 1/N ; see Figure 5b. The transition matrix (37) has the389

eigenvalues χ1 = 1 and390

χ2 =
Na− 1

N − 1
, (38)

such that we obtain for the dimensionless correlation length (36)391

λ =
`

rc

1

ln
(
N−1
Na−1

) N�1
≈ `

rc

1

ln (a−1)
. (39)

Thus, the correlation length λ is uniquely determined by the value of a.392

For the steady state transition time distribution, ψ(η), we use the truncated Pareto393

distribution,394

ψ(η) =
βη−1−β

η−β` − η
−β
u

, η` < η ≤ ηu. (40)

We fix the mean of the transition time distribution to 1, which ensures that the mean395

arrival time in the correlated CTRW model (25c) is equal to the one in the homogeneous396

model (25b). Note that one could also choose to scale the peak arrival time with that397
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of the homogeneous model, rather than fixing the mean arrival time. Furthermore we398

enforce a given ratio of rη = ηu/η` such that the power-law range covers the power-law399

regime observed in the breakthrough curves (see Figure 3). This determines η` as400

η` =
1− β
β

1− r−βη
r1−β
η − 1

. (41)

This bounds the value of η` between ln(rη)/(rη − 1), which is the limit of (41) for β → 0,401

and (rη + 1)/(2rη), which is the value of (41) for β = 2. For large contrasts rη � 1, η` is402

approximately in (ln(r)/r, 1/2].403

The transition time distribution (40) is illustrated in Figure 5. The slope β of the404

truncated Pareto distribution describes the heterogeneity of the velocity distribution. As β405

decreases, the transport becomes more anomalous because the probability of experiencing406

large transition times increases. Therefore, smaller β can be understood to represent407

higher flow heterogeneity, as is well known in the CTRW modeling framework [Berkowitz408

et al., 2006].409

In summary, the proposed transport model controls the velocity distribution and the410

velocity correlation with two independent parameters: the slope of the Pareto distribution,411

β, and the normalized correlation length λ.412

4.3.2. Simulation of convergent tracer tests413

For the simulation of the convergent scenario, all the particles are injected at the in-414

jection well at r0 = ri, with ri the radial distance between injection and pumping well.415

As discussed earlier, during the field tracer experiments, we flush the volume inside the416

packer with tracer-free fluid in order to ensure a sharp injection. Therefore, we use delta417

injection for both convergent and push-pull simulations. If the injection duration were418
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not short enough to be approximated as a delta function, the simulation could be easily419

adapted by continuously releasing particles during the injection time. The convergent420

BTCs are obtained by recording the particle travel times at the well radius rw of the421

pumping well at a radial distance of rc = ri − rw. The detailed procedure is:422

1. Assign the desired values to kv, α, β, λ and `.423

2. Simulate the sequence of particle positions and times according to (25a) and (25c).424

3. Sample particle arrival times at rw and obtain the BTC.425

4.3.3. Simulation of push-pull tracer tests426

The implementation for the push-pull scenario is similar to the one for the convergent427

scenario. Here, particles are injected at r0 = rw, with rw the radius of the injection428

well. Particles travel radially outwards until the push duration tpush. Then, the radial429

direction is reversed and particles travel back to the injection well until they reach the430

well radius rw. The algorithmic steps are identical to those of the convergent test, except431

that step 2 is split into its “push” phase and the flow reversal “pull” phase.432

5. Model behavior and field application

In this section, we study the model behavior of the proposed correlated CTRW433

model (25) depending on the three parameters α (dispersivity), β (velocity distribution)434

and λ (velocity correlation). We then apply the model to the experimental data presented435

in Section 2 to explore the predictive capabilities of the model through the simultaneous436

prediction of BTCs in both convergent and push-pull tracer tests.437
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5.1. Model behavior

We first consider the dependence of the peak arrival time on dispersivity α, the velocity438

distribution as parameterized by β, and the velocity correlation as parameterized by λ.439

