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Abstract We study the nature of non-Fickian particle transport in 3-D porous media by simulating
fluid flow in the intricate pore space of real rock. We solve the full Navier-Stokes equations at the same
resolution as the 3-D micro-CT (computed tomography) image of the rock sample and simulate particle
transport along the streamlines of the velocity field. We find that transport at the pore scale is markedly
anomalous: longitudinal spreading is superdiffusive, while transverse spreading is subdiffusive. We
demonstrate that this anomalous behavior originates from the intermittent structure of the velocity field at
the pore scale, which in turn emanates from the interplay between velocity heterogeneity and velocity
correlation. Finally, we propose a continuous time random walk model that honors this intermittent
structure at the pore scale and captures the anomalous 3-D transport behavior at the macroscale.

1. Introduction
Fluid flow and transport in geologic porous media is critical to many natural and engineered processes,
including sustainable exploitation of groundwater resources [Harvey et al., 2002; Gleeson et al., 2012],
enhanced oil recovery [Orr and Taber, 1984], geologic carbon sequestration [IPCC, 2005; Szulczewski et al.,
2012], geologic nuclear waste disposal [Yoshida and Takahashi, 2012], and water filtration [Elliott et al., 2008].

Despite the broad relevance of flow and transport through geologic porous media, our understanding
still faces significant challenges. One such challenge is the almost ubiquitous observation of anomalous
(non-Fickian) transport behavior from laboratory experiments in packed beds [Kandhai et al., 2002; Moroni
et al., 2007], sand columns [Cortis and Berkowitz, 2004], and rock samples [Scheven et al., 2005; Bijeljic et al.,
2011] to field-scale experiments [Garabedian et al., 1991; Le Borgne and Gouze, 2008]. The signatures of
anomalous behavior are early breakthrough, long tailing of the first passage time distribution, non-Gaussian
or multipeaked plume shapes, and nonlinear scaling of the mean square displacement—effects that cannot
be captured by a traditional advection-dispersion formulation. There are several models that describe and
predict non-Fickian transport, by replicating the broad (power law) distribution of velocity; these include
multirate mass transfer [Haggerty and Gorelick, 1995], fractional advection-dispersion [Benson et al., 2001],
and continuous time random walk (CTRW) models [Berkowitz et al., 2006; Bijeljic and Blunt, 2006], and the
equivalence between the models has been shown for certain cases [Dentz and Berkowitz, 2003].

In addition to velocity heterogeneity, recent studies have pointed out the importance of velocity correla-
tion in the signature of anomalous transport, and have incorporated velocity correlation in various forms
[Le Borgne et al., 2008; Dentz and Bolster, 2010; Kang et al., 2011; Edery et al., 2014]. In particular, numerical
simulations using smoothed particle hydrodynamics of flow and transport on simple 2-D porous media sug-
gest that longitudinal spreading is strongly modulated by the intermittent structure of Lagrangian velocity
[de Anna et al., 2013], which is also observed in laboratory experiments in 3-D glass bead packs [Datta et al.,
2013]. However, the role of velocity correlation on anomalous transport has not yet been studied for real 3-D
rocks, and flow fields through 3-D-disordered porous media are fundamentally different from flow fields in
2-D or 3-D ordered porous media.

Moreover, a fundamental question remains: how does the heterogeneous and correlated structure of
Lagrangian velocity impact transverse spreading? It is known that transverse spreading largely controls over-
all mixing and, as a result, many chemical and biological processes in natural systems [Bijeljic and Blunt, 2007;
Tartakovsky et al., 2008; Willingham et al., 2008; Tartakovsky, 2010; Rolle et al., 2012]. In this Letter, we study
flow and particle transport through porous rock (Berea sandstone), imaged at the pore scale with X-ray
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Figure 1. (a) Three-dimensional Eulerian velocity magnitude (|v|)
through a Berea sandstone sample of size 1.66 mm (approximately
8 pore lengths) on each side. The velocity magnitude is normalized
with respect to the maximum velocity, as indicated by the color bar;
blue and cyan solid lines indicate two particle trajectories. The domain
is discretized into 3003 voxels with resolution 5.55 μm (approximately
0.03 pore lengths). (b) Cross section of the Berea sandstone at rescaled
distance 𝜉x = x

