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We report the emergence of anomalous (non-Fickian) transport through a rough-walled fracture as a 
result of increasing normal stress on the fracture. We show that the origin of this anomalous transport 
behavior can be traced to the emergence of a heterogeneous flow field dominated by preferential 
channels and stagnation zones, as a result of the larger number of contacts in a highly stressed fracture. 
We show that the velocity distribution determines the late-time scaling of particle spreading, and velocity 
correlation determines the magnitude of spreading and the transition time from the initial ballistic 
regime to the asymptotic anomalous behavior. We also propose a spatial Markov model that reproduces 
the transport behavior at the scale of the entire fracture with only three physical parameters. Our results 
point to a heretofore unrecognized link between geomechanics and particle transport in fractured media.

© 2016 Published by Elsevier B.V.
1. Introduction

Fluid flow and tracer transport through geologic fractures play 
a critical role in many subsurface processes, including ground-
water contamination and remediation, nuclear waste disposal, 
hydrocarbon recovery, geothermal energy extraction, hydraulic 
fracturing, and induced seismicity (Bear et al., 1993; Moreno 
and Neretnieks, 1993; Bodvarsson et al., 1999; Pruess, 2006;
Yasuhara et al., 2006). It has been shown—with theoretical and nu-
merical models, as well as with laboratory and field experiments—
that macroscopic transport through fracture networks is often 
anomalous (Berkowitz and Scher, 1997; Geiger et al., 2010; Kang 
et al., 2011b, 2011a, 2015b), characterized by heavy-tailed par-
ticle distribution density, both in space and time, and nonlin-
ear temporal evolution of particle mean square displacement 
(MSD) (Shlesinger, 1974; Bouchaud and Georges, 1990; Metzler 
and Klafter, 2000).

It is well known that matrix diffusion can induce anomalous 
transport (Carrera et al., 1998), but our interest here is in rock 
formations like fractured granite, where the role of matrix dif-
fusion is relatively minor and can often be neglected (Becker 
and Shapiro, 2000). Geologic fractures, however, are always un-
der significant overburden stress. While confining stress has been 
shown to impact fluid flow through rough-walled fractures in 
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a fundamental way (e.g. Unger and Mase, 1993; Olsson and 
Brown, 1993; Pyrak-Nolte and Morris, 2000; Watanabe et al., 
2008, 2013; Auradou, 2009; Nemoto et al., 2009; Ishibashi et al., 
2015; Pyrak-Nolte and Nolte, 2016), studies of anomalous trans-
port at the scale of individual fractures have so far either ig-
nored the potential role of confining stress (Måløy et al., 1988;
Detwiler et al., 2000; Auradou et al., 2001; Bodin et al., 2003a;
Drazer et al., 2004; Talon et al., 2012; Wang and Cardenas, 
2014), relied on nonmechanistic models (Tsang and Tsang, 1987), 
or focused on the role of shear stress (Koyama et al., 2008;
Vilarrasa et al., 2011; Jing et al., 2013). As a result, the mecha-
nistic underpinning and theoretical modeling for the emergence 
of anomalous transport in rough fractures under normal stress re-
mains unexplored.

Here, we demonstrate that an increase in the normal stress on 
a rough fracture can induce anomalous transport. Normal stress 
transforms the fracture geometry from a relatively homogeneous 
to a very heterogeneous flow structure: as the mean fracture 
aperture decreases, the flow organizes into preferential-flow chan-
nels and stagnation zones. To study the impact of normal stress 
on flow and transport, we first generate rough fracture surfaces, 
solve the nonlocal elastic contact problem on the rough-walled 
fractures under normal stress, and solve the flow and transport 
problem through the stressed rough-walled fractures. Then, by 
quantitatively analyzing the key mechanisms that lead to anoma-
lous transport, we develop a parsimonious model of the transport 
dynamics—the proposed model can reproduce the transport be-
havior at the scale of the entire fracture with only three physical 
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Fig. 1. (a) Grayscale photograph of a rough fracture surface of granite, obtained 
from an outcrop in Vermont, USA. Self-affine fractal surfaces are known to be good 
representations of natural fractures. (b) As the normal displacement δ increases, 
contact areas appear; we solve the nonlocal elastic contact problem to obtain aper-
ture fields. Aperture profiles at δ = 0 and at δ = 3.5σ0 are shown. δ = 0 corresponds 
to the state when the two surfaces are at first contact (zero normal stress).

parameters. Our findings advance our understanding of transport 
through fractured media by linking anomalous transport behavior 
with the geomechanical properties of fractures and their state of 
stress.