Notice that the mean arrival time is the same in all cases because the model implemen-440

tation detailed in the previous section forces the mean arrival of the correlated CTRW441

model (25c) to be equal to the one for the homogeneous CTRW model (25b). The mini-442

mum arrival time is obtained in the perfectly correlated CTRW, i.e., a = 1 in (37), which443

gives λ =∞, and it is approximately444

tmin ≈ η`
r2
c

2kv
, (42)

which can be obtained directly from (25c) by setting ηn ≡ η`, the minimum non-445

dimensional transition time. For the perfectly correlated model, the minimum arrival446

time is at the same time the peak arrival. As λ decreases, the peak arrival time increases447

due to loss of flow coherence, as illustrated in Figure 6a.448

The simple estimate (42) for the fully correlated case also indicates how the peak arrival449

depends on β. Recall that η` depends on β as given in (41): it increases with increasing450

β up to a maximum of 1/2 for β = 2. From this, we conclude that the peak arrival time451

increases with increasing β, as illustrated in Figure 6. This may seem counter-intuitive at452

first. Notice however, that we force the mean of ψ(η) to be equal to 1 for a given range rη.453

This means that as the probability of large transition times increases, η` must decrease454

as β becomes smaller.455

Finally, the dispersivity α has essentially no impact on the peak arrival time, as illus-456

trated in Figure 6b. This is intuitively clear when considering the mean arrival time (8)457
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for the homogeneous model, which at the same time is the peak arrival time. It is com-458

pletely independent of α, given that α only impacts the spreading about the mean arrival459

time.460

In Figure 7, we plot tracer BTCs for a set of random walk particle tracking simula-461

tions for the convergent and push-pull scenarios for various combinations of α, β, and λ.462

Different features of the BTCs are sensitive to variation in α (dispersivity), β (velocity463

distribution) and λ (velocity correlation).464

The dispersivity α mainly impacts the early time behavior of the convergent BTCs. As465

expected, a decrease in α leads to a slight decrease of the early arrivals due to the reduced466

particle dispersion (Figure 7a). Neither the late time tailing nor the peak position are467

affected by changes in α. For the push-pull scenario, a decrease in α decreases the relative468

dispersion of particle arrival times about the peak arrival times (Figure 7b). As for the469

push-pull test, the late-time scaling is not affected by the value of α.470

For fixed λ, an increase in β leads to a decrease in BTC tailing in both the convergent471

and push-pull scenarios, as expected in the CTRW modeling framework [Berkowitz et al.,472

2006] (Figures 7c,d).473

The correlation length λ impacts the early time BTC in the convergent scenario. We474

have already seen in Figure 6a that the peak arrival time increases with decreasing λ.475

Figure 7e shows that also the relative distance between the minimum arrival time and the476

peak arrival decreases with increasing λ. This behavior is caused by the fact that the par-477

ticles sample a narrower window of the spectrum of transition times because of increased478

coherence. This leads to a decrease in the relative dispersion of early arrival times. For479

the push-pull scenario illustrated in Figure 7f, the implact of λ is more dramatic. The480
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relative spread of arrival times about the peak arrival time decreases for increasing λ,481

which reflects the partial reversibility of the transport process in the presence of velocity482

correlation. In the limit of a perfectly correlated scenario for λ = ∞, i.e., a = 1 in (37),483

the BTC is identical to the one for a homogeneous medium, which is fully characterized484

by the dispersivity α (Figure 7f).485

It is important to emphasize the difference between varying dispersivity α and correla-486

tion length λ. While increasing λ and decreasing α have qualitatively similar impacts on487

the relative early arrival times, their impacts on the BTC are very different. First, the488

peak arrival is essentially independent of dispersivity α, but depends strongly on correla-489

tion λ. Secondly, the limit λ =∞ renders the BTC in the push-pull scenario identical to490

the one for a homogeneous medium because of full reversibility: no tailing is observed. For491

α = 0, the strong BTC tailing in the push-pull scenario at long times remains unchanged.492

