
Transport in Porous Media 57: 125–152, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

125

Relative Permeabilities for Strictly Hyperbolic
Models of Three-Phase Flow in Porous Media

RUBEN JUANES1 and TADEUSZ W. PATZEK2,3

1Department of Petroleum Engineering, Stanford University, Stanford, CA 94305, U.S.A.
2Department of Civil and Environmental Engineering, University of California, Berkeley, CA
94720, U.S.A.
3Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, CA 94720, U.S.A.

(Received: 16 September 2002; in final form: 29 January 2004)

Abstract. Traditional mathematical models of multiphase flow in porous media use a straightforward
extension of Darcy’s equation. The key element of these models is the appropriate formulation of the
relative permeability functions. It is well known that for one-dimensional flow of three immiscible
incompressible fluids, when capillarity is neglected, most relative permeability models used today
give rise to regions in the saturation space with elliptic behavior (the so-called elliptic regions). We
believe that this behavior is not physical, but rather the result of an incomplete mathematical model.
In this paper we identify necessary conditions that must be satisfied by the relative permeability func-
tions, so that the system of equations describing three-phase flow is strictly hyperbolic everywhere in
the saturation triangle. These conditions seem to be in good agreement with pore-scale physics and
experimental data.
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1. Introduction

Mathematical modeling of multiphase flow in porous media is, to a large extent,
still an open issue. In our opinion, one of the main difficulties stems from the fact
that different processes dominate at different scales: capillary forces dominate at
the pore scale, while viscous and/or gravity forces dominate at the field scale. As a
result, the development of continuum theories of multiphase flow has proven to be
an exceptionally challenging task.

The key ingredients of traditional formulations of multiphase flow are mass con-
servation equations, and a multiphase form of Darcy’s equation. Darcy’s equation
is an approximate form of the fluid momentum balance in creeping flow through
porous media. This postulate is supported for single-phase flow by experimental
evidence and by volume averaging as a first-order approximation (Hassanizadeh,
1986). On the other hand, the usual multiphase flow extension of Darcy’s equa-
tion due to Muskat (1949) does not emanate from averaging of the microscopic
equations of multiphase systems (Hassanizadeh and Gray, 1993). A number of
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inconsistencies of the standard formulation have been identified, and alternative
approaches have been proposed (Barenblatt et al., 1990; Avraam and Payatakes,
1995; Gray and Hassanizadeh, 1998), which are yet to be fully explored.

However, there is still a great interest in Darcy-like formulations, as they are
almost universally used in hydrogeology and petroleum engineering. In this frame-
work, success of the formulation depends heavily on the use of ‘correct’ relative
permeabilities. Traditionally, they are taken as functions of current fluid saturations
alone. This very strong assumption does not account for: (1) hysteretic effects,
which include the past saturation history into the formulation (Lenhard and Parker,
1987); (2) nonequilibrium effects, which introduce the concept of a relaxation time
for pore-scale rearrangement of fluid saturations (Barenblatt et al., 1990; Silin
and Patzek, 2004); and (3) the flow regime determined by the ratios of viscous,
capillary, and gravity forces, which influences the pore-scale mechanisms of fluid
displacement (Lenormand et al., 1988; Avraam and Payatakes, 1995; Yortsos et al.,
1997)

Here we study one-dimensional horizontal flow through porous media of three
immiscible, incompressible fluids, by using the common multiphase extension of
Darcy’s equation. This model leads to a 2 × 2 system of saturation equations in
which capillarity enters as a nonlinear diffusion term. The analysis of the character
of this system in the limit of negligible capillarity was first addressed in the Russian
literature. Charny (1963) and Stklyanin (1960) pointed out the possibility that the
system may be of mixed elliptic/hyperbolic type, but concluded that it is hyperbolic
for physically realistic flows. In the Western literature, it was first shown by Bell
et al. (1986) that a common relative permeability model could lead to regions in
the saturation space where the system is elliptic. It is now known that virtually all
relative permeability models used today give rise to elliptic regions (Fayers, 1987;
Shearer, 1988; Shearer and Trangenstein, 1989; Holden, 1990; Hicks Jr. and Grader,
1996). What is more, the mathematical analysis of Shearer (1988), Shearer and
Trangenstein (1989), and Holden (1990), seems to suggest that elliptic regions are
an unavoidable feature of three-phase flow models. Under the conditions assumed
in these analyses, the only relative permeability models which do not display an
elliptic region are those where the relative permeability of each phase is a function
of its own saturation only, usually referred to as ‘Corey-type’ models (Marchesin
and Medeiros, 1989; Trangenstein, 1989). In this case, the elliptic region shrinks
to an isolated umbilic point, where the system is nonstrictly hyperbolic. However,
measured relative permeabilities – especially of the intermediate wetting phase –
never exhibit dependence on their respective saturations only (Leverett and Lewis,
1941; Oak, 1990).

We find mixed elliptic/hyperbolic behavior disturbing for many reasons, and
are of the opinion that elliptic regions are the artifacts of an incomplete mathe-
matical model. The objective of this paper is to show that it is possible to impose
conditions on the relative permeabilities that preserve strict hyperbolicity of the
three-phase flow equations, even if the usual extension of Darcy’s equation is
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employed. In doing so, we acknowledge that a Darcy-type formulation is unable
to reproduce the complex physics of three-phase flow. Consequently, the relative
permeabilities should be understood as functionals, which depend not only on the
fluid saturations, but also on the wettability properties and the viscosity ratios.
General analytical solutions to the three-phase flow equations can then be obtained
(Juanes and Patzek, 2004).

In Section 2 we present the mathematical model of three-phase flow, and in-
troduce the classification of the governing system of equations. In Section 3 we
derive necessary conditions that the relative permeability functions must satisfy
for the system of equations to be strictly hyperbolic for all admissible saturation
states. We show, in Section 4, that the essential condition that needs to be imposed
agrees well with experimental data. In Section 5 we draw the main conclusions,
and anticipate ongoing and future research.