2. Generating rough fracture surfaces

Geologic fractures typically exhibit a complex surface topog-
raphy [Fig. 1(a)]. Here, we construct realistic rough fracture sur-
faces using the spectral synthesis method, which captures the 
fundamental property that fractures are self-affine fractal surfaces 
(Power and Tullis, 1991). The methodology relies on two key in-
gredients: a power spectral density function and a phase spec-
trum (Power and Tullis, 1991; Brown, 1995; Glover et al., 1998). 
The power spectral density of real fracture surfaces exhibits power-
law decay as a function of the wavenumber k (inverse of wave-
length λ), where the exponent is determined by the fractal dimen-
sion D f of the fracture surface, and the intercept is determined by 
the standard deviation of surface heights, σ f . The phase spectrum, 
in contrast, is a nearly random process, independent of frequency 
(white noise).

Experimental observations also indicate that the top and bot-
tom fracture surfaces are strongly correlated for long wavelengths 
but poorly correlated for short wavelengths (Brown, 1995; Glover 
et al., 1998). This is physically intuitive: top and bottom surfaces 
that were once perfectly mated will maintain similar large-scale 
structures, but small-scale structures will be disturbed during frac-
turing process. To incorporate this fundamental observation into 
the synthetic rough surface generator, and to allow for a gradual 
decay in correlation with wavenumber, we introduce the phase 
correlation function γ = 1

2 [1 + erf(−(k − kc)/θ)], where θ is a 
model parameter that determines the rate of correlation decay, and 
kc = 1/λc is the wavenumber at where the phase correlation be-
tween the top and bottom surface is 0.5.

Once the power and phase spectra of the top and bottom sur-
faces have been set, we generate the two surfaces by performing 
an inverse Fourier transform. The aperture field at first contact 
(aδ=0(x, y)) can be obtained by substracting top and bottom sur-
faces heights such that the minimum aperture is zero without 
deformation; δ is the compressive normal displacement from first 
contact [Fig. 1(b)]. For the aperture field presented in this study, 
the mean aperture value at first contact is aδ=0 = 4.3σ0 where σ0
is the standard deviation of aperture values at δ = 0. For the results 
presented in this paper, we choose D f = 2.3, θ = 4, λc = L/15, 
σ f = L/100 where L is the domain size, and digital resolution of 
256 × 256 pixels.

3. Elastic contact problem

We obtain the geometry of the stressed rough fracture by 
solving an elastic contact problem on the synthetic rough sur-
face subject to normal stress [Fig. 1(b)]. Fractured rock often 
exhibits elastic behavior, and past studies employed an elastic 
model to investigate the role of normal stress on rough sur-
faces (e.g., Bandis et al., 1983; Brown and Scholz, 1985; Hopkins, 
1990; Unger and Mase, 1993; Pyrak-Nolte and Morris, 2000;
Petrovitch et al., 2014). We employ realistic values of the elas-
tic constants for rock under geologic conditions (Wang, 2000;
Pollard and Fletcher, 2005; Johnson and DeGraff, 1988): shear 
modulus G = 20 GPa, and Poisson ratio ν = 0.25, which are in the 
range of common values for natural rocks such as granite, basalt, 
limestone and sandstone (Johnson and DeGraff, 1988). We consider 
the long-range deformation produced by the force at each con-
tact, and the combined effect of multiple contacts (Andrews, 1988;
Unger and Mase, 1993). As the distance between the top and bot-
tom surfaces decreases due to an increase in confining stress, 
a region of interpenetration between the top and bottom sur-
faces emerges. We constrain the deformation such that there is 
no interpenetration between the two surfaces. This is a mixed 
boundary value problem with displacement prescribed over part 
of the surface and normal stress prescribed over the remainder 
of the surface. The analytical solution for vertical/normal displace-
ment due to a point force on an elastic half space is known as 
the Boussinesq solution, B(r) = (1−ν)

2πG
1
r , where r is the distance 

from the point force. The normal displacement w(x, y) is ob-
tained by convolution of the Boussinesq solution with the stress 
field S(x, y): w(x, y) = ∫∫

S(x′, y′)B(r)dx′dy′ (Andrews, 1988;
Unger and Mase, 1993). We use the discrete Fourier transform to 
solve the mixed boundary value problem, which makes the solu-
tion periodic.

