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Summary
In this paper, we revisit the displacement theory of three-phase
flow and provide conditions for a relative permeability model to be
physical anywhere in the saturation triangle. When capillarity is
ignored, most relative permeability functions used today yield re-
gions in the saturation space where the system of equations is
locally elliptic, instead of hyperbolic. We are of the opinion that
this behavior is not physical, and we identify necessary conditions
that relative permeabilities must obey to preserve strict hyperbo-
licity. These conditions are in agreement with experimental obser-
vations and pore-scale physics.

We also present a general analytical solution to the Riemann
problem (constant initial and injected states) for three-phase flow,
when the system satisfies certain physical conditions that are natu-
ral extensions of the two-phase flow case. We describe the char-
acteristic waves that may arise, concluding that only nine combi-
nations of rarefactions, shocks, and rarefaction-shocks are possible.
Some of these wave combinations may have been overlooked but
can potentially be important in certain recovery processes.

The analytical developments presented here will be useful in
the planning and interpretation of three-phase displacement experi-
ments, in the formulation of consistent relative permeability mod-
els, and in the implementation of streamline simulators.

Introduction
Three immiscible fluids—water, oil, and gas—may flow in many
processes of great practical importance: in primary production be-
low bubblepoint and with movable water; in waterfloods, man-
made and natural; in immiscible CO2 floods; in steamfloods; in
some gas condensate reservoirs; in gravity drainage of gas caps
with oil and water; in WAG processes; and in contaminant intru-
sions into the shallow subsurface, just to name a few.

Relative permeabilities to water, oil, and gas are perhaps the
most important rock/fluid descriptors in reservoir engineering.
Currently, these permeabilities are routinely backed out from the
theories of transient, high-rate displacements of inert and incom-
pressible fluids that flow in short cores subjected to very high
pressure gradients. More recently, the time evolution of area-
averaged fluid saturations was measured with a CT scanner and,
with several assumptions,1 used to estimate the respective relative
permeabilities in gravity drainage. Superior precision of the latter
approach allowed the determination of relative permeabilities as
low as 10–6.

When the fractional-flow approach is used, flow of three im-
miscible incompressible fluids is described by a pressure equation
and a 2×2 system of saturation equations.2 It was long believed (at
least in the Western literature) that, in the absence of capillarity,
the system of equations would be hyperbolic for any relative per-
meability functions. This is far from being the case and, in fact,
loss of hyperbolicity occurs for most relative permeability models
used today. In this paper, we argue that such a behavior is not
physically based, and we show how to overcome this deficiency.

To do so, we adopt an opposite viewpoint to that of the existing
literature: strict hyperbolicity of the system is assumed, and the
implications on the functional form of the relative permeabilities
are analyzed.

There is a theory behind each quantitative experiment. Not only
does any theory reduce and abstract experience, but it also over-
reaches it by extra assumptions made for definiteness. Theory, in
its turn, predicts the results of some specific experiments. The
body of theory furnishes the concepts and formulæ by which ex-
periment can be interpreted as being in accord or discord with it.
Experiment, indeed, is a necessary adjunct to a physical theory, but
it is an adjunct, not the master.3 In other words, the relative per-
meability models are only as good as theories behind the displace-
ment experiments from which these models have been obtained. If
the theory is flawed, so are the relative permeabilities.

Mathematical Model
Governing Equations. We outline the mathematical formulation
of multiphase flow in porous media under the following assumptions:

1. 1D flow.
2. Immiscible flow.
3. Incompressible fluids.
4. Homogeneous rigid porous medium.
5. Multiphase-flow extension of Darcy’s law.
6. Negligible gravitational effects.
7. Negligible capillary pressure effects.
A detailed derivation of the governing equations can be found

elsewhere.2,4

Assumption 2 prevents mass transfer between phases, and,
therefore, one can identify components with phases. The 1D
mass-conservation equation for the � phase is, in the absence of
source terms,

�t�m�� + �x�F�� = 0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)

where m��the mass density, F��the mass flux of the �-phase,
and �t(�), �x(�) denote partial derivatives with respect to time and
space, respectively. For three-phase flow, the system consists of
aqueous, vapor, and liquid phases, corresponding to water (w), gas
(g), and oil (o) components, respectively. The mass density of each
phase is the mass per unit bulk volume of porous medium:

m� = �� S��, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

where ���the density of the � phase, S��the saturation, and
��the porosity. Assumptions 3 and 4 make the phase densities
and the porosity constant. Using the usual multiphase-flow exten-
sion of Darcy’s law5 (Assumption 5):

