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SUMMARY

The need to assess quantitatively the safety of waste repositories in deep geological media has
fostered the development of e�cient numerical models of groundwater �ow and contaminant transport in
fractured media. These models usually account for water �ow through fracture zones embedded in a 3D
rock matrix continuum. The �rst formulation of fractures in groundwater �ow �nite element models was
proposed by Kiraly, and later revisited and generalized by Perrochet. From a mathematical viewpoint,
fractures can be considered as m-dimensional manifolds in an n-dimensional Euclidean space (m6n).
The key step of this formulation lies in an expression relating the hypersurface element dSm to the
in�nitesimal local co-ordinates d�i (i=1; : : : ; m). Here we present a novel proof for this relation using
a di�erent approach to that of Perrochet, and explore the e�ciency and accuracy of the formulation.
It is shown that the aforementioned relation leads to a general and compact formulation which is not
only applicable to elements of any dimension (e.g. 1D, 2D and 3D elements in a 3D domain), but also
overcomes the cumbersome and case-speci�c calculations of traditional approaches. This formulation
has been implemented in a versatile �nite element program for modelling groundwater �ow, solute
transport and heat transport in porous and fractured media. The e�ciency and accuracy of the proposed
formulation has been analysed using a synthetic case dealing with �ow and solute transport through a
2D fractured rock block. The proposed formulation, in which fractures are discretized by means of 1D
elements is more e�cient and accurate than the traditional �nite element formulation of discretizing
fractures by means of 2D elements. The capability of the proposed formulation to cope with complex
systems is illustrated with a case study of groundwater �ow induced by the construction of the access
tunnel to an underground research laboratory in �Asp�o (Sweden). The numerical model is able to re-
produce the observed records of water levels in boreholes and �ow rates into the tunnel. Although the
proposed formulation has been implemented and tested within the framework of groundwater �ow and
solute transport in fractured porous media, it should be of interest for other boundary value problems.
Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: �nite element method; fractures; manifolds; groundwater �ow; solute transport

∗Correspondence to: Javier Samper, Escuela de Ingenieros de Caminos, Canales y Puertos, Universidad de La
Coruña, Campus de Elviña, 15192 La Coruña, Spain.

†E-mail: samper@iccp.udc.es
‡Now at the Department of Civil and Environmental Engineering, University of California at Berkeley, 631 Davis
Hall, Berkeley CA 94720-1710, U.S.A.

Contract=grant sponsor: ENRESA (Spanish Agency for Nuclear Waste). European Commission; contract=grant
number: F14W-CT95-0006.
Contract=grant sponsor: CICYT; contract=grant number: HID98-282.

Received 2 October 2000
Copyright ? 2002 John Wiley & Sons, Ltd. Revised 10 August 2001



1752 R. JUANES, J. SAMPER AND J. MOLINERO

1. INTRODUCTION

Three-dimensional numerical models of groundwater �ow and solute transport through
fractured porous media are required for groundwater resources management and for the eval-
uation of the fate of groundwater pollution by toxic wastes. While most of the �ow occurs
along fractures, the rock matrix plays a major role in retarding the migration of contaminants.
Di�erent conceptual models have been proposed in the literature for �ow and transport in
fractured media (see, e.g. the summary in Reference [1] and the references therein). There is
a consensus on the fact that the embedded fracture model (according to which fractures are
discretized as geometrical entities embedded in a continuum) is the most appropriate model
for systems containing major fracture zones.
There are two numerical approaches for embedding fractures within the continuum: (1) by

discretizing fractures with distorted three-dimensional elements in a three-dimensional medium
and (2) by treating fractures as two-dimensional surfaces in a three-dimensional space. As
it is shown in this paper, the latter approach is more natural and numerically much more
e�cient.
The idea of representing fractures with elements of lower dimensions �rst appeared in

Reference [2]. In this pioneer work, steady-state groundwater �ow was simulated in a highly
fractured hydrogeological system. The same model was later revisited in subsequent articles
[3; 4]. Based on this idea, Perrochet [5] developed a method for the evaluation of �nite
element matrices in a 4D geometrical framework, and used this formulation in conjunction
with space–time techniques. As an application of the method he considered a pure convection
problem on a 2D manifold with curvature in a 3D space. He reported excellent results using
a stabilized space–time �nite element formulation. In this context, the need for domains of
dimension higher than three is evident.
In view of the great potential interest of this embedded manifold formulation in subsurface

hydrology and possibly many other �elds of engineering, the present paper points out some
relevant issues not addressed in previous references.
While Reference [5] devotes much attention to the computation of gradients in global co-

ordinates, the problem of integration on manifolds is not discussed in detail. The key point
for the computation of integrals over m-dimensional surfaces within n-dimensional Euclidean
spaces (m6n) lies on a general expression relating the di�erential of a generalized surface
dSm (hypersurface element) in global co-ordinates to the di�erential of local co-ordinates
d�i (i=1; : : : ; m). This expression, which does not seem to be well known among the �nite
element community, is stated in Reference [5] without a proof. In this paper we provide
a novel proof for such expression, which is used here for computing integrals over frac-
tures embedded in a continuum and for evaluating integrals along boundaries. This permits a
uni�ed treatment of element and boundary integrals in �nite element formulations, which is
of practical interest even in the absence of fractures. The formulation has been implemented
in a computer code, which solves the equations of groundwater �ow, solute transport and heat
transfer through porous and fractured media, thus extending the range of problems tackled by
Kiraly and co-workers [2–4].
The embedded manifold approach is not only more general, compact and elegant than