By solving the elastic deformation problems for increasing val-
ues of the normal displacement δ, we obtain aperture maps at 
different levels of stress. The probability distributions of aperture 
values at four different displacements (δ = 0, 1.5σ0, 2.5σ0, and 
3.5σ0) clearly show a dramatic change in the aperture heterogene-
ity [Fig. 2(d)]. The aperture distribution is initially Gaussian but 
becomes heavy tailed as contact areas emerge. A broad aperture 
distribution implies a broad local (pixel-sale) fracture conductivity, 
which in turn impacts flow and transport. We note that solving 
the elastic deformation problem leads to different fracture geome-
try compared with simply removing the overlaps between the two 
surfaces, especially at high normal stress.

4. Impact of stress on the flow field

To study the impact of stress on the flow field, we perform a 
fluid flow simulation for incompressible fluid with constant vis-
cosity and density on the final solution of the elastic deformation 
simulation at each value of the displacement δ [Fig. 1(b)]. We 
take the aperture map, a(x, y), as the gap width in an equiva-
lent parallel plate model (Moreno et al., 1988). By applying the 
lubrication approximation, we obtain a Darcy type equation for the 
gap-averaged fluid velocity, u = − a2

12η∇ P , where η is the fluid dy-
namic viscosity and P is the fluid pressure (Tsang and Tsang, 1987; 
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Fig. 2. (a) Aperture map a(x, y) between the two rough fracture surfaces under zero normal stress, when top and bottom surfaces are at first contact, δ = 0. Aperture values 
are normalized with the maximum aperture at δ = 0. (b) Aperture map a(x, y) at displacement δ = 3.5σ0. Aperture values are normalized with the maximum aperture 
at δ = 0. (c) Same as (b) but the zero-aperture regions marked with green color to highlight the spatial organization of contact areas. (d) Probability density distributions 
of aperture at four different displacements: δ = 0 (black), 1.5σ0 (blue), 2.5σ0 (green), and 3.5σ0 (red). As stress increases, the aperture distribution becomes broader and 
strongly skewed. Inset: the same plot in log–log scale. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)
Moreno et al., 1988; Koyama et al., 2008; Watanabe et al., 2013;
Ishibashi et al., 2015). The local cubic law is in general applica-
ble when the flow is laminar and the aperture variation is small 
compared to the size of the grid block (Bodin et al., 2003b). When 
the aperture variation becomes comparable to the grid block size, 
3D effects should be taken into account. Conservation of mass im-
poses that the gap-integrated velocity, or volumetric flux, q = ua, 
be divergence free: ∇ · q = 0. We obtain the fluid pressure field 
in the 2D domain, P (x, y), by solving the continuity equation with 
no-flow boundary conditions at the top and bottom boundaries, 
and fixed pressure values at the left (inlet, P in = 1) and right (out-
let, Pout = 0) boundaries.

The flow field through the fracture exhibits a fundamental 
change as a function of normal stress (Fig. 3). Preferential flow 
paths with fast velocities [Fig. 3(b)], stagnation zones with small 
velocities, and back-flow zones with negative velocities [Fig. 3(c)] 
all emerge as stress increases. We quantify the change in the 
flow field by plotting the Eulerian velocity distribution at differ-
ent stress states [Fig. 3(d)]. The Eulerian velocity distribution has a 
well defined mean and variance at small stress values but con-
verges towards a truncated power-law distribution as stress in-
creases, indicating the dramatic impact of normal stress on flow.

5. Emergence of anomalous transport

Once the steady-state fluxes are obtained, we simulate trans-
port of a passive tracer by particle tracking. We assume com-
plete mixing at the computational grid blocks (Kang et al., 2011b;
Moreno and Neretnieks, 1993). Thus, the direction which the par-
ticle exits a grid block is chosen randomly with flux-weighted 
probability, and the transition time is τi = ail
1
2

∑
j |qij | , where ai is 

the aperture value at grid block i, l is the size of the grid block 
(assumed square), and qij are the edge fluxes.