F� = −k
kr�

��

����x p� + �� g�xz�, . . . . . . . . . . . . . . . . . . . . . . . . . . (3)

where k�the absolute permeability, kr��the relative permeabil-
ity, ���the dynamic viscosity, and p��the pressure of the �
phase. Relative permeabilities are assumed to be functions of
phase saturations. The gravitational acceleration has absolute value
g and points in the negative direction of the z-axis. We define the
relative mobility of the � phase as

�� :=
kr�

��

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
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Neglecting gravitational and capillarity effects (Assumptions 6 and
7) the mass-conservation equation for the � phase is:

�t S� + �x �−
1

�
k���x p� = 0, . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)

where p�the pressure, now common to all phases. Because the
fluids fill up the pore volume, their saturations add up to one:

�
�=1

n

S� ≡ 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)

Adding the conservation equations for all phases and using the
saturation constraint 6, we get the “pressure equation”:

�x �−
1

�
k�T�x p� = 0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)

where �T�∑��1
n �� is the total mobility. Eq. 7 dictates that the

total velocity, defined as

vT := −
1

�
k�T�x p, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8)

is at most a function of time. We now define the phase velocity

v� :=
��

�T
vT , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9)

and the fractional flow for the � phase

f� :=
v�

vT
=

��

�T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10)

With the definitions above, the three-phase flow system is gov-
erned by a 2×2 system of conservation laws,

�t �Sw

Sg
� + vT�x �fw

fg
� = �0

0�, . . . . . . . . . . . . . . . . . . . . . . . . . . (11)

and the algebraic constraint So�1−Sw−Sg. The solution is re-
stricted to lie in the saturation triangle

T := ��Sw,Sg� : Sw � 0, Sg � 0, Sw + Sg 	 1�. . . . . . . . . . . (12)

The saturation triangle is usually represented as a ternary diagram
(Fig. 1), in which the pair Sw,Sg corresponds to the triple Sw,Sg,So,
where So≡1−Sw−Sg.

Riemann Problem. Eq. 11 can be written in vector notation de-
fining the vector of unknowns u�[u,v]t�[Sw,Sg]t, and the flux
vector f�[f,g]t�[fw,fg]t. The Riemann problem for three-phase
flow consists in finding a self-similar (usually weak) solution to
the 2×2 system

�t u + vT�xf = 0, − 
 � x � 
, t � 0, . . . . . . . . . . . . . . . . . . (13)

with initial condition

u�x,0� = �ul if x � 0,

ur if x � 0.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (14)

Unrealistic as it may seem (unbounded domain and piecewise
constant initial data with a single discontinuity), the solution to the
Riemann problem is extremely valuable for practical applications.
Many laboratory experiments reproduce in fact the conditions of
the Riemann problem: the medium has initially homogeneous satu-
rations, and the proportion of injected fluids is held constant during
the experiment. The solution to the Riemann problem also gives
information about the structure of the system of equations and can
be used as the building block for problems with more complex
initial conditions (as in the Godunov method6,7 or the front-
tracking method8).

The property of self-similarity has been termed “stretching
principle”9 or “coherence condition”10,11 in the petroleum engi-
neering literature. It means that the solution at different times “can
be obtained from one another by a similarity transformation.”12

We seek a solution of the form

u�x,t� = U��. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (15)

In our case, the similarity variable  is

 :=
x

�
0

t
vT ���d�

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16)

Using Eqs. 15 and 16 in Eq. 13, the self-similar solution satisfies
the system of ordinary differential equations

�A�U� − I�U� = 0, − 
 �  � 
, . . . . . . . . . . . . . . . . . . . . (17)

together with the boundary conditions

U�−
� = ul, U�
� = ur , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (18)

where A(U)�the Jacobian matrix of the system; that is,

A�U� := DUf = � f,u�U� f,v�U�

g,u�U� g,v�U��, . . . . . . . . . . . . . . . . . . . . . (19)

and 1�the 2×2 identity matrix. Subscripts after a comma in Eq. 19
denote differentiation (e.g. f,u≡�uf).

Eqs. 17 and 18 define in fact an eigenvalue problem, where 
is an eigenvalue, and U��dU/d is a right eigenvector. There are
two families of eigenvalues (which we denote v1 and v2) and
eigenvectors (r1 and r2). The eigenvalues and eigenvectors deter-
mine the character of the system.13

Fig. 1—Saturation triangle (top) and ternary diagram (bottom).
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The system is called “hyperbolic” if, for each state U�(u,v),
both eigenvalues v1(U) and v2(U) are real, and the Jacobian matrix
A(U) is diagonalizable. If, in addition, the eigenvalues are distinct,
v1(U)<v2(U), the system is called “strictly hyperbolic.” If there is
a double eigenvalue and the Jacobian matrix is not diagonalizable,
the system is “parabolic.” Finally, if the eigenvalues are complex
conjugates at some point U, the system is “elliptic” at that point.