traditional formulations, as acknowledged in earlier works. In this paper we show, by means
of a realistic synthetic case, that it can also lead to much more e�cient numerical solutions.
The test case simulates solute transport through a rectangular porous block with a network
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of interconnected orthogonal fractures. An extensive comparison is performed between the
numerical performance of the proposed formulation and that of the traditional formulation.
Signi�cantly more accurate solutions are obtained with a much less computational cost when
fractures are discretized with 1D elements.
A real case study is also presented to illustrate the potential of the proposed approach for

practical applications. It deals with three-dimensional �ow in a fractured rock induced by the
construction of a tunnel. This study di�ers from the application example in Reference [3]
in that: (1) the scale is of the order of kilometers (�eld scale) and not hundreds of kilo-
meters (regional scale), (2) the model is fully transient due to the advancing tunnel front,
(3) solute transport is modelled in addition to groundwater �ow and (4) the model in Ref-
erence [3] was used to ‘analyse the sensitivity of the solution to hypotheses’ whereas in the
present case the model was calibrated with measured data and used successfully as a predictive
tool.
The paper is organized as follows: in Section 2 the mathematical and �nite element

formulations of groundwater �ow and solute transport are presented. Section 3 addresses
the problem of integrating on a manifold, including an original proof of the expression for
the hypersurface element. The pseudocode for the implementation of the proposed formulation
in a �nite element program is described in Section 4. The test case in Section 5 and the real
case study in Section 6 illustrate the e�ciency and applicability of the formulation. The most
salient �ndings are summarized in the conclusions.

2. THE MATHEMATICAL PROBLEM

The physical processes of groundwater �ow and solute transport can be modelled mathemat-
ically as initial and boundary value problems [6], which may be expressed in a general form
as the partial di�erential equation

@u
@t
+L(u)=f in �; t∈(0; T ) (1)

where u is the scalar unknown, L(·) is a di�erential operator describing the physical process,
f is a problem-dependent source term, �⊂Rd is the spatial domain and (0; T ) is the time
interval of interest. The space dimension will usually be d=2; 3. The di�erential operator
takes the form of the scalar advection–di�usion-reaction equation:

L(u) :=−∇ · (a∇u) + b · ∇u+ cu

= −∑
i; j

@
@xi

(
aij
@u
@xj

)
+

∑
j
bj
@u
@xj

+ cu (2)

where a=[aij] is the di�usion tensor (assumed symmetric positive de�nite), b= {bj} is the
advective velocity, and c is the absorption coe�cient. Three di�erent types of boundary con-
ditions are considered, namely, essential (Dirichlet), natural (Neumann) and mixed (Cauchy).
Let @� be the boundary of the domain, and �⊂ @� the part of the boundary on which essen-
tial boundary conditions are imposed (assume � �= ∅). The boundary conditions of the problem
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Table I. Partial di�erential equations of: (1) groundwater �ow and (2) solute transport,
with the corresponding boundary conditions.

Process Di�erential equation Mixed type BC

(1) Ss
@h
@t

−∇ · (K∇h)= r −(K∇h) · n=Q + �(h− h̃)
(2) �R

@c
@t

−∇ · (�D∇c) + q · ∇c + ��Rc= r(c̃ − c) −(�D∇c) · n=F + �(c − c̃)

(1) Groundwater �ow

h Piezometric head (L)
t Time (T)
K Hydraulic conductivity tensor (L T−1)
r Volumetric recharge (T−1)
Ss Speci�c storage coe�cient (L−1)
n Outward unit normal vector (dimensionless)
� Leakage coe�cient (T−1)
h̃ External piezometric head on the boundary (L)
Q Flow rate across boundary per unit area (L T−1)

(2) Solute transport

c Concentration (M L−3)
� Porosity, (dimensionless)
D Di�usion–dispersion tensor (L2 T−1)
q Darcy velocity vector (L T−1)
� Radioactive decay constant (T−1)
R Retardation coe�cient (dimensionless)
� Solute transfer coe�cient (L T−1)
c̃ External concentration on the boundary (ML−3)
F Imposed dispersive �ux on the boundary (M L−2 T−1)

are expressed as

u= ũ on �; t∈(0; T ) (3)

−(a∇u) · n= g+ k(u− ũ) on @�\�; t∈(0; T ) (4)

where ũ is the speci�ed value of the variable on the boundary, n is the outward unit
normal vector, g is the �ux across the boundary, and k is a transfer coe�cient. Natu-
ral boundary conditions are in fact a particular case of boundary conditions of the mixed
type, where k=0. The complete de�nition of the problem requires knowing the initial
conditions

u= u0 in �; t=0 (5)

Table I contains the actual expressions of the generic partial di�erential equation and mixed
boundary conditions for the problems of groundwater �ow and solute transport.
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For obtaining the weak form of the problem given by the di�erential equation (1)–(2), with
the boundary conditions (3)–(4) and the initial condition (5), it is convenient to introduce
the following function spaces:

V := {v∈H 1(�): v=0 on �} (6)