5.2. Field application

We now test whether our CTRW model with correlated velocities is able to capture the493

transport behavior observed in the field, as evidenced by the BTC in the tracer tests. In494

particular, we address the central question of whether tracer tests under different flow495

configurations (convergent and push-pull tests) can be explained with the same set of496

model parameters.497

We perform a comprehensive comparison between the measured BTCs and the simulated498

BTCs over the entire three-dimensional space of possible parameter values for dispersiv-499

ity α, velocity disorder β, and velocity correlation λ. We compute the unweighted mean500

square error (MSE), combined for the convergent and push-pull tests over the entire range501

of measured data for each test.502
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The MSE surfaces for each of the fracture planes (B1-2 and B1-4) are shown in Figure 8503

over the β–λ space, for a value of α close to the optimum. These surfaces show the504

existence of a single minimum in the MSE surface, corresponding to the optimum choice of505

model parameters that best matches both the convergent test and the push-pull test. These506

values are: α = 0.03 [m], β = 0.75 [-] and λ = 0.22 [-] for fracture B1-2, α = 0.02 [m],507

β = 0.85 [-] and λ = 0.06 [-] for fracture B1-4.508

A weighted MSE can also be applied to estimate the set of parameters [Chakraborty509

et al., 2009]. This method utilizes the fact that concentration variance is proportional510

to concentration for the particle-tracking model. The estimated parameters with the511

weighted MSE gave very similar set of parameters with unweighted MSE.512

This suggests that B1-2 has similar dispersivity (α), slightly higher velocity disorder513

(smaller β), and significantly larger velocity correlation (larger λ) than B1-4. One way514

to qualitatively (but independently) confirm this result is by comparing the characteristic515

fracture length in the field with the velocity correlation length inferred from our model.516

The estimated velocity correlation length from our model is ≈1.32 m for the B1-2 tracer517

test and ≈0.36 m for the B1-4 tracer test. Interestingly, this is of the same order of518

magnitude as the average distance between fracture connections measured independently519

by GPR imaging on the same site [Dorn et al., 2012]. This would suggest that fracture520

flow velocities are well correlated along connections with other fractures, and that they521

de-correlate mainly when changing fracture planes. However, this hypothesis cannot be522

confirmed from this dataset alone.523

The actual comparison between our model and the field data is shown in Figure 9.524

Our model accurately reproduces the BTCs of both push-pull and convergent tests (Fig-525
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ure 9(a),(b))—a quantitative agreement that is lost when neglecting velocity correlation526

(Figure 9(c),(d)). Therefore, our one-dimensional CTRW with one-step correlation in ve-527

locity is a parsimonious, yet accurate, approximation for describing macroscopic transport528

in fractured media.529

Although the model results explain the field experiment data from our campaign, the530

model has some limitations. In our modeling framework, we intrinsically assumed that531

the velocity distribution for the field of interest can be represented by a single probability532

distribution. However, if the study field is non-stationary, this assumption should be533

revisited. We also assumed that regional flow was negligible compared to the flow induced534

by pumping rates used in the field experiments. In our case, ambient flow rates were535

estimated from point dilution experiments and found to be two orders of magnitude536

smaller than injection and pumping rates. However, if ambient flow were large enough537

to affect the tracer experiment, this would influence the reversibility of the flow [Lessoff538

and Konikow , 1997; Altman et al., 2002]. If necessary, the modeling framework could be539

extended to incorporate non-stationarity and ambient flow.540

6. Summary and Conclusions

In this paper, we have proposed a unified framework to characterize transport in frac-541

tured media and account for both velocity distribution and velocity correlation. We first542

presented results from convergent and push-pull tracer tests in fractured-granite at the543

Ploemeur subsurface observatory (H+ network, France). The field data suggest that ve-544

locity distribution and velocity correlation are the key controlling transport properties.545