The eigenvalues are given by

v1,2 =
1

2
�f,u + g,v 	 
�f,u − g,v�

2 + 4f,v g,u�. . . . . . . . . . . . . . . (20)

The eigenvalues are real whenever the discriminant is nonnegative,
that is,

� := � f,u − g,v�
2 + 4f,v g,u � 0, . . . . . . . . . . . . . . . . . . . . . . . . . . . (21)

and distinct if the inequality above is strict.
The eigenvectors rp�[rpu,rpv]

t, p�1,2, of the system are given
by the following expressions:

r1v

r1u
=

v1 − f,u

f,v
=

g,u

v1 − g,v
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (22)

r2u

r2v
=

f,v

v2 − f,u
=

v2 − g,v

g,u
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (23)

The eigenvectors should be normalized so that |rp|≡1.

Three-Phase Relative Permeability Models
Introduction. We assume that pressure and temperature do not
greatly influence fluid viscosities, and we take them as constants.
Under this assumption, the character of the system is completely
determined by the relative permeabilities.

Experimental evidence suggests that there is a threshold satu-
ration for each phase, below which that phase is immobile. As a
result, three-phase flow takes place only in a region inside the
saturation triangle. The nature of these threshold saturations de-
pends on the wettability of the fluid, and on the displacement
process.14 For the wetting phase, the term “connate” (or “irreduc-
ible”) saturation would be appropriate both in drainage and imbi-
bition. For the nonwetting phase, the term “critical” saturation
would be applicable in drainage, and “trapped” (or “residual”)
saturation in imbibition. For the purpose of this paper we lump the
terminology above in the term “immobile” saturation S�i , regard-
less of the process. If these endpoint saturations are taken as con-
stants, one can define reduced saturations S̃� as:

S̃� :=
S� − S�i

1 − �
�=1

3

S�i

, � = 1, …, 3. . . . . . . . . . . . . . . . . . . . . . . . . (24)

Eq. 24 defines a linear map from the three-phase flow subtriangle
(the shaded region in Fig. 2) to the whole ternary diagram. It is
important to note that the three-phase flow region is not necessar-
ily an equilateral triangle, as the “immobile” saturation of each
phase may vary with the saturations of the other two phases. This
is a well-known behavior for the oil phase,15 and several correla-
tions for the “residual” oil saturation have been proposed.16,17 In
this case, the mapping of the three-phase flow region onto the unit
ternary diagram would be more complicated than just the linear
relation in Eqs. 24.

The relative permeability of a phase is zero if that phase is
immobile, and it is positive otherwise. By expressing relative per-
meabilities as functions of reduced saturations, and using the linear
transformation in Eq. 24, the original system in Eq. 13 can be
written as:

�t ũ + ṽT �xf̃ �ũ� = 0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (25)

where f̃�the fractional flow vector expressed as a function of
reduced saturations, and

ṽT =
vT

1 − �
�=1

3

S�i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (26)

is the reduced total velocity. To simplify notation, we shall drop
the tildes from Eq. 25 but still refer to the system in terms of
reduced saturations.

Loss of Strict Hyperbolicity in Conventional Models. The
study of the character of the system was first addressed in the
Russian literature. Charny18 pointed out that for certain relative
permeability functions, the system in Eq. 25 could be of mixed
elliptic/hyperbolic type. He concluded, however, that the system is
hyperbolic for realistic three-phase flows. This work did not per-
meate to the Western literature, where it was long believed that the
system in Eq. 13 was hyperbolic for any relative permeability
functions. Bell et al.19 showed that the system is not necessarily
hyperbolic. In particular, they observed that Stone I relative per-
meabilities gave rise to elliptic regions inside the saturation tri-
angle. Elliptic regions are portions of the saturation triangle where
the eigenvalues are complex, so the system is locally elliptic rather
than hyperbolic. The analysis of Bell et al.19 shows that the solu-
tion is unstable in these regions. One of the consequences is that
for arbitrarily close initial and injected saturation states inside the
elliptic region, the solution develops wildly oscillatory waves,
which are not observed in experiments. Moreover, the wave pat-
tern is unstable with respect to the initial states.