Ṽ := {v∈H 1(�): v= ũ on �} (7)

where H 1(�) is the usual Sobolev space of functions which are square integrable and have
square integrable �rst derivatives. The weak form of the original problem reduces to �nd
u∈Ṽ for each �xed t, such that(

@u
@t
; v
)
+ a(u; v)= l(v) ∀v∈V; u(x; 0)= u0(x) (8)

where

(
@u
@t
; v
)
=

∫
�

@u
@t
v dx

a(u; v) =
∫
�
(a∇u) · ∇v dx +

∫
�
(b · ∇u)v dx +

∫
�
cuv dx +

∫
@�\�

kuv ds

l(v) =
∫
�
fv dx +

∫
@�\�

gv ds+
∫
@�\�

kũv ds

A standard Galerkin �nite element formulation is used to obtain a semidiscrete problem of
the weak form (8). In matrix notation this may be expressed as

Mu′ +Ku= l; Q(0)= Q0 (9)

where M is the ‘mass’ matrix, K is the ‘sti�ness’ matrix, l is the right-hand side vector, u is
the vector of unknowns and Q0 de�nes the initial conditions. It is worth noting that matrices
M and K are obtained by assembling element matrices, which in turn requires evaluating
integrals over elements and element boundaries. The fully discrete problem is then obtained
by further discretizing in time the (usually very sti�) system of ordinary di�erential equations
(9). A detailed description and analysis of the �nite element method can be found elsewhere
[7–9].

3. INTEGRATION OVER SURFACES

The �nite element method for solving boundary value problems requires the computation of
integrals over the domain � and its boundary @� (see Equation (8)). Owing to the local
character of the basis functions, these integrals can be calculated as sums of integrals over
the elements. Integrands are usually expressed in terms of local (natural) co-ordinates through
the trial and test functions.
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Figure 1. Mapping of set U ⊂Em onto surface S ⊂En.

The standard �nite element method [10] works only when the local-to-global mapping
has an invertible Jacobian. In particular, this requirement implies that the dimension of the
reference element is the same as that of the domain. This is not the case when integrating over
elements representing fractures or deviated wells, element boundaries, and in the context of
space–time formulations [5]. A method for evaluating integrals over m-dimensional surfaces
in Rn (m6n) is required to avoid speci�c calculations for each case.
The de�nition of a generalized surface (hypersurface or manifold) is established clearly

in Courant and John [11]. Let En be a n-dimensional Euclidean space with (Cartesian) co-
ordinates x=(x1; : : : ; xn). A set S in En is a m-dimensional surface if one can �nd n functions

f :U ⊂Em→ S ⊂En
^ �→ x= f(^) (10)

de�ned in an open set U of the space Em with (local) co-ordinates ^=(�1; : : : ; �m) (see
Figure 1) with the following properties:

1. Equations x= f(^) de�ne a one-to-one continuous mapping of U onto S, whose inverse
is also continuous.

2. Functions fi(�1; : : : ; �m) have continuous �rst derivatives in U .
3. At any point ^∈U , the m vectors in En

Ai(^) :=
@f
@�i

(11)

are independent, that is, √
�(A1;A2; : : : ;Am)=

√
det(Gm)¿0

where Gm is the covariant metric tensor of the mapping and � is the Gram determinant,
de�ned as [11]:

�(A1;A2; : : : ;Am)=det(Gm)=det



A1 ·A1 · · · A1 ·Am
...

...
Am ·A1 · · · Am ·Am


 (12)
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In general, the integral of a continuous function F(x)=F(x1; : : : ; xn) de�ned on a hyper-
surface S in the global space En (co-ordinates x) is de�ned as∫

S
F(x) dS=

∫
U
F(x(^)) dSm (13)

where U ⊂Em is an open set in the local space (co-ordinates ^). The key point for the
computation of the integral lies in relating the di�erential of the m-dimensional surface dSm
in an n-dimensional Euclidean space En to the di�erential of the local co-ordinates d�1; : : : ; d�m.
Such a relation is given by

dSm=
√
det(Gm) d�1 d�2 · · · d�m for 16m6n (14)

where Gm is the covariant metric tensor of the mapping ^
f−→ x, de�ned in Equation (12).

Note that, with the de�nition above, the integral does not depend on the speci�c parametric
representation of S [11; 12]. Equations (13) and (14) constitute the kernel of the proposed
formulation for the e�cient evaluation of boundary integrals and integrals over fractures
embedded in a continuum.
Equation (14) was presented in Reference [5] with a di�erent notation. However, a proof

was not given. Reference [13], which is the standard reference for the mathematical develop-
ments in Reference [5], does not provide a proof either. A proof of Equation (14) is given
in Reference [11] only for the case of m= n− 1. A more academic approach may be found
in Reference [12] for the general case m6n, where a non-constructive proof is presented.
A novel proof of Equation (14) for computing integrals over a m-dimensional manifold

S ⊂En is presented here. It follows an induction process, where
1. For m=1 (in�nitesimal arc length), one has

dS1 = d‘=
√
det(G1) d�1

2. Given that for a m-dimensional surface, Equation (14) holds true, then one can prove
that

dSm+1 =
√
det(Gm+1) d�1 d�2 · · · d�m+1 (15)

Proof of this last step is based on the fact that the (m+1)-dimensional hypersurface element
dSm+1 may be obtained with generality from dSm as

dSm+1 =dh dSm (16)

where dh is the length of vector dh in the n-dimensional Euclidean space Rn. Vector dh is
by de�nition, normal to the hyperplane tangent to the surface Sm at point x.
Let {dxi} (i=1; : : : ; m) be a set of independent vectors that span the hyperplane tangent

to the m-dimensional surface Sm at point x∈Sm, where x is a vector of En (see Figure 2 for
m=2 and n=3). Vectors dxi are computed by means of the following expression:

dxi=
@x
@�i

d�i=
@f(^)
@�i

d�i=Ai d�i; i=1; : : : ; m (17)

according to the de�nition of Ai given in Equation (11). Similarly, one may de�ne

dxm+1 =Am+1 d�m+1 (18)
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Figure 2. Tangent plane to a 2D surface S ⊂R3, at a point x∈S.