To initialize the streamlines, we inject 104 particles at the inlet 
face with flux-weighted probability. To obtain particle trajectories 
that are long enough to observe macroscopic behavior, we concate-
nate particle trajectories randomly with flux-weighted probability 
(we have confirmed that the flux distribution at inlet and outlet 
faces are virtually identical).

The change in the transport behavior due to the increase in 
stress can be clearly observed from particle breakthrough curves 
and from the temporal evolution of the longitudinal mean square 
displacement (MSD) with respect to the center of mass. The peak 
arrival time is delayed, and particle breakthrough curves become 
heavy-tailed as δ increases [Fig. 4(a)]. The late-time scaling of 
the longitudinal MSD is Fickian for low-stress fractures (MSD ∼ t1

for δ < 2σ0), and becomes strongly anomalous (superdiffusive) for 
highly stressed fractures (MSD ∼ tα with α > 1 for δ > 3σ0).

The complete mixing rule is a widely used method when solv-
ing transport through fractures (Dverstorp et al., 1992; Berkowitz 
et al., 1994; Stockman et al., 1997; Park et al., 2001), which as-
sumes that Péclet numbers at grid blocks are small enough that 
particles are well mixed within the grid block. We have compared 
the results with simulations of particle transport using a streamline 
routing protocol, which assumes that Péclet numbers at grid blocks 
are large enough that particles follow the streamlines and do not 
transition between streamlines, and confirmed that the spreading 
behavior is insensitive to the mixing rule, in accord with earlier 
findings for transport in heterogeneous conductivity fields (Park et 
al., 2001; Kang et al., 2015a) (see Appendix A.1). While it is true 
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Fig. 3. (a) Magnitude of the volumetric flux, 1
2

∑
j |qij |, at each discretization grid block obtained from the solution of the flow equation on the rough fracture at first contact, 

δ = 0. Values are normalized by the mean value of flux at δ = 0. (b) Magnitude of the flux at δ = 3.5σ0, showing the emergence of preferential flow paths in a highly stressed 
fracture. Values are normalized by the mean value of flux at δ = 3.5σ0. (c) x-component of the flux at δ = 3.5σ0, normalized by the mean x-directional flux. The presence 
of fracture contacts (green areas) induce preferential flow paths and negative velocities in the x-direction. (d) Probability density distributions of total volumetric flux at four 
different displacements: δ = 0 (black), 1.5σ0 (blue), 2.5σ0 (green), and 3.5σ0 (red). The flux magnitude becomes significantly broader as stress increases. Inset: change in the 
fraction of contact area in the fracture as a function of displacement δ. Symbols correspond to the four δ values above (colors matched). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. (a) Particle breakthrough curves measured at x = L/8, for four different stress values corresponding to normal displacements δ = 0 (black), 1.5σ0 (blue), 2.5σ0 (green), 
and 3.5σ0 (red). Inset: delay in peak arrival time as a function of δ. (b) Temporal evolution of particle mean square displacement (MSD) for the four values of δ. Time is 
normalized with the mean transition time over one grid block at the corresponding δ. The transport behavior experiences a transition from normal (slope = 1) to anomalous 
(slope > 1, super-diffusive). Inset: evolution of late-time power-law scaling of MSD with time as a function of δ. The transition from Fickian to non-Fickian transport occurs 
at δ ≈ 2.5σ0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
that diffusion will eventually revert particle spreading to Fickian 
behavior (Dentz et al., 2004), the lack of sensitivity to the grid 
block mixing rule indicates that diffusion does not appear to play 
any significant role even for the long simulation times we study 
(dimensionless times t ∼ 104). However, a rigorous account of the 
effect of molecular diffusion at specific Péclet numbers would re-
quire a particle tracking simulation with advective and diffusive 
steps (e.g., Bijeljic et al., 2011).
We have explored different values of parameters D f , kc and θ , 
and confirmed that the emergence of anomalous transport in 
stressed rough fractures is a general phenomenon, independently 
of the details of fracture roughness, correlation cut-off and decor-
relation rate (see Appendix A.2 and Appendix A.3). We have also 
confirmed that the late-time spreading behavior obtained from one 
realization are representative of an ensemble of realizations at all 
levels of normal stress (see Appendix A.4). This is because the do-
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Fig. 5. (a) Probability density distributions of Lagrangian transition time, ψτ (t), for four different normal displacements: δ = 0 (black), 1.5σ0 (blue), 2.5σ0 (green), and 3.5σ0