2. Traditional Displacement Theory of Three-Phase Flow

2.1. SYSTEM OF GOVERNING EQUATIONS

We study three-phase flow (of water, oil and gas) in porous media under the follow-
ing assumptions: (1) one-dimensional flow; (2) immiscible fluids; (3) incompress-
ible fluids; (4) homogeneous rigid porous medium; (5) multiphase flow extension
of Darcy’s law; (6) negligible mass forces including gravitational effects; (7) neg-
ligible capillary pressure effects; and (8) negligible non-equilibrium effects. When
the fractional flow formalism is used, the governing equations are a pressure equa-
tion, and a 2 × 2 system of saturation equations. Using appropriately rescaled
space and time variables, the system of saturation equations is expressed as:

∂tu + ∂xf = 0, (1)

where

u :=
(
u

v

)
≡

(
Sw
Sg

)
, f :=

(
f

g

)
≡

(
fw
fg

)
, (2)

are the vectors of water and gas saturations, and water and gas fractional flows,
respectively. When gravity and capillary forces are not considered, the fractional
flow function of the α-phase is simply fα = λα/λT , where λα is the relative mo-
bility of the α-phase, and λT := λw + λo + λg is the total mobility. The relative
mobility is defined as λα := krα/µα , where krα is the relative permeability and
µα is the dynamic viscosity of phase α.

2.2. FLOW REGIONS AND REDUCED SATURATIONS

Experimental evidence suggests that there is a threshold saturation for each phase,
below which that phase is immobile (Wyckoff and Botset, 1936; Leverett and
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Figure 1. Schematic of the map between (a) the space of actual saturations, and (b) the space
of reduced saturations.

Lewis, 1941). As a result, three-phase flow takes place only in a region inside
the saturation triangle. The nature of these threshold saturations depends on the
wettability of the fluids, and on the displacement process (Geffens et al., 1951).
Here, we use the term ‘immobile’ saturation, and assume that appropriate values
are used for each fluid and for the particular process (saturation path) of interest. In
principle, these threshold or endpoint saturations do not have to be constant (Fayers
and Matthews, 1984; Fayers, 1987).

The three-phase flow region in the space of actual saturations u can be mapped
onto the entire ternary diagram of reduced saturations ũ, as shown in Figure 1. We
assume that the map u = ϕ(ũ) is C1 invertible and orientation-preserving, so that
by simple change of variables we can study three-phase flow in terms of reduced
saturations:

∂t ũ + ∂xf̃ = 0, (3)

where the newly defined flux f̃ is related to the original flux function as follows:

f̃ (ũ) := (ϕ′)−1f (ϕ(ũ)). (4)

The relative permeabilities and, consequently, fractional flows, are expressed in
Equation (3) as functions of the reduced saturations. We assume that an appro-
priate functional form is used, that is consistent with the rock, fluid, and process
descriptors. To simplify notation we shall drop the tildes from Equation (3) and
write

∂tu + ∂xf = 0, (5)

but still refer to the system in terms of the reduced saturations.
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2.3. CHARACTER OF THE SYSTEM OF EQUATIONS

We write the system (5) in quasilinear form:

∂tu + A(u)∂xu = 0, (6)

where

A(u) := f ′(u) ≡ Duf ≡
(
f,u(u) f,v(u)

g,u(u) g,v(u)

)
(7)

is the Jacobian matrix of the system at the saturation state u. Subscripts after a
comma denote differentiation (e.g. f,u ≡ ∂uf ). The classification of the system (6)
reduces to analyzing the behavior of the eigenvalue problem

Ar = νr, (8)

where the Jacobian matrix A, the eigenvalue ν, and the right eigenvector r, are
evaluated at a state u. For the eigenvalue problem (8) with a 2 × 2 real matrix, it is
well-known (Coddington and Levinson, 1955) that there exists a real nonsingular
matrix T such that, after the change of variables z = Tr, the equivalent eigenvalue
problem

(TAT −1)z = νz (9)

has a real coefficient matrix J := TAT −1, which has one of the following canon-
ical forms:

1.

(
λ 0
0 µ

)
, λ 	= µ,

2.

(
α −β
β α

)
, β 	= 0,

3.

(
λ 0
0 λ

)
,

4.

(
λ 1
0 λ

)
.

These four canonical forms provide the basis for the classification of the system
of first-order partial differential equations. Following the terminology in Zauderer
(1983), we denote the system whose Jacobian matrix has the canonical form of
cases 1 through 4 above, respectively:

1. Strictly hyperbolic. The eigenvalue problem has two real, distinct eigenval-
ues. The Jacobian matrix is diagonalizable and there are two real and linearly
independent eigenvectors (Zauderer, 1983).

2. Elliptic. The eigenvalues are complex conjugates, and there are no real charac-
teristic curves that may act as carriers of possible discontinuities in the solution
(Zauderer, 1983).
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3. Nonstrictly hyperbolic. There is a double real eigenvalue, and the Jacobian
matrix is diagonalizable. Every direction is characteristic, and the system is
hyperbolic (real eigenvalues and linearly independent eigenvectors) but not
strictly hyperbolic (which requires that the eigenvalues be distinct).

4. Parabolic. The system has a real, double eigenvalue, and the Jacobian matrix
is defective (non-diagonalizable). There is only one eigenvector and, therefore,
there is only one real characteristic direction.

For 2 × 2 systems with real coefficients, this classification is general. The ei-
genvalues νi (i = 1, 2), of the original Jacobian matrix (7) are given by

ν1,2 = 1

2

[
f,u + g,v ∓

√
(f,u − g,v)

2 + 4f,vg,u

]
. (10)

The physical interpretation of the eigenvalues (when they are real) is the charac-
teristic speeds at which waves describing changes in saturation propagate through
the domain. The right eigenvectors r i = [riu, riv]t (i = 1, 2), are calculated by the
following expressions:

r1v

r1u
= ν1 − f,u

f,v
= g,u

ν1 − g,v
, (11)

r2u

r2v
= f,v

ν2 − f,u
= ν2 − g,v

g,u
. (12)

When they are real, the right eigenvectors correspond to the directions (in the phase
space) of admissible changes in saturation.