𝜆c
= 4.16, showing the pore space (white) and solid

grains (black). The average porosity (fraction of void space in the sam-
ple) is approximately 18.25%. (c) Cross section of the velocity magnitude
at rescaled distance 𝜉x = 4.16 (warm colors correspond to higher
velocities), illustrating the presence of preferential flow paths. (d and
e) Time series of the normalized Lagrangian velocity and acceleration,
respectively, for the blue particle trajectory in Figure 1a. The Lagrangian
statistics exhibit strongly intermittent behavior in both longitudinal and
transverse directions.

microtomography (micro-CT imaging).
We observe strongly non-Fickian
spreading behavior in both longitudi-
nal and transverse directions and find
complementary anomalous behavior:
longitudinal spreading is superdif-
fusive, while transverse spreading is
subdiffusive. We show that the inter-
play between pore-scale velocity
correlation and velocity heterogeneity
is responsible for the observed anoma-
lous behavior. We then develop an
effective stochastic transport model
for 3-D porous media that incorporates
the microscale velocity structure in the
form of a continuous time random walk
(CTRW) with one-step correlation.

2. Fluid Flow and Particle
Tracking Through Berea
Sandstone

We analyze the 3-D Lagrangian veloc-
ities of a Newtonian fluid flowing
through a cubic sample of Berea sand-
stone of size L = 1.66 mm on each
side. Micro-CT is used to obtain the 3-D
image of the porous structure at a res-
olution of 5.55 μm (the image size is
3003 voxels). Image segmentation iden-
tifies each voxel as either solid or void.
The characteristic length of the mean
pore size is 𝜆c ≈ 200 μm [Mostaghimi
et al., 2012], which is used to define the
nondimensional distance 𝜉x = x∕𝜆c

(the sample has ∼8 characteristic pore
lengths in each direction).

To obtain the flow field, we solve the full Navier-Stokes equations through the pore geometry of the
Berea sandstone with no-slip boundary conditions at the grain surfaces, using a finite volume method
[OpenFOAM, 2011; Bijeljic et al., 2013]. We impose constant pressure boundary conditions at the inlet
and outlet faces. The Eulerian velocity field v exhibits a complex structure with multiple preferential flow
channels and stagnation zones (Figure 1a).

To study the transport properties, we simulate the advection of particles along streamlines of the stationary
3-D flow field. We trace streamlines using a semianalytical formulation to compute entry and exit positions,
and transit times, through each voxel traversed by individual streamlines [Mostaghimi et al., 2012]. To ini-
tialize the streamlines, we place 104 particles at the inlet face, following a flux-weighted spatial distribution
through the pore geometry. To obtain particle trajectories that are long enough to observe macroscopic
behavior, we concatenate particle trajectories randomly within the same class of the flux probability distri-
bution (we have confirmed that the flux distribution at inlet and outlet faces are virtually identical). To avoid
boundary effects on transverse displacement, we reinject a particle (following the same flux-weighted pro-
tocol) whenever its distance to one of the lateral boundaries is less than 11.1 μm (2 voxels). We compute the
mean Lagrangian velocity across all trajectories, v̄, and define the characteristic time to travel the average
pore size as 𝜏A = 𝜆c∕v̄, which is used to rescale time.
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Figure 2. Time evolution of the centered second spatial moments from
particle-tracking simulation (solid line) and the prediction with correlated
CTRW (dashed line). In the x direction, particle dispersion is superdiffusive
with slope ∼1.5, and in the y and z directions, dispersion is subdiffusive
with slope ∼0.8. Inset: Probability density distributions of the normal-
ized Lagrangian velocity increments in x, y, and z directions for a time
lag 𝜏 = 𝜏A∕4. Velocity increments are normalized with respect to their
standard deviation 𝜎Δv𝜏

.

The rock sample used for the determi-
nation of the underlying flow field is
approximately 8 pore lengths on each
side. However, solute transport is sim-
ulated over many hundreds of pores
by the use of a Lagrangian particle
transport method and reinjection of
particles. This is equivalent to study-
ing macroscale transport properties
where the medium heterogeneity is
restricted to approximately 83 pores,
but a much larger system size. Berea
sandstone, the rock we use in our
study, is relatively homogeneous, and
this pore structure results in a smooth
flow field. Therefore, we believe that
our rock sample of Berea sandstone is
representative for single-phase flow
and transport.