ξ1

ξ2

x1
x2

x3

x
 ξ

dξ1

dξ

dx1

dx2

x = f (ξ)

dx3 dh

dt

ξ3
dξ3

2

Figure 3. Geometrical interpretation of the hypersurface element dSm+1 for m=2 and n=3.

Vector dxm+1 can be expressed as the sum of two vectors, dt and dh, which are tangent and
normal to the hyperplane tangent to Sm, respectively (see Figure 3 for m=2 and n=3):

dxm+1 =dt+ dh (19)

Vector dt can always be expressed as a linear combination of vectors dx1; : : : ; dxm, because
dt belongs to the hyperplane tangent to the surface. Therefore, it follows that

dt= �1 dx1 + · · ·+ �m dxm (20)

From Equations (18)–(20) one has

dh=Am+1 d�m+1 −
m∑
i=1
�i dxi (21)

The length of vector dh can be computed through the expression

(dh)2 =dh · dh (22)

In addition, since vector dh is normal to the hyperplane spanned by vectors dx1; : : : ; dxm, it
follows that

dh · dxi=0 (23)
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Figure 4. Di�erential volume dV in 1D and 2D fractures in a 3D space.

Using (14), (17), (21)–(23), Equation (16) leads to

(dSm+1)2=
(
Am+1 d�m+1 ·Am+1 d�m+1 −

m∑
i=1
�iAi d�i ·Am+1 d�m+1

)
�(A1; : : : ;Am)(d�1)2 · · · (d�m)2

(24)

Using the properties of determinants, one can show that Equation (24) can be written as

(dSm+1)2 =�(A1; : : : ;Am+1)(d�1)2 · · · (d�m+1)2
or, equivalently,

dSm+1 =
√
det(Gm+1) d�1 · · · d�m+1

which completes the proof of Equation (15). The details of the calculation are presented in
Reference [1], and have been omitted here.
Once the in�nitesimal generalized surface dSm has been obtained, the calculation of the

di�erential volume dV in fractures (elements of lower dimension than the Euclidean space)
is straightforward. It only requires multiplying by the cross-sectional area of the fracture for
1D elements and by the thickness for 2D elements (see Figure 4).
The �nite element formulation involves also the computation of global derivatives of func-

tions which are usually expressed in terms of local co-ordinates (such as the shape functions).
Let

�=�(^)=�(�1; : : : ; �m)

a straightforward calculation (see, e.g. References [1; 5]) gives the relation between the global
derivatives d�=dx and the local derivatives d�=d^ for points x on the hypersurface S:

∇�= d�
dx

∣∣∣∣
x∈S

=
d�
d^G

−1
m J

t
m

∣∣∣∣
x∈S

In the equation above, Jm is the Jacobian matrix of the mapping of U ⊂Em onto S ⊂En
de�ned in Equation (10),

Jm︸︷︷︸
n×m

=




@f1
@�1

· · · @f1
@�m

...
...

@fn
@�1

· · · @fn
@�m



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Note that the covariant metric tensor can be expressed as

Gm︸︷︷︸
m×m

=JtmJm

4. IMPLEMENTATION OF THE FORMULATION IN A COMPUTER CODE

The process of obtaining the di�erent element matrices is brie�y described in this section and
applied, for the sake of clarity, to the matrix corresponding to the di�usive term of the �ow
equation. If the standard Galerkin formulation is used, the element matrix reads

Ae︸︷︷︸
Nn×Nn

=
∫
�e

∇M︸︷︷︸
Nn×n

· K︸︷︷︸
n×n

· ∇Mt︸︷︷︸
n×Nn

dx (25)

where n is the dimension of the spatial domain, Nn is the number of nodes of the element,
M=(�1; : : : ; �Nn)t is the vector of shape functions, and K is the hydraulic conductivity tensor.
This integral, in general, cannot be computed analytically. The required steps to evaluate
Equation (25) are presented below.

do e=1; Ne (loop over elements)

• Update nodal co-ordinates (ELCOD)

X︸︷︷︸
Nn×n

=



x1;1 · · · x1; n
...

...
xNn;1 · · · xNn; n




do g=1; Ng (loop over Gauss points)

• Update Gauss points co-ordinates (POSGE): ^g︸︷︷︸
Ng

=(�1; : : : ; �m)g:

• Update Gauss points weights (WEIGE): wg:
• Evaluate shape functions (SHAPE):

Mg︸︷︷︸
Nn

=



�1(^g)
...

