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Determination of the Wave Structure of the
Three-Phase Flow Riemann Problem
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Abstract. In a previous paper (Transp. Porous Media, 55(1): 47–70), algorithms are given
for computing the analytical solution to the three-phase Riemann problem. Application
of those algorithms requires that the wave configuration is known. The purpose of this
note is to provide a procedure to determine the wave structure for any initial and injected
saturation states.
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1. Wave Structure Algorithm

The solution to the Riemann problem of three-phase flow in porous media
is discussed in Juanes and Patzek (2004). It is found that, when the rela-
tive permeability functions satisfy certain physically-based conditions, then:
(1) the first-order system of saturation equations is strictly hyperbolic; and
(2) both characteristic fields are nongenuinely nonlinear, with single, con-
nected inflection loci. It is concluded that there are nine admissible solu-
tion types, and efficient algorithms are given for the implementation of the
analytical solution in each of these cases. The paper gives admissibility cri-
teria for each solution type. Therefore, the validity of the assumed wave
structure can be checked once the solution has been computed. The paper
leaves open the question of how the solution type is obtained. We address
this question here, and we give an algorithm for the actual determination
of the structure of the solution. The algorithm is designed to converge for
all initial and injected states, and we show that the correct solution struc-
ture is usually obtained after one iteration.

1.1. two-phase flow

We illustrate the algorithm for determining the wave structure with the
much simpler two-phase flow case. The problem is described by a scalar
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hyperbolic equation,

∂tu+ ∂xf =0, (1)

where u is the water saturation, and f (u) is the fractional flow function.
A standard feature of the two-phase flow model is that the flux function
f is S-shaped: it has a unique inflection point at u0, which corresponds
to a maximum value of the derivative f ′. In this case, it is well-known
that the solution to the Riemann problem with left state ul and right state
ur may only involve a rarefaction, a shock, or a composite rarefaction-
shock.

A single rarefaction is admissible only if the left and right states are
on the same convexity region, with the right state closer to the inflection
point: u0 � ur < ul, or ul < ur � u0. A single shock is admissible if it sat-
isfies the Lax entropy criterion: f ′(ul) > σ > f ′(ur), where σ = (f (ul) −
f (ur))/(ul − ur) is the shock speed. A composite wave is admissible if the
rarefaction and the shock are both admissible individually. A necessary
(but not sufficient) condition for the solution to be a rarefaction-shock is
that the left and right state lie on opposite sides of the inflection point, so
that the characteristic speed is not monotonic: ul >u0 >ur , or ul <u0 <ur .
In Figure 1, we present an algorithm for obtaining the wave structure in
two-phase flow.

Figure 1. Algorithm for obtaining the wave structure in two-phase flow.
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1.2. three-phase flow

Under common assumptions, three-phase flow is described by the system
of equations

∂tu+ ∂xf=0, (2)

where u is the vector of water and gas saturations, and f is the vector
of fractional flow functions. We assume that the system is strictly hyper-
bolic, and that the inflection locus of each characteristic family is a single
connected curve, which corresponds to maxima of eigenvalues (Juanes and
Patzek 2004, Fig. 2). Under these conditions, the solution to the Riemann
problem is a sequence of two waves, each of which may only be a rarefac-
tion, a shock, or a rarefaction-shock.

The inflection locus of the i-family is the set of states at which the i-charac-
teristic velocity attains a maximum or a minimum value when moving along
integral curves of the i-family. We define, for any saturation state u, the quantity

Vi(u) :=∇νi(u) · ri(u), (3)

where νi is the i-eigenvalue and ri is the i-eigenvector of the Jacobian matrix
f ′(u). With this definition, the i-inflection locus is nothing but the contour Vi =
0, which separates convexity regions.

The admissibility criterion for the solution is that each wave must be
admissible, that is, i-rarefactions must connect saturation states in the same
convexity region (with respect to the i-inflection locus); shocks must satisfy
the Lax entropy criterion; and rarefaction-shocks of the i-family must con-
nect states on opposite sides of the i-inflection locus. In addition, one must
check that the computed intermediate state is inside the saturation triangle
and that the two waves are strictly separated.

We compute a trial solution by assuming that both waves are genuine
shocks (incidentally, this is the fastest solution type to compute). Once a
trial solution has been computed, we can ascertain what the wave structure
of the solution would be, if the intermediate state were the trial one. This is
done for each wave individually using the same arguments as for the two-
phase case: a valid i-shock must satisfy the Lax entropy criterion; if the
shock is not admissible, and the constant states joined by the i-wave are on
the same convexity region, the i-wave is a rarefaction; otherwise it is a rare-
faction-shock. Although integral curves and Hugoniot loci do not coincide,
they have similar paths. This means that the intermediate state (defined by
the intersection of the 1- and 2-waves) is not very sensitive to the solution
type, and the procedure usually converges after one iteration. Obviously, if
both shocks are admissible, the trial solution is the actual solution and no
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Figure 2. Algorithm for obtaining the wave structure in three-phase flow.

Figure 3. Ten saturation states from a uniform distribution used to define the initial
and injected states of the Riemann problem.
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Figure 4. Number of iterations required for convergence of the algorithm in Figure
2 for all 90 combinations of initial and injected states. The thick solid line is the
average number of iterations.

iterations are required. The proposed algorithm for finding the wave struc-
ture in three-phase flow is summarized in Figure 2.

2. Examples

Examples of all admissible wave configurations are shown in Juanes and
Patzek (2004). Here, we use the same relative permeability functions and
fluid viscosities, and study the performance of the algorithm to determine
the wave structure. We take ten random saturation states from a uniform
distribution on the ternary diagram (see Figure 3), and consider all pos-
sible combinations of initial and injected saturations. In Figure 4, we plot
the number of iterations required for convergence for each pair of initial
and injected states. The average number of iterations is about 0.8, demon-
strating the effectiveness of the algorithm.
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