In Figure 1a we plot two particle tra-
jectories. The temporal evolution of
the Lagrangian velocity and accel-
eration for a particle exhibits two
alternating states: long periods of
stagnation and bursts of high vari-
ability (Figures 1d and 1e), both in the
longitudinal (x) and transverse (y, z)
directions of the flow. This irregular
pattern of alternating states is known

as intermittency. Flow intermittency is a well known phenomenon in turbulent flows, where it is quantified
by the properties of the structure functions [Pope, 2000]. Even though the flow in our system is laminar, our
simulations show that the geometry of real 3-D rock also leads to strongly intermittent behavior. Similar
intermittent behavior in the longitudinal direction has been observed in a 2-D porous medium consisting
of a random distribution of disks [de Anna et al., 2013]. In the transverse direction, particles with high pos-
itive velocities jump to high negative velocities—an anticorrelation that was also observed in the particle
transport through simple lattice networks [Kang et al., 2011].

3. Non-Fickian Spreading and Intermittency

To investigate the impact of the observed intermittent behavior of individual particles on the macroscopic
spreading of the ensemble of particles, we compute the time evolution of the longitudinal and transverse
mean square displacements (MSD) with respect to the center of mass of a point injection, i.e., initializing
every particle’s starting position to an identical reference point. For the longitudinal direction (x), the MSD
is given by 𝜎2

x (t) = ⟨(x(t) − ⟨x(t)⟩)2⟩ where ⟨⋅⟩ denotes the average over all particles. The same defini-
tion is applied to the transverse directions to compute 𝜎2

y and 𝜎2
z . At early times, longitudinal MSD exhibits

ballistic scaling, 𝜎2
x ∼ t2, characteristic of perfectly correlated stratified flows [Taylor, 1921]. After this initial

period, the MSD follows a non-Fickian superdiffusive scaling 𝜎2
x (t) ∼ t1.5. The MSD in the transverse direc-

tions also scales as 𝜎2
y , 𝜎

2
z ∼ t2 at early times but, in contrast, then slows down to an asymptotic non-Fickian

subdiffusive scaling 𝜎2
y , 𝜎

2
z ∼ t0.8 (Figure 2). The non-Fickian scaling is persistent over 100 characteristic times

(𝜏A). Such persistent non-Fickian scaling is partly due to the infinite Peclet number in our system. As we
introduce diffusion, the transition to Fickian scaling would occur earlier [Berkowitz et al., 2006; Bolster et al.,
2014]. Vortices created by inertia can also lead to anomalous transport [Cardenas, 2008]. In our system, how-
ever, the Reynolds number is in the order of 10−3, and we have confirmed that inertia is not strong enough
to create eddies.

KANG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3



Geophysical Research Letters 10.1002/2014GL061475
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Figure 3. (a) Time evolution of the centered second spatial moments in the longitudinal direction from particle tracking
simulation (red solid line), approximation from equation (2) (black dashed line), and estimations from velocity hetero-
geneity alone (Ψv(t), orange dashed line) and velocity correlation alone (Φv(t), green dashed line). The orange and
green lines are shifted along the y axis for clarity. Inset: Time evolution of the centered second spatial moments in the
transverse direction. (b) Longitudinal (x, red) and transverse (y, blue) Lagrangian velocity autocorrelation as a function
of space along the longitudinal direction. All functions are short-ranged. Inset: Longitudinal (red) and transverse (blue)
Lagrangian velocity autocorrelation as a function of time. Note the strong, long range, correlation of the longitudinal
velocity vx and the absolute value of the transverse velocity, |vy|.

We study the role of the intermittent velocity structure on the observed multidimensional anomalous
spreading in real 3-D rock. To quantify the intermittent behavior, we compute the velocity increment prob-
ability density function (PDF). The Lagrangian velocity increment associated to a time lag 𝜏 is defined as
Δ𝜏v = v(t + 𝜏) − v(t) where v(t) = [x(t + 𝜏) − x(t)]∕𝜏 . The velocity increments are rescaled with respect
to their standard deviation, Δ𝜏v∕𝜎Δ𝜏v . We find that the velocity increment PDFs in both the longitudinal
and transverse directions collapse (Figure 2, inset), an indication that intermittent behavior is equally sig-
nificant in all directions. This multidimensional intermittency originates from the combined effect of the
3-D pore structure and the divergence-free constraint on the velocity field, which results in a misalignment
between the local velocity and the mean flow direction. The PDF of the velocity increments is character-
ized by a sharp peak near zero and exponential tails. The peak reflects the trapping of particles in stagnation
zones, while the exponential tails indicate that large velocity jumps are also probable due to the strong het-
erogeneity in the velocity field—a signature of the observed intermittency [de Anna et al., 2013; Datta et al.,
2013]. The non-Gaussian character of the velocity increment PDF persists at long times (not shown), an
indication that pore-scale fluid flow cannot be modeled using the Langevin description with white noise
[Tartakovsky, 2010].