(red). Inset 1: change in late-time scaling of ψτ (t) as a function of δ. Anomalous transport is expected to occur when β < 2, which occurs when δ > 2.5σ0. Inset 2: change 
in the velocity correlation time τc as a function of δ. The correlation time is minimum at the value of δ corresponding to the transition from normal to anomalous transport. 
(b) Time evolution of the MSDs from the direct simulation (solid lines) and the prediction with the spatial Markov model (dashed lines) for the four different values of δ. 
Inset: Comparison between the MSD at δ = 2.5σ0 from direct simulation (green solid line) and the prediction with the CTRW model ignoring velocity correlation. Velocity 
correlation determines the transition time from ballistic to asymptotic scaling. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
main size is large enough to represent the statistics of a given 
fracture geometry, so that the results are also independent of do-
main size.

6. Origin of anomalous transport

To gain insight into the origin of the observed transition from 
Fickian to anomalous transport, we analyze Lagrangian velocity 
statistics—in particular, transition time distribution and velocity 
correlation.

The transition time distribution, ψτ (t), is the fundamental de-
scriptor of the continuous time random walk (CTRW) formal-
ism (Scher and Montroll, 1975; Klafter and Silbey, 1980), which 
offers an attractive framework to characterize anomalous transport 
through disordered media (Berkowitz and Scher, 1997; Seymour 
et al., 2004; Dentz et al., 2004; Berkowitz et al., 2006; Geiger et 
al., 2010; Bijeljic et al., 2011). Here, we measure ψτ (t) by sam-
pling the transition times between grid blocks in the x-direction at 
every �x = �. CTRW theory relates the late-time scaling of MSD, 
MSD(t) ∼ tα , and the late-time power-law scaling of transition 
time distribution, ψτ (t) ∼ t−(1+β) (Dentz et al., 2004). Transport 
is Fickian when β ≥ 2 and anomalous when β < 2. In particular, 
when 1 < β < 2, the relation α = 3 − β holds. From our simu-
lations, we observe that the transition time follows a truncated 
power-law distribution that broadens with the stress on the frac-
ture [Fig. 5(a)]: β decreases as δ increases, and it becomes smaller 
than 2 around δ = 2.5σ0, which is consistent with the transition 
from normal to anomalous MSD scaling [Fig. 4(b), inset]. More 
specifically, at δ = 3.5σ0, β ≈ 1.7 and α ≈ 1.3, which is consis-
tent with the relation from CTRW theory. This indicates that the 
increase in normal stress leads to a change in transition time dis-
tribution, which in turn controls the late-time superdiffusive scal-
ing.

In addition to heterogeneity in the transition times, recent stud-
ies have demonstrated that velocity correlation can also play a 
major role on particle transport dynamics (Le Borgne et al., 2008;
Meyer and Tchelepi, 2010; Dentz and Bolster, 2010; Kang et al., 
2011b, 2014; de Anna et al., 2013). To quantify velocity correla-
tion, we calculate the normalized velocity correlation time, τc =∫ ∞

0 dtχv(t/t̄) where χv(t) is the velocity autocorrelation function 
in time and t̄ is the mean advective time over � = �x. τc initially 
decreases as δ increases, exhibits a minimum around δ = 2.5σ0, 
and then increases again [Fig. 5(a), inset 2]. We conjecture that 
the initial decrease in τc is due to the emergence of a more het-
erogeneous velocity field as the fracture is stressed. This leads to 
more heterogeneous particle velocity trajectory that induces a re-
duction in velocity correlation. However, for higher levels of stress, 
strong preferential paths and stagnation zones emerge [Fig. 3(b)]; 
particles tend to remain in these preferential paths (or in the stag-
nation zones) with similar velocity magnitude, thereby increasing 
the velocity correlation. Interestingly, the level of stress at which 
τc is minimum coincides with that for the transition from normal 
to anomalous transport (δ ≈ 2.5σ0).