�Nn(^g)




• Evaluate derivatives of the shape functions (DERIE):

Eg︸︷︷︸
Nn×m

=




@�1
@�1

· · · @�1
@�m

...
...

@�Nn
@�1

· · · @�Nn
@�m



g
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• Compute Jacobian matrix (XJACM): Jg︸︷︷︸
n×m

= Xt︸︷︷︸
n×Nn

Eg︸︷︷︸
Nn×m

• Compute covariant metric tensor (XJACE): Gg︸︷︷︸
m×m

= Jtg︸︷︷︸
m×n

Jg︸︷︷︸
n×m

• Evaluate Cartesian derivatives (CARTD): Bg︸︷︷︸
Nn×n

=∇Mg= Eg︸︷︷︸
Nn×m

G−1
g︸︷︷︸

m×m

Jtg︸︷︷︸
m×n

• Compute constitutive matrix (DMATX): Dg︸︷︷︸
n×n

=K

• Compute di�erential volume (DVOLU):

dVg= b
√
det(G)gwg; b=



Area for a 1D element

Thickness for a 2D element

1 for a 3D element

enddo g (end of loop over Gauss points)
• Compute integral (AMATF)

Ae︸︷︷︸
Nn×Nn

=
Ng∑
g=1

Bg︸︷︷︸
Nn×n

Dg︸︷︷︸
n×n

Btg︸︷︷︸
n×Nn

dVg

enddo e (end of loop over elements)
The formulation presented in this paper has been implemented in a computer code,

TRANMEF-3, which solves the equations of groundwater �ow, multicomponent solute trans-
port and heat transfer in fully three-dimensional fractured porous media by the �nite element
method. The code has been thoroughly veri�ed against available (or developed) analytical so-
lutions in hundreds of cases. A complete description of the code is presented in Reference [6].

5. TEST CASE: RECTANGULAR BLOCK WITH A NETWORK OF FRACTURES

5.1. Problem description

This example, which considers very realistic features of �ow and transport in fractured media,
serves to illustrate the potential of the proposed formulation to analyse real problems. This
test case has been used also to compare the proposed numerical formulation with conventional
�nite element discretization schemes. Further veri�cation and validation examples can be found
in Reference [14].
The problem considers water �ow and solute transport through a rectangular rock block

with a network of interconnected orthogonal fractures, as shown in Figure 5. Both top and
bottom boundaries are considered to be no-�ow boundaries. Piezometric head is imposed on
lateral boundaries (h=1 m on the left boundary and h=0m on the right boundary) such
that water �ows from left to right. Water �ows preferentially through the fractures, because
they are more permeable than the rock matrix. Water �ows under steady-state conditions.
Solute concentration is initially zero over the entire domain. After time t=0 water entering
the domain through the left side of the fracture network has a concentration C0.
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Figure 5. Sketch of the test case: rectangular block with a network of interconnected fractures.

Table II. Flow and transport parameters for the test case.

Parameter Description Matrix Fracture

e Thickness 1 m 1 m
2b Fracture width — 0:04 m
K Hydraulic conductivity 10−5 m d−1 10−2 m d−1

Ss Speci�c storage coe�. 10−6 m−1 10−3 m−1

� Porosity 0:01 0:1
�L Longitudinal dispersivity 10−2 m 5× 10−2 m
�T Transverse dispersivity 2× 10−3 m 10−2 m
D E�ective di�usion coe�. 10−6 m2 d−1 10−5 m2 d−1

5.2. Numerical solution

This test case has been solved using two di�erent �nite element discretization schemes. The so-
called ‘2D model’ makes use of the traditional �nite element formulation, in which fractures
are discretized with 2D elements. The ‘1D model’ uses the formulation proposed in this
paper, in which fractures are discretized by means of 1D elements. Numerical values of �ow
and transport parameters (for the rock matrix and the fractures) are shown in Table II. The
concentration of the water at the inlet is C0 = 1 mg l

−1.
Several runs have been carried out for both models using increasingly �ner grids. The most

relevant features of the di�erent �nite element grids, as well as the terminology used for later
discussions, are shown in Table III.
Figure 6 shows one of the �nite element grids used for the 2D Model, which has 2112

nodes. It should be noted that the mesh has been re�ned in the neighbourhood of the fractures,
given the higher water velocity along the fracture zones and the dramatic change in the
properties of the medium at the fracture–matrix interface. Grids used in the rest of the cases
are similar to that shown in Figure 6. A detail of the mesh re�nement around the fractures is
shown in Figure 7 for the 2D Model with 18 149 nodes (left) and the 1D Model with 19 705
nodes (right). The latter represents fractures using 1D elements with an associated width of
0:04 m to ensure that fractures have the same transmissivity for both models.
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Plate 1. Groundwater system at the �Asp�o site. Predicted piezometric head after 133 days.
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Plate 2. Groundwater system at the �Asp�o site. Predicted piezometric head after 423 days.
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Plate 3. Groundwater system at the �Asp�o site. Predicted piezometric head after 2013 days.
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Table III. Finite element grids used in the test case.

Identi�er # nodes # elem. Type of elements

M2D 2K 2112 2015 2D linear
M2D 6K 6105 5940 2D linear
M2D 20K 18 149 5940 2D quadratic
M1D 2K 2201 2314 2D & 1D linear
M1D 6K 6501 2314 2D & 1D quadratic
M1D 20K 19 705 6962 2D & 1D quadratic

Figure 6. Finite element mesh for the 2D Model with 2112 nodes (M2D 2K in Table III).