3. Relative Permeabilities for Strict Hyperbolicity

3.1. LOSS OF STRICT HYPERBOLICITY IN TRADITIONAL MODELS

Charny (1963) pointed out the possibility that the system (5) may not be hyperbolic
for all saturation states. He concluded, with reference to Stklyanin (1960), that in
physically realistic three-phase flows, the system is hyperbolic. Independently, Bell
et al. (1986) observed that Stone I relative permeabilities (Stone, 1970) gave rise to
elliptic regions inside the saturation triangle. In subsequent publications (Fayers,
1987; Shearer, 1988; Shearer and Trangenstein, 1989; Holden, 1990; Hicks Jr. and
Grader, 1996), it was shown that occurrence of elliptic regions is the rule rather
than exception for the most common relative permeability models.

Loss of strict hyperbolicity of three-phase flow models was analyzed by Shearer
(1988), Shearer and Trangenstein (1989), and Holden (1990). They also used
reduced saturations, and therefore limited their analysis to the three-phase flow
region. This limitation is not particularly restrictive, for it can be shown that el-
liptic regions cannot exist in the one-phase and two-phase flow regions (Falls and
Schulte, 1992). Their analysis is based on the behavior of the system of equa-
tions on the three sides of the saturation triangle. It must be emphasized that
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such analysis is meaningful, because it provides information about the direction
of eigenvectors associated with the slow and fast waves when one phase is nearly
absent. Below we give a brief summary of this analysis (see Juanes, 2003 for a
more detailed discussion).

Shearer (1988) and Holden (1990) start by assuming the behavior of relative
permeabilities in two-phase flow. Relative mobilities of both phases (say, water
and gas) are assumed to have a zero value and a zero derivative at their endpoint
saturations. This behavior, which is taken for granted without further discussion, is
then used as a guidance to impose conditions on the edges of the saturation triangle
for the three-phase flow case.

Shearer (1988) imposes the following conditions on the edges and corners of
the saturation triangle:

1. Consistency conditions (‘(B-L) conditions’), which reduce three-phase relative
mobilities to the assumed behavior for two-phase flow, when one of the phases
is not mobile.

2. A first interaction condition (‘(I1) condition’), which limits the effect of the
immobile phase on the flow, compared with that of the other two phases. This
condition, together with the consistency conditions above, forces the right ei-
genvector associated with the fast characteristic speed, r2, to be parallel to the
edge.

3. A second interaction condition (‘(I2) condition’), makes the right eigenvector
associated with the fast characteristic, r2, point into the saturation triangle for
states u near a vertex. A sufficient (but not necessary) condition that satisfies
this requirement is that the off-diagonal terms of the Jacobian matrix A(u), are
positive.

Holden (1990) imposes very similar conditions. The following is required on
the edges and near the corners of the saturation triangle:

1. The value of the relative mobility of a phase is zero along the edge of zero
reduced saturation of that phase.

2. The derivative of the relative mobility of a phase along the normal direction
to the edge of zero reduced saturation is also zero. We note that the conditions
above on the normal derivatives imply that the ‘(I1) interaction condition’ of
Shearer (1988) is immediately satisfied and, as a result, the eigenvector of the
fast family is parallel to the edges of the saturation triangle.

3. Three possible types of behavior near the vertices were considered, based on
the sign of the off-diagonal terms of the Jacobian matrix:

(A1) Both are positive: f,v > 0, g,u > 0.
(A2) Have different signs: f,vg,u < 0.
(A3) Both are negative: f,v < 0, g,u < 0.

Using a wettability argument, it is suggested that condition (A1) is the most
reasonable at all three corners. This condition implies that the ‘(I2) interaction
condition’ of Shearer (1988) is automatically satisfied.
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Figure 2. Direction of fast eigenvectors r2 along the edges of the saturation triangle for the
models analyzed by Shearer and Holden.

We summarize the conditions imposed by Shearer (1988) and Holden (1990) as
follows (see Figure 2):

1. The right eigenvector associated with the fast characteristic family, r2, is par-
allel to the edges of the triangle of reduced saturations.

2. The fast eigenvector r2 points into the triangle for saturation states near the
vertices.

The assumed behavior at the edges and corners of the saturation triangle has a
profound impact on the character of the system. The first consequence is that each
vertex of the saturation triangle is an umbilic point. The second consequence is
that, in general, an elliptic region must exist inside the saturation triangle. This
general result can be proved using ideas of projective geometry (Shearer, 1988).

Naturally, the question of whether elliptic regions in the saturation space are
physically plausible arises. We briefly point out some of the reasons why local
elliptic behavior seems to be an artifact of the mathematical model, rather than a
necessary consequence dictated by physics.

1. Equation (5) is a system of first-order equations in space-time coordinates.
Thus, the physical meaning of a system with mixed elliptic/hyperbolic be-
havior is very different from that when the independent variables are two
space coordinates, such as in steady transonic flow (Keyfitz, 1990). In the
former case, ‘initial data’ should be imposed in such a way that the principle
of causality1 is not violated (Fayers, 1987).

2. Saturation states inside the elliptic region give rise to linearly ill-posed prob-
lems. More precisely, a bounded solution to the linearized Cauchy problem

1“The causality of natural processes may be interpreted as implying that the conditions in a
body at time t are determined by the past history of the body, and that no aspect of its future behavior
need to be known in order to determine all of them” (Truesdell and Noll, 1965).
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(initial value problem on an unbounded domain) does not exist when arbi-
trarily close – but not equal – asymptotic left and right states are inside the
elliptic region. This fact is in frontal disagreement with the notion of three-
phase flow displacement, where one expects a bounded transition between the
right (initial) state and the left (injected) state.