7. Spatial Markov model

To develop an effective model for the average particle den-
sity, we extend a spatial Markov model (Kang et al., 2015b)
and characterize velocity distribution and velocity correlation with 
three parameters: τ0, β and ξ . Velocity distribution is captured 
by a transition time distribution that follows truncated power 
law [Fig. 5(a)]: ψτ (t; τ0, β) = 1

τ
−β
0 �(β,0)

exp
(− τ0

t

)
t−(1+β) , where 

τ0 determines the early time cutoff, β the power-law slope, and 
�(β, 0) = ∫ ∞

0 tβ−1 exp(−t)dt .
Recent studies of transport through porous media at various 

scales have shown that particle velocities sampled in space form 
a Markov process (Le Borgne et al., 2008; Kang et al., 2011b, 2014; 
de Anna et al., 2013). In this case, the full velocity correlation infor-
mation can be captured by the transition matrix (Le Borgne et al., 
2008), where the transition times τ are discretized into N classes 
such that the transition probabilities between classes are repre-
sented by the N × N transition matrix T. While the full transition 
matrix obtained from direct numerical simulations can be complex, 
here we consider a simple transition-matrix model, in which all 
diagonal entries are fixed to a constant A, and the remaining en-
tries are equal to (1 − A)/(N − 1), that is, Tij = Aδi j + 1−A

N−1 (1 − δi j). 
This transition matrix imposes the same correlation function for all 
starting velocities, and the diagonal value of A ≤ 1 determines the 
correlation strength. For this simple transition matrix, the correla-
tion length ξ is uniquely determined by the diagonal value A, and 
in the limit N 
 1, ξ = �/ ln(A−1) (Kang et al., 2015b).

In short, β determines the late-time scaling of MSD, τ0 deter-
mines the peak arrival time, and ξ determines the transition time 
to anomalous scaling and thereby the magnitude of spreading. We 
estimate τ0 and β from the transition time distribution and ξ from 
the spatial velocity correlation function obtained from the direct 
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numerical simulations, and use these parameter values for model 
prediction. The model exhibits excellent agreement with the di-
rect simulations, and captures the transport behavior at all levels 
of stress, from normal to anomalous transport [Fig. 5(b)].

8. Summary

We have shown that stress can induce anomalous transport 
in a rough fracture as a result of changes to the fundamental 
structure of the flow field, which organizes into preferential-flow 
channels and stagnation zones. We have proposed and validated 
a spatial Markov model that incorporates velocity distribution and 

Fig. 6. Time evolution of MSD from the complete mixing rule (solid line) and 
streamline routing rule (dashed line) for four different values of δ. The two cases 
show almost identical spreading behavior, and a transition from ballistic to super-
diffusive regime.
correlation with only three physical parameters. While the results 
presented here are obtained for self-affine fractures, we have con-
firmed that the same transition behavior from normal to anoma-
lous transport as a function of stress occurs also for other statisti-
cal descriptions of fracture roughness (see Appendix A.5), pointing 
to the universal character of our findings.

Acknowledgements

This work was funded by the U.S. Department of Energy
through a DOE CAREER Award (grant DE-SC0003907) and a DOE 
Mathematical Multifaceted Integrated Capability Center (grant DE-
SC0009286). P.K.K. gratefully acknowledges support from the Ko-
rean Ministry of Land, Infrastructure and Transport (16AWMP-
B066761-04). Data used in this manuscript can be obtained from 
the corresponding author (juanes@mit.edu).