Figure 7. Detail of the �nite element grids around fractures for the 2D Model with 18 149 nodes (left)
and the 1D Model with 19 705 nodes (right).

The same time discretization has been used for all simulations: a Crank–Nicolson �nite-
di�erence scheme with a time step which increases gradually from �t=0:1 to 10 d.
All the simulations have been computed on a DIGITAL AlphaServer 4000 5/466 4MB with

OpenVMS V7.1 operating system, at the Civil Engineering School of La Coruña University
(Spain).
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Figure 8. Contour plot of hydraulic heads computed using
the 2D Model with 2 112 nodes (run M2D 2K).
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Figure 9. Contour plot of concentrations after 10 000 days using
the 2D Model with 2112 nodes (run M2D 2K).

5.3. Results

The numerical solution of steady-state groundwater �ow is discussed �rst. The contour plot
of hydraulic head h obtained using the 2D Model with 2112 nodes (run M2D 2K) is shown
in Figure 8. It is noticeable that the head contours are closer together in the regions of lower
hydraulic conductivity (far away from the fractures). Solution using the 2D Model with 6105
nodes (run M2D 6K) di�ers from that of run M2D 2K only slightly, the maximum di�erences
in pointwise values being about 1%. The contour plot for this simulation would look so similar
to Figure 8 that it was not included. When the 1D Model is employed, the numerical solutions
obtained with 2201-node and 6501-node grids (runs M1D 2K and M1D 6K, respectively) are
virtually identical. Nodal values of these two simulations di�er only after the fourth signi�cant
digit. The maximum discrepancies between the solutions of runs M2D 6K and M1D 6K are
about 0.01%. Such a small di�erence suggests interpreting these results as ‘engineering exact’
solutions.
Contour plots of solute concentration after 10 000 days are shown in Figures 9–12. Concen-

trations computed using the 2D Model and a mesh of 2112 nodes (run M2D 2K, see Figure
9) di�er signi�cantly from those computed using the same model but with a �ner mesh of
6105 nodes (run M2D 6K, see Figure 10). Such large di�erences in computed concentrations
indicate clearly that the spatial discretization of run M2D 2K is not �ne enough to obtain
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Figure 10. Contour plot of concentrations after 10 000 days using
the 2D model with 6105 nodes (run M2D 6K).
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Figure 11. Contour plot of concentrations after 10 000 days using
the 2D model with 18 149 nodes (run M2D 20K).
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Figure 12. Contour plot of concentrations after 10 000 days using
the 1D model with 2 201 nodes (run M1D 2K).

an accurate numerical solution. Numerical errors still persist with a grid of 6105 nodes, as
one can see by comparing the numerical solutions obtained with 6105 nodes (Figure 10) and
18 149 nodes (Figure 11). Furthermore, the trend is not erratic: the �ner the mesh, the larger
the solute concentrations are throughout the domain (compare Figures 9–11). These results
suggest that when the 2D Model is used to solve the solute transport equation, an extremely
�ne mesh is required to obtain accurate numerical solutions for heterogeneous systems.
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Figure 13. Breakthrough curves at the observation point. Comparison of all di�erent simulations.

Results calculated using the 1D Model display a di�erent behaviour. The actual numerical
values of concentrations computed with a mesh of 2201 nodes (run M1D 2K in Figure 12)
and a mesh of 6501 nodes (run M1D 6K) are di�erent only after the third signi�cant digit.
These di�erences are so small that the plot of the concentrations of run M1D 6K has been
omitted. As expected, the results of the simulation with 19 705 nodes (run M1D 20K) are
virtually identical to those of run M1D 6K (discrepancies on the fourth signi�cant digit).
Figure 13 shows the computed breakthrough curves (concentration versus time) at an ob-

servation point for all six aforementioned simulations. The observation point is located inside
a fracture at the centre of the domain (see Figure 5). The curves corresponding to the 1D
Model (runs M1D 2K, M1D 6K and M1D 20K) lie on top of each other, with maximum
di�erences of 0.2%. Moreover, it should be noted that the numerical solutions obtained with
the 2D Model approach the 1D Model solution as the mesh is re�ned.
Additional insight into the numerical performance of 1D and 2D Models can be gained

from the analysis of concentration errors. Concentrations obtained using the 1D Model with
19 705 nodes (run M1D 20K) are regarded as the ‘exact’ solution. Dimensionless errors are
computed for each run by taking the di�erence between concentrations obtained for that
speci�c simulation and the exact solution, and dividing by the inlet concentration C0, that is

�run(x; t)=
Crun(x; t)− Cexact(x; t)

C0

Contour plots of the dimensionless concentration errors after 10 000 days are shown in Figures
14–17. Errors corresponding to the 2D Model and a mesh of 2112 nodes (run M2D 2K, see
Figure 14) are large over the entire domain and the maximum error is about 50%. Note that
higher values occur along fractures and in the neighbourhood of the injection point, with error
contours showing a pattern similar to that of the concentration itself (compare Figures 9 and
14). The contour plot of the errors for the 2D Model with a 6105 node mesh (run M2D 6K)
is shown in Figure 15. The behaviour is very similar to that of run M2D 2K, with global
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Figure 14. Contour plot of normalized concentration errors after 10 000 days
for the 2D Model with 2112 nodes (run M2D 2K).
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Figure 15. Contour plot of normalized concentration errors after 10 000 days
for the 2D Model with 6105 nodes (run M2D 6K).