3. Appropriate entropy conditions have not yet been found so as to allow both ex-
istence and uniqueness of solutions (Azevedo and Marchesin, 1995). Although
it is unclear how nonlinear effects impact the ill-posedness of the problem
(Holden et al., 1990; Azevedo and Marchesin, 1995), we agree completely
with Azevedo et al. (2002) in that “both linear instability and nonunique-
ness are outside the range of ‘good’ behavior for hyperbolic conservation
laws.”

4. More specifically to models of three-phase flow in porous media, it has been
found (Hicks Jr. and Grader, 1996) that different models matching experi-
mental data equally well (or equally badly), produce elliptic regions in opposite
corners of the saturation triangle. This result suggests a nonphysical arbitrar-
iness to the location of elliptic behavior in phase space for traditional models
of three-phase flow.

5. If capillarity is introduced in the formulation and a traveling wave solution is
sought for the Riemann problem (unbounded domain, and piecewise constant
initial data with a single discontinuity), the critical points of the associated
2 × 2 dynamical system are spiral points (Coddington and Levinson, 1955). If
a traveling wave solution exists, it will necessarily present a spiral-like beha-
vior near the critical points, which translates into oscillatory (nonmonotonic)
saturation profiles. Validity of this type of solution is questionable on several
counts: (1) As the capillarity effects are taken to zero, oscillations collapse into
a singular shock, of dubious physical interpretation; (2) Introducing ‘sufficient’
capillarity does not cure the problem of oscillatory behavior, as the spiral-
like orbit persists asymptotically. In fact, it has been shown that the effects
of capillarity may actually enlarge the locus of instability, and extend it to the
strictly hyperbolic region (Azevedo et al., 2002).

6. Numerical simulations seem to corroborate, at least in first instance, the non-
physical behavior of solutions inside the elliptic region (Bell et al., 1986;
Jackson and Blunt, 2002). For arbitrarily close left and right states inside the
elliptic region, the solution develops wildly oscillatory waves, which are not
observed in experiments. Moreover, the wave pattern is unstable with respect
to the initial states and the gridblock size as the mesh is refined (Bell et al.,
1986). We emphasize that the type of instability alluded to here is completely
different from the physical instability of immiscible displacements.

From the observations above, it is difficult to justify the physical relevance of
elliptic regions (Fayers, 1987; Shearer and Trangenstein, 1989; Trangenstein, 1989;
Sahni et al., 1996; Azevedo et al., 2002). An attempt in this direction is the recent
paper by Jackson and Blunt (2002), who used a serial model of bundle of capillary
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tubes to argue that elliptic regions exist in a simplistic but physically realizable
porous medium. They assumed that relative permeabilities are fixed functions of
saturations, and investigated the character of the system for large values of the
gravity number. However, the constraints imposed by the authors on the commu-
nication between the bundles reduce their model to a single bundle of capillary
tubes, which cannot reproduce the physics of a dynamic immiscible displacement
(e.g. the formation of an oil bank). We are of the opinion that elliptic regions
are mere artifacts of an incomplete mathematical model. Inappropriateness of the
formulation may have several sources but, in the context of Darcy-type formula-
tions, the element of the formulation that first needs to be revisited is the relative
permeability model.

The only relative permeability models which do not produce elliptic regions
(under the assumed behavior at the edges and corners) are models of ‘Corey-type’
(Marchesin and Medeiros, 1989; Trangenstein, 1989). For models of this type, the
elliptic region shrinks to an isolated umbilic point, and the system is nonstrictly
hyperbolic. Solutions to such systems have been studied extensively (see Guzmán
and Fayers, 1997; Marchesin and Plohr, 2001 and the references therein), and have
been used in the interpretation of displacement experiments (Grader and O’Meara
Jr., 1988; Sahni et al., 1996). However, the assumption that the relative permeabil-
ity of each phase depends only on the saturation of that phase is overly restrictive,
and it is not supported by direct measurements and pore-scale considerations. It
may be possible to reduce the elliptic region to an isolated umbilic point for more
general relative permeability models (Holden, 1990). However, this requires a con-
tinuous deformation of the relative permeability functions, which is physically
unappealing.

In order to allow for more general relative permeability models that do not
produce elliptic regions, we revisit the assumed behavior at the edges of the satura-
tion triangle. In fact, it is widely recognized that the slope of experimental relative
permeabilities near the endpoints is often ill-defined (Fayers, 1987).

3.2. CONDITIONS FOR STRICT HYPERBOLICITY

The generic approach in the existing literature can be summarized as follows: a
certain behavior of the relative permeabilities is assumed, and loss of strict hyper-
bolicity inside the saturation triangle is inferred. We adopt the opposite viewpoint:
we assume that the system is strictly hyperbolic, and investigate the conditions
on the relative permeabilities such that strict hyperbolicity is preserved. In doing
so, we keep the condition that the mobility of a phase is identically equal to zero
along the edge of zero reduced saturation of that phase. The direct consequence of
this condition is that the edges of the saturation triangle are invariant lines for the
system (5), that is, if a phase is not present initially, it will remain absent. Such con-
sistency condition is required for the three-phase system to describe the two-phase
Buckley–Leverett equation when the third phase is not present. Mathematically,
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the zero mobility condition implies that on each edge of the saturation triangle one
eigenvector is always parallel to that edge.

It is easy to see that the requirement above (one eigenvector parallel to each
edge), precludes the possibility of having a strictly hyperbolic system everywhere
along the edges of the ternary diagram. There are two different ways in which strict
hyperbolicity may fail on the boundary of the saturation triangle:

1. The system is strictly hyperbolic at all three vertices. For vertices to be strictly
hyperbolic, eigenvectors lying on each of the two edges must be of different
family (e.g. at the O corner, r1 is parallel to the OW edge and r2 is parallel to
the OG edge). But then, there must exist at least one edge that has a parallel
eigenvector of the fast family near one vertex, and of the slow family near the
other vertex. Inevitably, an umbilic point – where characteristic speeds of the
slow and fast characteristic families coincide – must exist somewhere on this
edge, because eigenvectors do not rotate along the edge (Figure 3(a)).