In particular, the BTCs recorded in the field demonstrate the more reversible character of546
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tracer spreading for the push-pull test compared with the convergent test; an indication547

of the importance of velocity correlation.548

Based on the field evidence, we have proposed a stochastic transport model that in-549

corporates local dispersivity, Lagrangian velocity distribution, and Lagrangian velocity550

correlation as the three key transport processes, each characterized by a single parameter551

(α, β and λ, respectively). We have shown analytically that our model embodies other552

existing models of transport as particular cases: it is equivalent to the MRMT model553

under the assumption of negligible velocity correlation, and to the SCST model under the554

assumption of infinite correlation.555

In contrast, our model is designed to capture the interplay between velocity distribution556

and velocity correlation, which we have illustrated with a sensitivity analysis of different557

metrics of the BTCs (early arrival time, peak arrival time, and late-time concentration558

decay) on the model parameters. The simplicity and versatility of our model has allowed559

us to perform a robust interpretation of the field tests, since the BTCs of both convergent560

and push-pull tests are retrieved accurately with the same set of parameters.561

Our results raise important questions about modeling choices to simulate mixing and562

spreading in geologic media. For example, our model is designed to capture both push-563

pull and convergent BTCs with scale-independent local dispersivity, in contrast with the564

traditional ansatz of a dispersivity that increases with the observational scale [Gelhar565

et al., 1992]. Because our model accounts for macroscopic features with λ and β, it may566

permit removing the (spurious) scale dependence of local dispersivity α.567

Finally, because our model distinguishes between the spreading caused by advective568

processes (λ) and diffusive processes (α), we conjecture that it may provide an avenue to569
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model not only tracer spreading but also fluid mixing [Le Borgne et al., 2010, 2011; Dentz570

et al., 2011b; Jha et al., 2011; de Dreuzy et al., 2012b; Chiogna et al., 2012; Jha et al.,571

2013]. The prediction of mixing and spreading rates in field-scale experiments remains,572

however, an exciting open question.573
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Figure 1. (a) Outcrop of fractured granite at the Ploemeur field site. Inset: map

showing the location of Ploemeur, France. (b) Photo from the installation of double

packer system in B1 borehole.
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Figure 2. Schematic of the tracer tests conducted. (a,b,c) Convergent test with tracer

placement at borehole B1 and pumping from borehole B2. Two different fracture planes

at different depths (B1-2 and B1-4) are used for two separate tests. (d,e,f) Push-pull test

from borehole B1. The same two fracture planes (B1-2 and B1-4) are used.
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Table 1. Details of the conditions and parameters of the four tracer experiments.

Experimental parameters
Experiments

B1-2 convergent B1-2 push-pull B1-4 convergent B1-4 push-pull

Tracer injection fracture B1-2 B1-2 B1-4 B1-4

Withdrawal borehole / fracture B2 B1-2 B2 B1-4

Flow configuration convergent push-pull convergent push-pull

Tracer injection depth 50.5 m 50.5 m 78.7 m 78.7 m

Packer system at B1 double packer double packer double packer double packer

Packer system at B2 single packer single packer single packer single packer

Injection rate 1 L/min 6 L/min 1 L/min 5 L/min

Injection duration 15 min 30 min 15 min 80 min

Withdrawal rate 120 L/min 6 L/min 100 L/min 5 L/min

Injected mass 5 g 0.1 g 1.5 g 0.4 g

Peak arrival time 30 min 57 min 35 min 140 min

Peak concentration 590 ppb 353 ppb 312 ppb 690 ppb

Mass recovery 96 % 89 % 99 % 87 %

Late-time tailing slope ∼ 1.7 ∼ 1.85

D R A F T December 10, 2014, 8:12am D R A F T



X - 46 KANG ET AL.: IMPACT OF VELOCITY CORRELATION AND DISTRIBUTION ON TRANSPORT

10−1 10 0 10 1 10 210
−3

10
−2

10
−1

10
0

time / timepeak

no
rm

al
iz

ed
 c

on
ce

nt
ra

tio
n 

  t
im

e pe
ak

*

10 −1 10 0 10 1 10 210
−3

10
−2

10
−1

10
0

time / timepeak

no
rm

al
iz

ed
 c

on
ce

nt
ra

tio
n 

  t
im

e
pe

ak
*1

1.75

1

1.85

B1-2 push-pull
B1-2 convergent

B1-4 push-pull
B1-4 convergent

(a) (b)