errors following the pattern of the concentration contours (compare Figures 10 and 15) and a
maximum error close to 25%. Figure 16 shows the errors for the 2D Model with a mesh of
18 149 nodes (run M2D 20K). Even though the maximum error is reduced to 8%, the same
comments above apply to this simulation. Figure 17 shows the normalized concentration errors
obtained using the 1D Model with a 2201 node grid (run M1D 2K). Although a relatively
coarse mesh is employed, the maximum error is about 2% and errors are noticeable only along
the fractures. These results demonstrate the superior performance of the 1D Model, especially
if one compares this solution to the 2D Model solution for a similar computational cost. The
maximum error is 20 times lower, and the errors are restricted to the vicinity of fractures.
Maximum concentration errors for the 1D Model with 6501 nodes (run M1D 6K) are of the
order of 0.2%, and hence the �gure with the error contours is not included.
Table IV shows memory requirements, CPU time, maximum error and mean error for all

simulations. The mean error has been calculated as

	�=
1
A

∫
�
�(x) dx

It is remarkable that, for a similar computational cost, the errors associated with the 1D Model
are several orders of magnitude lower than those of the 2D Model. For grids with roughly
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Figure 16. Contour plot of normalized concentration errors after 10 000 days
for the 2D Model with 18 149 nodes (run M2D 20K).
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Figure 17. Contour plot of normalized concentration errors after 10 000 days
for the 1D Model with 2 201 nodes (run M1D 2K).

Table IV. Memory, CPU time, maximum error and mean error of all simulations
used in the test case.

Mesh Memory CPU time Maximum error Mean error
identi�er (MB) (s) (%) (%)

M2D 2K 4.2 46.9 −49.7 −20.4
M2D 6K 19.0 374.8 −24.2 −9.5
M2D 20K 159.6 3438.6 −8.0 −2.3

M1D 2K 4.7 50.5 −2.48 −0.16
M1D 6K 33.0 450.3 −0.21 −0.01
M1D 20K 196.4 4320.2 n/a n/a

2000 nodes (runs M2D 2K and M1D 2K), the maximum error is reduced by a factor of 20
and the mean error by a factor of 100 when fractures are discretized using 1D elements. These
factors are 100 and 1000, respectively, for grids with roughly 6000 nodes (runs M2D 6K and
M1D 6K). Moreover, the 1D Model with a coarse grid (run M1D 2K) yields more accurate
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Figure 18. Left: location of the �Asp�o site with a plan view of the �Asp�o HRL. Right: geometry of the
conceptual model, including fracture zones, the tunnel and the elevator shaft.

results than the 2D Model with an extremely �ne grid (run M2D 20K), while cutting down
the CPU time by a factor of 70.
From the results presented and discussed above, it can be concluded that the 1D

Model proposed in this paper (in which fractures are discretized using 1D elements)
provides much more accurate results with less computational cost than traditional �nite
elements (in which fractures are discretized with 2D elements) for the numerical solution
of the solute transport equation in fractured media. The numerical analysis of the method and
the explanation of its outstanding e�ciency are the subject of future investigation.

6. REAL CASE: TUNNEL CONSTRUCTION IN A 3D FRACTURED ROCK

6.1. Introduction

The proposed formulation, which has been implemented in a computer code and tested with
synthetic examples, has been applied also to real case studies. Here, its application to a prob-
lem dealing with groundwater �ow induced by the construction of a tunnel in a granitic site at
the �Asp�o Island (Sweden) is reported. The tunnel is part of the �Asp�o Hard Rock Laboratory
(HRL), constructed and operated by the Swedish Nuclear Waste Company (SKB) within the
framework of research programmes on radioactive waste disposal. The tunnel is 3600m long
and 450m deep, and it consists of a straight ramp and a spiral in the �nal section (see Figure
18). The buildings and facilities on the surface are connected to the tunnel through an eleva-
tor. A detailed geological and hydrogeological characterization, performed by SKB, allowed
the identi�cation of the major fracture zones [15–17]. These studies point out at least 20
major fracture zones with a wide range of orientations, depicted in Figure 18. The conceptual
hydrogeological model includes two main hydrogeological domains which have very di�erent
hydraulic properties: the rock domain and the conductive hydraulic domains [15; 17]. The
density variations (due to salinity) can be disregarded because their e�ect on the groundwater
system is negligible compared to that of hydraulic gradients induced by the construction of
the tunnel [18]. This modelling exercise was useful to assess the impact of the tunnel con-
struction on the groundwater system at the �Asp�o site and test the prediction capabilities of
current numerical models.
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6.2. Numerical model