2. At least one of the vertices is an umbilic point. As we show below, it is pos-
sible to have a model that is nonstrictly hyperbolic at the G vertex and strictly
hyperbolic everywhere else (Figure 3(b)).

Having the considerations above in mind, the key observation is that, whenever
gas is present as a continuous phase, the mobility of gas is usually much higher
than that of the other two fluids (water and oil). To honor this physical behavior,
we associate fast characteristic paths with displacements involving changes in gas
saturation, even in the region of small gas saturation. The immediate consequence
is that the eigenvector associated with the fast family of characteristics (r2) is trans-
versal – and not parallel – to the oil–water edge of the ternary diagram (Figure 3(b)).
As we shall see, this conceptual picture permits that the system will be strictly
hyperbolic everywhere inside the saturation triangle. The G vertex, correspond-

Figure 3. Direction of fast (r2) and slow (r1) eigenvectors along the edges of the saturation
triangle for: (a) models with strictly hyperbolic vertices; (b) models of the type we propose.
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ing to 100% reduced gas saturation, remains an umbilic point because fast paths
corresponding to the OG and WG edges coalesce.

Let us recapitulate the conceptual picture expressed in Figure 3(b):

1. Along the oil–water (OW) edge, the eigenvector associated with the slow char-
acteristic family (r1) is parallel to the edge. The system is strictly hyperbolic
everywhere along the edge, including the O and W vertices.

2. Along the oil–gas (OG) and water–gas (WG) edges, the eigenvector associated
with the fast characteristic family (r2) is parallel to these edges. The system is
strictly hyperbolic everywhere along the edges except at the G vertex, which is
an umbilic point.

Below we present a systematic study of the necessary conditions required for
strict hyperbolicity of the system. On each edge we identify two types of condi-
tions: Condition I enforces that eigenvectors of the appropriate family are parallel
to the edge, and Condition II guarantees strict hyperbolicity of the system along
the edge.

3.2.1. Analysis Along the OW Edge
The slow eigenvector being parallel to the OW edge (r1 = [1, 0]t) implies:

g,u = 0. (13)

When expressed in terms of mobilities, Condition I above reads:

λg,u = 0. (14)

This condition is immediately satisfied for any model, as the gas mobility is identi-
cally zero along this edge. It is also necessary that the denominator in Equation (11)
be different from zero:

ν1 − g,v 	= 0. (15)

Introducing (13) in (10), together with condition (15), yields:

ν1 = f,u, ν2 = g,v. (16)

The condition for strict hyperbolicity, ν1 < ν2, implies that

How := g,v − f,u > 0, (17)

which is equivalent to

λg,v > λw,u − λT,u
λw

λT
. (18)

Condition II above is the fundamental requirement for strict hyperbolicity of the
system of equations of three-phase flow. When this condition is evaluated at the
vertices of the OW edge, one obtains:

λg,v > λw,u at the O vertex, (19)

λg,v > −λo,u at the W vertex, (20)
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Table I. Summary of conditions along the OW edge

Condition Fractional flows Mobilities

I g,u = 0 ⇔ λg,u = 0

II g,v − f,u > 0 ⇔ λg,v > λw,u − λT ,u
λw
λT

II at O λg,v > λw,u

II at W λg,v > −λo,u

where the inequalities above are strict. In particular, Equations (19)–(20) dictate
that the gas relative permeability must not have a zero derivative at its endpoint
saturation. A summary of the conditions at the OW edge is given in Table I. We
make the following important remarks:

1. The requirement of a nonzero endpoint-slope of the gas relative permeability is
a necessary condition for strict hyperbolicity, which is violated by the models
of all previous studies on this subject.

2. This behavior of gas relative permeability is in good agreement with experi-
mental observations of two-phase (Wyckoff and Botset, 1936; Geffens et al.,
1951; Osoba et al., 1951) and three-phase flow (Leverett and Lewis, 1941;
Oak, 1990; Oak et al., 1990), both in drainage and imbibition. We demonstrate
this agreement in Section 4.

3. A finite positive slope for the gas relative permeability can also be justified
from the point of view of pore-scale processes, using a wettability argument.
As an illustration, we consider a bundle of cylindrical capillary tubes, and
assume that water is the most wetting, and gas the least wetting phase. For
expositional simplicity, we discuss the case of a uniform distribution of radii
between rmin and rmax, although the argument holds for virtually any other pore
size distribution. To account for the corners and crevices of real porous media
– where water is present in the form of filaments – we take rmin = 0. At any
given state of fluid saturations, gas will occupy the capillaries of larger radii,
and water the smaller capillaries. It is a simple exercise to show that the relative
permeabilities of water, oil and gas are given by:

krw = S5/3
w , kro = (1 − Sg)

5/3 − S5/3
w , krg = 1 − (1 − Sg)

5/3.

(21)

The water relative permeability has a zero endpoint-slope (k′
rw = 0 at Sw =

0), while the gas relative permeability has a positive endpoint-slope (k′
rg =

5/3 at Sg = 0). We certainly do not defend the capillary bundle model as
a realistic representation of the porous medium, but just bring attention to
the fact that even in this simplistic model, the conditions derived above are
satisfied.
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3.2.2. Analysis Along the OG Edge
A necessary condition for the fast eigenvector to be parallel to the OG edge (r2 =
[0, 1]t) is:

f,v = 0. (22)

In terms of mobilities, Condition I reads:

λw,v = 0. (23)

This condition is immediately satisfied because the water mobility is identically
zero along this edge. The denominator of Equation (12) must be different from
zero:

ν2 − f,u 	= 0. (24)

Using (22) and (24), the eigenvalues take the following expressions along the
OG edge:

ν1 = f,u, ν2 = g,v. (25)

We impose that the system be strictly hyperbolic everywhere along the OG edge,
excluding the G vertex. The condition of strict hyperbolicity, ν1 < ν2, implies that
(Condition II):

Hog := g,v − f,u > 0, (26)

or, equivalently:

λg,v > λw,u + λT,v
λg

λT
. (27)

When we specialize Condition II at the O vertex, we recover condition (19), which
requires that the gas relative permeability must have a positive slope at its endpoint
saturation. The G vertex is assumed to be an umbilic point, where the slow and fast
characteristic speeds coincide, that is, ν1 = ν2. When expressed in terms of relative
mobilities, the condition reads:

λw,u + λo,v = 0. (28)

The conditions at the OG edge are summarized in Table II.