Appendix A

A.1. Results for different mixing rules

We do not explicitly consider diffusion in the simulations of 
transport. However, the complete mixing rule implicitly introduces 
diffusion at the scale of the grid block. The complete mixing rule 
is a widely used assumption when solving transport through frac-
tures (Dverstorp et al., 1992; Berkowitz et al., 1994; Stockman et 
al., 1997; Park et al., 2001), which assumes that Péclet numbers at 
grid blocks are small enough that particles are well mixed within 
the grid block. To assess whether our findings are independent of 
the assumption of full mixing at the computational grid blocks that 
define the fracture aperture field, we also simulate particle trans-
port using a streamline routing protocol, which assumes that Péclet 
Fig. 7. (a, b) Aperture maps a(x, y) between two rough surfaces with D f = 2.3 and D f = 2.6, respectively, at normal displacement η = 0.8. (c) Probability density distributions 
of total volumetric flux at four different displacements (η = 0.8, 1.8, 2.6, 3.5) for the two different values of fracture roughness (solid line for D f = 2.6, dashed line for 
D f = 2.3). There is no noticeable difference. (d) Time evolution of the MSDs for the four different displacements (solid line for D f = 2.6, dashed line for D f = 2.3). Both 
cases exhibit very similar flux distribution and late-time particle spreading behavior.
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Fig. 8. (a, b) Aperture maps a(x, y) between two rough surfaces with decorrelation rates θ = 4 and θ = 8, respectively, at normal displacement η = 0.8. (c) Probability density 
distributions of total volumetric flux at four different normal displacements (η = 0.8, 1.8, 2.6, 3.5) for the two different decorrelation rates (dashed line for θ = 4, solid line 
for θ = 8). (d) Evolution of late-time power-law scaling of MSD with time as a function of displacement. Displacement is defined as |η − 3.5|. The transition to anomalous 
transport (slope α > 1) occurs earlier for θ = 8 (red stars) than for θ = 4 (blue circles). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 9. (a) Two realizations of the fracture aperture field a(x, y), at η = 0.8. The schematic illustrates the reference point for the vertical displacements. (b) Probability density 
distributions of aperture at four different displacements (η = 0.8, 1.8, 2.6, 3.5) for the two different realizations (solid line and dashed line for each realization). (c) Probability 
density distributions of total volumetric flux at four different displacements. (d) Time evolution of the MSDs for the four different displacements. We have run simulations 
over ten different realizations (gray lines) and the comparison with the average behavior (dashed line) shows that late-time spreading behavior obtained from one realization 
are representative of an ensemble of realizations at all levels of normal stress. The different realizations show virtually identical aperture distributions, flux distributions, and 
late-time particle spreading behavior, at all levels of normal stress.
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Fig. 10. (a) An aperture map a(x, y) that follows a Gaussian log-aperture field, at normal displacement η = 0.8. (b) Time evolution of the MSDs for four different values of 
the normal displacement. This Gaussian log-aperture field also leads to the emergence of anomalous transport in response to increasing confining stress.
numbers at grid blocks are large enough that particles follow the 
streamlines and do not transition between streamlines. The com-
plete mixing and streamline routing rules are two end members 
with regard to the importance of diffusion. Previous works have 
shown that longitudinal spreading is largely insensitive to the mix-
ing rule in heterogeneous conductivity fields (Park et al., 2001;
Kang et al., 2015a), and we have confirmed that this is also true 
for a rough fracture (Fig. 6).

A.2. Results for different levels of aperture fluctuations

In Fig. 7, we show simulation results for two different levels 
of aperture fluctuations (D f = 2.3, 2.6). We have confirmed that 
anomalous transport emerges as stress increases across all levels of 
fracture roughness and that, in this case, there was no noticeable 
difference due to the change in the roughness.

A.3. Results for different decay rates of roughness correlation

We show the emergence of anomalous transport for different 
correlation decay rates (Fig. 8). While the late-time power-law 
scaling is indeed dependent on the decorrelation rate θ , and the 
transition to anomalous transport occurs earlier for θ = 8 than for 
θ = 4, the general observation remains.

A.4. Results for multiple realizations

We have confirmed that the results from one realization are 
representative by comparing simulation results for an ensemble of 
realizations. In Fig. 9, we compare simulation results from 10 re-
alizations. In this case, we choose as a reference point the mean 
aperture value at first contact, μ (Fig. 9(a)). We define a normalized 
displacement with respect to the reference point, η, as follows: 
η = (δ′ −μ)/σ , where σ is the standard deviation of aperture val-
ues at first contact (zero normal stress). We show that the aperture 
statistics, fluid flow statistics and long-time particle spreading be-
havior are virtually identical between realizations. This is because 
the domain size is large enough to represent the statistics of a 
given fracture geometry. Therefore, results from a single fracture 
lead to the same conclusions as results from ensemble averaging.

A.5. Results for different models of fracture roughness

Finally, we have confirmed the emergence of anomalous trans-
port for different models of fracture roughness, which are not 
self-affine. To illustrate this, we present results of flow and trans-
port in a Gaussian log-aperture field (Ruan and McLaughlin, 1998)
(Fig. 10).
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