A numerical model of groundwater �ow and solute transport was carried out using the �nite
element programme TRANMEF-3 to simulate the impact of the tunnel construction on the
hydrogeology of the �Asp�o Island [19; 20]. Owing to limitations of space, only the results
of the �ow model are presented here (see Reference [21] for details). The numerical model
consists of 20 conductive hydraulic domains (which are discretized with 2D elements) and a
tunnel (discretized with 1D elements), in a 3D domain of size 2× 2× 1km3. Only 11 fractures
actually intersect the tunnel, although there are 29 tunnel–fracture intersections, since some
of the fracture zones cross the spiral section of the tunnel at several depths.
An unstructured �nite element mesh was generated for the fractures using 2D bilinear

quadrilateral elements. The mesh was re�ned in the neighbourhood of the intersections of the
fractures and the tunnel using linear triangular elements. The tunnel and the elevator shaft
were discretized with 1D linear �nite elements. The �nal mesh consists of 12 847 nodes and
14 273 elements.
The time domain covers a period of 2013 days, from 1991=06=27 through 1997=01=01. A

constant time step of �t=1 day was used. When the tunnel intersected a fracture, a smaller
time step of �t=0:1 days was used for a period of several days following the intersection
due to the fast transients occurring when the tunnel passes through a highly conductive zone.
Special attention was given to boundary conditions. On the bottom boundary, a no-�ow

(Neumann) boundary condition was imposed. The nodes on the side boundaries were set to a
�xed piezometric head (Dirichlet). A Dirichlet boundary condition was used for nodes lying
on the Baltic Sea, while a Neumann-type condition of speci�ed recharge caused by rainfall
was used for nodes along the top boundary lying on ground surface. A relevant feature of
the model is its ability to accurately represent the inner moving boundary represented by the
tunnel construction [22]. A time-dependent mixed (Cauchy) boundary condition was used for
the nodes along the tunnel. Initially, the leakage coe�cient � (see Table I) of these nodes is
equal to zero. When the tunnel front reaches a node, its associated leakage coe�cient takes
a large positive value, therefore imposing the external piezometric head (which is equal to
the elevation of that point since water pressure is equal to the atmospheric pressure). We
can think of the leakage coe�cient � varying in time as a Heaviside function, with its step
located at a di�erent time for each node on the tunnel. This allows one to perform a fully
dynamic simulation of the impact of the tunnel on the groundwater system. The position of
the advancing tunnel front was approximated using 29 stages, corresponding to each of the
intersections of the tunnel with the fractures (Figure 19).

6.3. Results

Even though the geometric characteristics of the �ow model were well de�ned, some cali-
bration of the �ow parameters (mainly hydraulic conductivity K and speci�c storage coe�-
cient Ss) was needed. Calibration was especially di�cult given the complex geometry of the
problem and the large amount of available �eld data. A reasonably good agreement of model
predictions and measured data was �nally obtained in terms of:

1. In�ows into di�erent sections of the tunnel (Figure 20).
2. Drawdowns at observation points (boreholes) located throughout the domain (Figure 21).
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Figure 19. Tunnel construction. Actual location of the advancing front (circles) and
the modelling stages (solid line).
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Figure 20. In�ow into the tunnel at two di�erent control sections. Measured values
(circles) and model predictions (solid line).

It is worth noting that calibrated values of hydraulic conductivity and speci�c storativity
lie on the range of uncertainty of measured values.
Plates 1–3 show a three-dimensional representation of the evolution of piezometric head

over the domain after 133, 423 and 2013 days, together with the position of the tunnel front.
These �gures exhibit the geometrical complexity of the problem. The results are meaning-
ful and plausible, and they predict a generalized drawdown over the entire domain
due to the construction of the tunnel. A thorough discussion of the results can be found in
Reference [21].
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Figure 21. Piezometric heads at two di�erent control points (boreholes). Measured values
(circles) and model predictions (solid line).

7. CONCLUSIONS

A general and compact formulation for the implementation of fractures and boundary condi-
tions in �nite element models has been presented. It was �rst proposed in References [2; 3]
and later revisited and generalized in Reference [5]. From a mathematical viewpoint, fractures
are considered as m-dimensional manifolds in a n-dimensional Euclidean space (m6n). The
key step of the formulation lies on an expression relating the hypersurface element dSm to the
in�nitesimal local co-ordinates d�1; : : : ; d�m (see Equation (14)). A novel proof for this relation
has been provided. The formulation is valid for integration over elements of any dimension
(e.g. 1D, 2D and 3D elements in a 3D domain) and overcomes the cumbersome calculations
of traditional approaches. This provides a uni�ed and elegant way to treat fractures embedded
in a continuum in �nite element codes.
The mathematical formulation has been implemented in a versatile �nite element code for

modelling groundwater �ow, solute transport and heat transport in porous and fractured media
[1; 6; 14].
The results of a 2D synthetic test case dealing with �ow and transport through a block of

fractured rock show the outstanding e�ciency of the proposed formulation compared to the
traditional �nite element formulation, in which fractures are discretized with two-dimensional
elements. The results of these test case, which are summarized in Table IV, indicate that for
a given accuracy our formulation is much more e�cient in terms of CPU time and memory
requirements than the traditional method of treating fractures with 2D elements. On the other
hand, for the same CPU time, the proposed formulation is remarkably more accurate than the
standard �nite element approach.
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The capability of the proposed formulation to cope with the complexities of real problems
has been illustrated with a case study of groundwater �ow induced by the construction of the
access tunnel to an underground research laboratory in �Asp�o (Sweden). The numerical model
is able to reproduce the observed records of water levels in boreholes and �ow rates into the
tunnel.
Although the proposed formulation has been implemented and tested within the framework

of groundwater �ow and solute transport in fractured porous media, it should be of interest
for other boundary value problems.
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