3.2.3. Analysis Along the WG Edge
The analysis at the WG edge is complicated by the fact that it is a tilted line in the
(u, v)-plane. The fast eigenvector will be parallel to the WG edge (r2 = [−1, 1]t)
if:

ν2 − f,u = −f,v. (29)

Substituting (10) into (29):

f,v + g,v = f,u + g,u. (30)
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Table II. Summary of conditions along the OG edge

Condition Fractional flows Mobilities

I f,v = 0 ⇔ λw,v = 0

II g,v − f,u > 0 ⇔ λg,v > λw,u + λT ,v
λg
λT

II at O λg,v > λw,u

II at G λw,u + λo,v = 0

In terms of mobilities, Condition I above reads:

λo,v = λo,u. (31)

As for the other two edges, this condition is identically satisfied by all models,
because the oil mobility is identically zero along the WG edge. Using (30), the
eigenvalues along the WG edge are given by:

ν1 = g,v + f,v, ν2 = g,v − g,u. (32)

For strict hyperbolicity along the WG edge (ν1<ν2), excluding the G vertex:

Hwg := −g,u − f,v > 0, (33)

or, equivalently:

λw

λT
(λg,v − λg,u)+ λg

λT
(λw,u − λw,v) > −λo,u. (34)

The equality at the G vertex imposes that:

λw,u − λw,v = −λo,u. (35)

Using Condition I along all three edges (Eqs. (14), (23) and (31)), the conditions
at the W and G vertices reduce to (20) and (28), respectively. In Table III we
summarize the conditions at the WG edge.

Remark. The conditions expressed in Tables I–III are necessary conditions for
the type of behavior we propose, which leads to strict hyperbolicity of the system of

Table III. Summary of conditions along the WG edge

Condition Fractional flows Mobilities

I f,v + g,v = f,u + g,u ⇔ λo,v = λo,u

II −g,u − f,v > 0 ⇔ λw
λT
(λg,v − λg,u)

+ λg
λT
(λw,u − λw,v) > −λo,u

II at W λg,v > −λo,u
II at G λw,u + λo,v = 0



140 RUBEN JUANES AND TADEUSZ W. PATZEK

equations everywhere in the saturation triangle (with the exception of the G vertex,
which is an umbilic point). They are not sufficient conditions.

3.3. A SIMPLE MODEL

Our interest here reduces to presenting a simple model that satisfies the conditions
above. It is common practice to assume that relative permeabilities of the most and
least wetting fluids (usually water and gas) depend only on their own saturation,
whereas the relative permeability of the intermediate wetting fluid (usually oil)
depends on all saturations. Although we do not defend this assumption in gen-
eral, here we show it is possible to obtain models which are strictly hyperbolic
everywhere in the three-phase flow region. We take, for example:

λw =
(

1

µw

)
u2, (36)

λg =
(

1

µg

)
(βgv + (1 − βg)v

2), βg > 0, (37)

λo =
(

1

µo

)
(1 − u− v)(1 − u)(1 − v). (38)

The most important feature of the model is the positive derivative of the gas relative
permeability function as it approaches zero. For the particular function used here,
oil isoperms are slightly convex (Figure 4). It is immediate to check that the relative
mobilities (36)–(38) satisfy Condition I on all three edges. Whether Condition II
is satisfied will depend, in general, on the values of the fluid viscosities and the
endpoint-slope of the gas relative permeability (Juanes, 2003).

Figure 4. Oil isoperms for the simple model (38).
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3.3.1. Analysis Along the OW Edge
The condition for strict hyperbolicity along the OW edge reads:

How = g,v − f,u = 1

D(u)

[
βg

µg
− F(u)

]
> 0, (39)

where

D(u) := 1

u2/µw + (1 − u)2/µo
, and F(u) := 2

u(1 − u)

µou2 + µw(1 − u)2
.

(40)

Defining M := max 0<u<1 F(u), Condition II on OW is satisfied if:

βg > µgM. (41)

Differentiating F(u) with respect to u and equating to zero, and after some al-
gebraic manipulations, one obtains that M = 1/µ̄, where µ̄ := √

µoµw is the
geometric mean of the water and oil viscosities. Therefore, the condition for strict
hyperbolicity on the OW edge is:

βg >
µg

µ̄
, µ̄ = √

µoµw. (42)

Despite the fact that Equation (42) is restricted to the simple model considered here
(and therefore it is not valid in general), it is illuminating with regard to the required
behavior for the relative permeability of the most nonwetting phase. Equation (42)
expresses that there is a lower bound on the endpoint-slope of the nonwetting phase
relative permeability, if the three-phase flow model is to be strictly hyperbolic.
This threshold is proportional to the ratio between the viscosity of the nonwetting
phase and the average viscosity of the other two phases. It is important to note the
following remarks:

1. Condition (42) provides a lower bound of the endpoint slope for the system to
be strictly hyperbolic. It is not an estimate of the actual value of this slope.

2. The dependence of the relative permeabilities on the viscosity ratio has been
justified both theoretically and experimentally. We refer to Figure 7 in Odeh
(1959) for experimental data that shows precisely the trend suggested here.