4. Lagrangian Velocity Correlation Structure and Origin of Anomalous Transport

Let 𝜒v(𝜏, 𝜂) be the velocity autocorrelation between times 𝜏 and 𝜂

𝜒v(𝜏, 𝜂) =
⟨[v(𝜏) − ⟨v(𝜏)⟩][v(𝜂) − ⟨v(𝜂)⟩]⟩

𝜎v(𝜏)𝜎v(𝜂)
, (1)

where 𝜎2
v (𝜂) is the variance of the Lagrangian velocity at time 𝜂. Owing to its definition, the MSD can be

expressed as 𝜎2
x (t) = 2∫ t

0 d𝜂 𝜎v(𝜂) ∫ 𝜂

0 d𝜏 𝜎v(𝜏)𝜒v(𝜏, 𝜂) [Bear, 1972]. We have confirmed that the velocity stan-
dard deviation 𝜎v decays in time much more slowly than the velocity autocorrelation 𝜒v . In this case, the
MSD can be approximated as

𝜎2
x (t) ≈ 2∫

t

0
d𝜂 𝜎2

v (𝜂)∫
𝜂

0
d𝜏 𝜒v(𝜏, 𝜂). (2)
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Figure 4. (a–c) Longitudinal (x) transition matrix with N = 100 velocity classes for different values of the space transition
Δx∕𝜆c . The velocity correlation decreases as the sampling distance Δx increases. (d–f ) Transverse (y) transition matrix
with N = 100 velocity classes for different Δy values. We assign 50 bins for positive velocity and another 50 for negative
velocity. The z directional transition matrix is almost identical to y directional transition matrix.

To study the independent roles of velocity heterogeneity and velocity correlation on particle spreading,
we define Ψv(t) = ∫ t

0 d𝜂 𝜎2
v (𝜂) and Φv(t) = ∫ t

0 d𝜂 ∫ 𝜂

0 d𝜏 𝜒v(𝜏, 𝜂), respectively. We observe that the anoma-
lous scaling of particle spreading is dominated by velocity correlation (Φv) in the longitudinal direction and,
in contrast, by velocity heterogeneity (Ψv) in the transverse direction (Figure 3a). However, neither veloc-
ity correlation nor velocity heterogeneity alone can fully explain the observed anomalous spreading in
our system.

To gain insight into the velocity correlation structure, we compute the velocity autocorrelation as a
function of time and space (Figure 3). From our qualitative and quantitative analysis of intermittency in
the Lagrangian statistics (Figures 1d and 1e and inset of Figure 2, respectively), it is not surprising that the
longitudinal velocity autocorrelation, 𝜒vx

, is slow decaying in time (Figure 3b, inset). Moreover, while the
transverse velocity autocorrelation, 𝜒vy

, decays faster in time, this does not mean that it has short-range
correlation; indeed, the absolute magnitude of the transverse velocity, |vy|, exhibits long-range temporal
autocorrelation (Figure 3b, inset), highlighting the crucial fact that the transverse velocity is mean revert-
ing but strongly correlated in time—a phenomenon also observed in turbulence for velocity increments
[Mordant et al., 2002]. This mean-reverting behavior in the transverse direction may lead to subdiffu-
sive transverse spreading, whereas the existence of a mean drift in longitudinal direction may lead to
superdiffusive longitudinal spreading [Dentz et al., 2004].

The Lagrangian correlation structure is drastically different as a function of space, instead of time—a key
insight first pointed out in Le Borgne et al. [2008] for Darcy flow in heterogeneous media. The longitu-
dinal and transverse velocity autocorrelation, as a function of space 𝜉x , are all short ranged and decay
exponentially (Figure 3b).