Figure 3. Measured breakthrough curves (BTC) for the tracer tests we conducted, in

the form of a normalized time (peak arrival at dimensionless time of 1) and normalized

concentration (such that the area under the BTC is identically equal to 1). The tracer

concentration is measured every 20 seconds. (a) BTCs for fracture plane B1-2. (b) BTCs

for fracture plane B1-4.
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Figure 4. Comparison of the breakthrough curves (BTC) for the MRMT and SCST

models characterized by the distributions (21) and (22) with β = 1.75, η0 = 0.005 and

k0 = 200, respectively. The BTCs for the convergent and push-pull scenarios are almost

identical in the MRMT approach because solute spreading is irreversible. In contrast,

the BTC for the convergent and push-pull scenarios in the SCST model are drastically

different: in the absence of local dispersion, the BTC in the push-pull scenario is a delta

distribution due to the perfect velocity correlation within each streamtube, i.e., full re-

versibility.
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Figure 5. Key transport characteristics of our proposed CTRW model. (a) ψ(η) follows

the truncated Pareto distribution (40). The slope of the power law, β, characterizes the

velocity heterogeneity of the fractured medium. As β decreases, the velocity heterogeneity

increases. (b) Number nc of correlation steps given by (35) as a function of parameter a for

N = 100 velocity classes. By changing the value of the diagonal, a, we can systematically

vary the strength of the velocity correlation from the uniform transition matrix that is

equivalent to the uncorrelated velocity field to the identity matrix that represents a fully

correlated velocity field.
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Figure 6. Sensitivity analysis for the peak arrival time on the three parameters of our

CTRW model. (a) Change in peak arrival times for α = 0.3 with varying λ. Different

curves represent different degrees of velocity heterogeneity (β = 0.5, 0.6, 0.8, 1, 1.2, 1.4).

(b) Change in peak arrival times for λ = 0.2 with varying α. Different curves represent

different β = 0.5, 0.6, 0.8, 1, 1.2, 1.4.
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Figure 7. Impact of parameters α, β and λ of our CTRW model on transport behavior.

Left (a,c,e): convergent tests. Right (b,d,f): push-pull tests. Top (a,b): impact of dis-

persivity (α = 0, 0.02, 0.05, 0.1, 0.3) for fixed β = 0.75 and λ = 0.2. Middle (c,d): impact

of velocity distribution (β = 0.5, 0.75, 1, 1.5, 2) for fixed value of α = 0.03 and λ = 0.2.

Bottom (e,f): impact of velocity correlation (λ = 0.05, 0.1, 0.3, 0.5,∞) for fixed value of

α = 0.03 and β = 0.75.
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Figure 8. Plot of the mean square error (MSE) between modeled and measured BTCs

for different model parameters. The error is for the combined differences of the convergent

and push-pull tests. (a) MSE for the B1-2 fracture with a value α = 0.03. The global

minimum is for α = 0.03, β = 0.75 and λ = 0.22. (b) MSE for the B1-4 fracture with a

value α = 0.02. The global minimum is for α = 0.02, β = 0.85 and λ = 0.06.
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Figure 9. Comparison of measured and modeled BTCs for both convergent and push-

pull tests, modeled with the same set of parameters. (a) B1-2 fracture; correlated CTRW

model with parameters α = 0.03, β = 0.75, and λ = 0.22. (b) B1-4 fracture; correlated

CTRW model with parameters α = 0.02, β = 0.85, and λ = 0.06. (c) B1-2 fracture;

uncorrelated CTRW model with parameters α = 0.03, β = 0.95, and λ = 0. (d) B1-4

fracture; uncorrelated CTRW model with parameters α = 0.02, β = 0.65, and λ = 0.
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