3.3.2. Analysis Along the OG Edge
For strict hyperbolicity along the OG edge (excluding the G vertex), the relevant
condition is:

Hog = g,v − f,u = 1

µgµo

1 − v

[(βgv + (1 − βg)v2)/µg + (1 − v)2/µo]2
·

· (βg + (2 − βg)v) > 0, (43)
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which is always satisfied for all v ∈ [0, 1), as long as the endpoint slope βg > 0. At
the G vertex (u = 0, v = 1), we obtain Hog = 0, so this point is an umbilic point,
as required.

3.3.3. Analysis Along the WG Edge
The condition for strict hyperbolicity along this edge (not including the G vertex)
is:

Hwg = −g,u − f,v = 1

E(v)

[
Cwg(v)

µwµg
+ Cog(v)

µoµg
+ Cwo(v)

µwµo

]
> 0, (44)

where,

E(v) =
(
βgv + (1 − βg)v

2

µg
+ (1 − v)2

µw

)2

, (45)

Cwg(v) = (2 − (2 − βg)(1 − v))(1 − v), (46)

Cog(v) = −(1 − (1 − βg)(1 − v))v2(1 − v), (47)

Cow(v) = −v(1 − v)3. (48)

At the G vertex, corresponding to v = 1, it is clear that Hwg = 0, as required. On
the other hand, it is not easy to infer the conditions on the fluid viscosities and the
endpoint-slope βg such that the strict inequality (44) is satisfied on the entire edge.
It is possible, however, to identify the conditions for strict hyperbolicity along this
edge near the G vertex. Let u = ε, v = 1 − ε with ε → 0, that is, a state on the
WG edge near the G corner. The first-order Taylor expansion of Hwg about ε = 0
is

Hwg = µg

[
2

µw
− 1

µo

]
ε +O(ε2). (49)

Therefore, for Hwg > 0 in the neighborhood of the G corner, we obtain the condi-
tion

µw < 2µo. (50)

This imposes an additional restriction (not obvious to anticipate) on the values of
the fluid viscosities, if one wants the relative permeability model (36)–(38) to yield
a strictly hyperbolic system. We emphasize that such condition was derived for
this simple example only. Obviously, it should be understood as a limitation of the
model, and not a physical restriction on the fluid viscosities.

4. Validation with Experimental Data

In Section 3 we derived the necessary conditions that must be satisfied by the
relative permeabilities, if the system of equations describing three-phase flow is
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to be strictly hyperbolic everywhere inside the saturation triangle. The essential
requirement for strict hyperbolicity turns out to be that the relative permeability
of gas (the most nonwetting phase) must have a positive derivative with respect
to its own saturation, at the edge of zero reduced gas saturation (Eq. (18)). In this
section we verify how realistic this condition is, by means of comparison with
experimental data. To this end, we use Oak’s steady-state experiments (Oak, 1990;
Oak et al., 1990), which are arguably the most reliable and best-known data set
available. The fact that we use steady-state relative permeability data in a dynamic
fluid displacement model ought to be of little consequence because the relative
permeabilities measured with many different methods are similar (Osoba et al.,
1951; Johnson et al., 1959).

The data set consists of over 1800 two-phase and three-phase relative permeabil-
ity measurements, obtained using a fully automated steady-state method. Three
fired Berea sandstone cores were employed, with absolute permeabilities of 200 md
(Sample 6), 800 md (Sample 14), and 1000 md (Sample 13). Water, oil, and gas
viscosities were 1.06, 1.77, and 0.0187 cp, respectively. The study includes over
30 combinations of rock and fluid systems and saturation histories. A complete
description of the experimental apparatus and procedure is given in the original
references (Oak, 1990; Oak et al., 1990).

4.1. DESCRIPTION OF THE ‘ENDPOINT-SLOPE’ ANALYSIS

We are interested in the qualitative behavior of the relative permeability of each
phase in the region of low reduced saturation of that phase. More precisely, we
want to determine whether the relative permeability of a phase, when expressed as
a function of its own saturation only, takes off with a zero or a positive slope (see
Figure 5).

Let us describe our ‘endpoint-slope’ analysis of Oak’s relative permeability
data. For each experiment (which consists of several – sometimes dozens –

Figure 5. Markedly different qualitative behavior of the slope of the relative permeability of
a phase, in the region near the ‘immobile’ saturation of that phase.
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relative permeability measurements), we tabulate the relative permeability of a
phase against its own saturation. For each phase α, we identify a maximum satur-
ation Sα,max that defines the range of saturations to be used in the analysis, and use
only the data points for saturations Sα <Sα,max. This range should be small enough
to be considered close to the immobile saturation, but should have a sufficient
number of data points to indicate a trend, given the precision of the measurements.
We fit the power-law expression:

krα = Cα(Sα − Sαi)
mα , Sα < Sα,max, (51)

using a least squares procedure, with the following constraints:

Cα > 0, Sαi � 0, mα � 1. (52)

The most relevant parameter is the exponent mα . A value of one or close to one
is indicative of a linear behavior of the relative permeability and, thus, a positive
slope at the endpoint saturation. On the other hand, an exponent larger than two
suggests that the relative permeability will approach a zero value (at the endpoint
saturation) with zero slope. Below, we present the results of the analysis of four
representative experiments.

4.2. TWO-PHASE FLOW EXPERIMENTS

4.2.1. Primary Drainage Experiment
The first experiment (Sample 13, Experiment 16a) corresponds to a drainage pro-
cess, where gas is injected into an initially water-filled core, through a sequence
of steady states. The relative permeability curves for this experiment are plotted in
Figure 6 in semi-log scale. The results of the power-law fit of the data are presented
in Table IV. The most important observation is the essential difference in the value
of the exponent mα for the wetting phase (mw ≈ 8) and the nonwetting phase

Figure 6. Relative permeability curves of water and gas for the two-phase drainage experi-
ment (Sample 13, Experiment 16a of Oak’s dataset). The solid square mark (�) indicates the
initial saturation state of the core.
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Table IV. Parameters of the power-law fit for the two-phase drainage experiment

Sα,max Cα Sαi mα

Water 0.7000 2.6362 0.0000 8.0282

Gas 0.2500 0.1902 0.0404 1.1377

Figure 7. Relative permeabilities as a function of their own saturation, for the two-phase
drainage experiment.