5. Continuous Time Random Walk Model

The exponential decay of autocorrelation is characteristic of Markov processes [Risken, 1989], which
suggests that the effective pore-scale velocity transitions in space can be captured by a one-step corre-
lated model in space. We propose a correlated CTRW macroscopic model [Le Borgne et al., 2008; Tejedor
and Metzler, 2010], where the velocity heterogeneity structure and the one-step velocity correlation are
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Figure 5. Longitudinal projection of the particle density dis-
tribution at fixed times (t = 𝜏A, 5𝜏A , and 10𝜏A) from direct
pore-scale simulation (solid line) and the correlated CTRW
model prediction (dashed line). Inset: Transverse projection
of the particle density distribution at fixed times (t = 2𝜏A
and 10𝜏A) from direct simulation (solid line) and the respec-
tive CTRW model prediction (dashed line). Different colors
indicate different times.

characterized by a velocity transition matrix
derived from the pore-scale 3-D simulations
[Le Borgne et al., 2008; Kang et al., 2011]. The
velocity transition matrix is the only input to
our model.

We denote by rm(v𝜁 |v′
𝜁
) the transition probabil-

ity density to encounter a velocity v𝜁 after n + m
steps, given that the particle velocity was v′

𝜁
after n

steps (here 𝜁 refers to any of the space directions,
x, y, z). To evaluate the discrete transition proba-
bility from the simulated 3-D particle trajectories,
we discretize the particle velocity distribution
into N = 100 classes with equiprobable binning,
v𝜁 ∈

⋃N
j=1(v

j
𝜁
, v j+1

𝜁
), and define the m-step

transition probability matrix:

Tm(k|j) =∫
vk+1
𝜁

vk
𝜁

dv𝜁 ∫
v j+1
𝜁

v j
𝜁

dv′
𝜁

rm

(
v𝜁 |v′

𝜁

)
p
(

v′
𝜁

)/

∫
v j+1
𝜁

v j
𝜁

dv′
𝜁

p
(

v′
𝜁

)
, (3)

where p(v′
𝜁
) is the univariate velocity distribution.

The one-step velocity transition matrix (T1), in lon-
gitudinal and transverse directions, is shown in

Figure 4. For the longitudinal direction, the high probabilities along the diagonal of T1 reflect the strong per-
sistence in the magnitude of longitudinal velocity. For the transverse direction, this effect is also present,
but in addition, we observe high probability values along the opposite diagonal, as a result of the transverse
velocity anticorrelation due to local flow reversal (Figure 1d).

Average particle motion can be described by the following system of Langevin equations:

𝜁n+1 = 𝜁n + Δ𝜁
v𝜁 (nΔ𝜁 )|v𝜁 (nΔ𝜁 )| , tn+1 = tn +

Δ𝜁|v𝜁 (nΔ𝜁 )| , (4)

where |v𝜁 | denotes the absolute value of v𝜁 and 𝜁 = x, y, z. We have directionality information in
v𝜁 (nΔ𝜁)|v𝜁 (nΔ𝜁)| .

When
v𝜁 (nΔ𝜁)|v𝜁 (nΔ𝜁)| is +1, particles jump forward (+Δ𝜁 ), and when

v𝜁 (nΔ𝜁)|v𝜁 (nΔ𝜁)| is −1, particles jump backward (−Δ𝜁 ).

CTRW simulations are performed independently in each direction with their respective transition matrix,
and we choose Δx = 𝜆c∕4, Δy = 𝜆c∕8 and Δz = 𝜆c∕8, based on the characteristic correlation length of the
exponential decay of the spatial velocity autocorrelation (Figure 3a). Note that Δ𝜁 is a physical correlation
length scale, which enables capturing the intermittent velocity structure with one-step velocity correlation
information. We assume that the sequence of Lagrangian velocities {v𝜁 (nΔ𝜁 )}∞n=0 can be approximated by a
Markov process: initial particle velocities are chosen randomly from the initial velocity distribution, and each
new velocity at the next time step (n+1) is determined from the velocity at the current time step (n) and the
one-step transition matrix T1 (Figure 4) [Le Borgne et al., 2008; Kang et al., 2011].

The proposed correlated CTRW model accurately predicts the plume evolution in all space directions, as
evidenced by the longitudinal and the transverse projections of particle density at fixed times (Figure 5)
and by the MSDs in both longitudinal and transverse directions (Figure 2). The model captures nicely
the early ballistic regime, the late time scaling, and the transition time, without any fitting parameters.
Since the transition matrix is the only input to our model, which is measured directly from the pore-scale
information obtained by solving the full Navier-Stokes equations, this validates the proposed CTRW
framework. Taken together, our findings point to the critical role of velocity intermittency at the pore
scale on particle spreading and, consequently, on mixing and reactive transport processes in porous
media flows.
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