(mg ≈ 1.1). The actual fit is shown graphically in Figure 7. It is apparent that
the water relative permeability reaches a value of zero with a zero value of the
slope, whereas the gas relative permeability curve displays an almost linear relation
against gas saturation, which can be assimilated to a positive slope near the critical
gas saturation.

4.2.2. Secondary Imbibition Experiment

The data analyzed here (Sample 13, Experiment 16b) correspond to the imbibition
process following the primary drainage experiment described in the previous para-
graph. The relative permeability curves obtained in this way are plotted in semi-log
scale in Figure 8. The results of the power-law fit to the data are presented in
Table V. Once again, the values of the exponent mα for the wetting phase (mw ≈ 4)
and the nonwetting phase (mg = 1) are fundamentally different. The actual fit to
the relative permeability data is shown in Figure 9.

4.3. THREE-PHASE FLOW EXPERIMENTS

4.3.1. Drainage-Dominated Experiment

The first of the three-phase flow experiments (Sample 6, Experiment 15a) consists
in a sequence of steady states of increasing average gas saturation, in which the
ratio of gas/water flow rates is increased, while the water/oil ratio is held constant.
The resulting saturation path for this experiment is shown on a ternary diagram in
Figure 10. In Table VI we present the parameters of the power-law fit for the water
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Figure 8. Relative permeability curves of water and gas for the two-phase imbibition experi-
ment (Sample 13, Experiment 16b of Oak’s dataset). The solid square mark (�) indicates the
saturation state of the core after primary drainage.

Table V. Parameters of the power-law fit for the two-phase imbibition experiment

Sα,max Cα Sαi mα

Water 0.6700 3.9379 0.2785 3.9030

Gas 0.4500 1.2051 0.3212 1.0000

Figure 9. Relative permeabilities as a function of their own saturation, for the two-phase
imbibition experiment.

and gas phases. As for the two-phase flow results, we observe a high value of the
exponent (mw ≈ 3) for water, and a value close to one (mg ≈ 1.2) for gas. The
actual fit is shown in Figure 11.
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Figure 10. Saturation path for the drainage-dominated three-phase relative permeability ex-
periment (Sample 6, Experiment 15a of Oak’s dataset). The square mark (�) indicates the
saturation state of the core at the beginning of the experiment.

Table VI. Parameters of the power-law fit for the three-phase drainage-dominated
experiment

Sα,max Cα Sαi mα

Water 0.4840 0.1065 0.2092 2.8623

Gas 0.4000 0.7162 0.0941 1.2552

Figure 11. Relative permeabilities as a function of their own saturation, for the three-phase
drainage-dominated experiment.

4.3.2. Imbibition-Dominated Experiment
Our last example (Sample 6, Experiment 15b) is a three-phase flow experiment,
consisting in a sequence of steady states of increasing water saturation. This
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Figure 12. Saturation path for the imbibition-dominated three-phase relative permeability ex-
periment (Sample 6, Experiment 15b of Oak’s dataset). The square mark (�) indicates the
saturation state of the core at the end of the drainage-dominated experiment.

Table VII. Parameters of the power-law fit for the three-phase imbibition-dominated experiment

Sα,max Cα Sαi mα

Water 0.5000 0.4737 0.2569 3.2804

Gas 0.6000 2.1985 0.3530 1.0000

Figure 13. Relative permeabilities as a function of their own saturation, for the three-phase
imbibition-dominated experiment.

sequence is achieved by decreasing the ratio of gas/water flow rates, while keeping
the water/oil ratio constant. In Figure 12 we depict the saturation path for this
experiment. TableVII has the numeric values of the power-law fit, and Figure 13
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shows the experimental data and the fitted relative permeability curves. The
same qualitative behavior as that of the previous examples is observed (mw ≈ 3,
mg = 1).

Remark. The particular examples presented here are representative of more
than one hundred experiments in Oak’s dataset. His experimental data seem to
corroborate the fundamental requirement for strict hyperbolicity of the model, that
is, a positive slope of the relative permeability of the most nonwetting phase near
its immobile saturation.

5. Conclusions

Traditional formulations of three-phase flow in porous media employ the usual
extension of Darcy’s equation. Within this framework, it was believed that elliptic
regions were unavoidable when generic relative permeability functions were used
in models of one-dimensional immiscible incompressible three-phase flow. This
conclusion was inferred after a particular behavior of the relative permeabilities
along the edges of the saturation triangle was assumed. In this paper we show it is
possible to identify conditions on the relative permeabilities so that the system of
equations is strictly hyperbolic everywhere in the saturation triangle. By means of
a specific example, we suggest how strict hyperbolicity may be invoked to impose
constraints on the parameters of the relative permeability model. It turns out that the
fundamental requirement is a finite positive slope of the gas relative permeability at
the saturation where gas becomes mobile. This condition is consistent with a pore-
scale description of multiphase flow and, as shown in this paper, is also supported
by experimental relative permeability data.

This important result is restricted to the case when gravitational effects are
not accounted for, which is sensible only when the gravity number is small, or
when flow is horizontal. It is possible, however, to extend this analysis to the case
when flow is not horizontal and gravity is included, by allowing that relative per-
meabilities may vary (albeit slightly) with the gravity number (Juanes and Patzek,
2003).

We admit that we still do not have a definitive argument in favor or against
the presence of elliptic regions in the saturation space, although we find good rea-
sons to believe they are nothing else than mathematical artifacts of an incomplete
mathematical model. In this paper, we review some of the facts suggesting that el-
liptic regions are unphysical in the context of three-phase flow displacements. Our
current view is that one should use these hints to develop new relative permeability
models, or an improved description altogether of three-phase flow in porous media.
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