It was shown17,20–24 that occurrence of elliptic regions is the
rule rather than the exception for the most common relative per-
meability models. The analysis of Shearer20 and Holden23 starts by
assuming the behavior of relative permeabilities at the edges of the
saturation triangle. In particular, it is assumed that both the relative
permeability of a phase, and its derivative along the normal to the
edge of zero reduced saturation of that phase, are identically zero.
In addition, certain “interaction conditions” are imposed. These
conditions impose that the eigenvector parallel to the edge is the
one associated with the fast characteristic speed, r2 (Fig. 3).

The assumed behavior at the edges has a profound impact on
the character of the system. The first consequence is that each
vertex of the saturation triangle is an umbilic point, at which
eigenvalues are equal and the system is not strictly hyperbolic. The
second consequence is that, in general, an elliptic region must exist
inside the saturation triangle. This result can be proved using ideas
of projective geometry.20,25

The only models that do not produce elliptic regions (under the
assumed behavior at the edges) are those in which the relative

Fig 2—Schematic of constant immobile saturations for each
phase. The three-phase flow region (shaded area) is, in this
case, an equilateral triangle inside the ternary diagram.

304 September 2004 SPE Journal



permeability of a phase depends solely on the saturation of that
phase.26,27 For these models, the elliptic region shrinks to an iso-
lated umbilic point, which cannot be removed by further approxi-
mation of the relative permeabilities. Umbilic points act as “repel-
lers” for classical waves,28–30 and, as a result, solutions to the
nonstrictly hyperbolic system require nonclassical waves (termed
transitional waves31). Models of this type have been used also in
the interpretation of three-phase displacement experiments.32,33

However, the assumption that the relative permeabilities of all
three phases depend solely on their respective saturations is not in
agreement with pore-scale physics34,35 and direct relative permeabil-
ity measurements36 (especially for the intermediate-wetting phase).

In a separate publication,37 we provide very strong arguments
supporting our view that elliptic regions are unphysical.2,17,21,27,38–40

In our opinion, these singularities are mere artifacts of an incom-
plete mathematical model. Inappropriateness of the formulation
may have several sources, the most obvious one being the relative
permeability functions and, in particular, the assumed behavior at
the edges of the saturation triangle. In fact, it is widely recognized
that the slope of experimental relative permeabilities near the end-
points is often ill-defined.17

Description of the New Approach. The generic approach in the
existing literature can be summarized as follows: a certain behav-
ior of the relative permeabilities is “assumed,” and loss of strict
hyperbolicity inside the saturation triangle is “inferred.” We adopt
the opposite viewpoint: we assume that the system is strictly hy-
perbolic and investigate the conditions on relative permeabilities
as functions of saturation such that strict hyperbolicity is pre-
served. Because the three-phase system must be consistent with the
two-phase system when one of the phases is not mobile, the rela-
tive permeability of a phase must be identically equal to zero on
the edge of zero reduced saturation of that phase. This obvious
condition immediately implies that, on each edge of the saturation
triangle, one of the eigenvectors is directed along the edge.

With this consideration in mind, the key observation is that,
whenever gas is present as a continuous phase, the mobility of gas
is usually much higher than that of the other two fluids (water and
oil). To honor this physical behavior, we associate fast character-
istic paths with displacements involving changes in gas saturation,
even in the region of small gas saturation. The immediate conse-
quence is that the eigenvector associated with the fast family of

characteristics (r2) is transversal—and not parallel— to the oil-
water (OW) edge of the ternary diagram (Fig. 4). This conceptual
picture permits that the system be strictly hyperbolic everywhere
inside the saturation triangle. The G vertex, corresponding to
100% reduced gas saturation, remains an umbilic point because
fast paths corresponding to the OG and WG edges coalesce.

Therefore, the essential difference with respect to the models
assumed in previous studies20,23 is that along the OW edge, the
eigenvector that is parallel to the edge is the one associated with
the slow characteristic family (r1).

We have carried out a systematic study of the conditions for
strict hyperbolicity. On each edge, we identify two types of con-
ditions. Condition I enforces that eigenvectors of the appropriate
family are parallel to the edge. Condition II guarantees strict hy-
perbolicity of the system along the edge. The latter condition is
further specialized to both vertices of each edge, which provides
additional insight into the behavior of the relative permeabilities.
The analytical developments are expressed most effectively in
terms of water and gas fractional flows (f and g, respectively) and
their derivatives with respect to water and gas saturations (u and v,
respectively). We then translate these requirements into conditions
that must be satisfied by the relative permeabilities. We emphasize
that relative permeabilities and, therefore, relative mobilities are
assumed to be functions of saturations only; that is,

�w = �w�u,v�, �g = �g �u,v�, �o = �o�u,v�. . . . . . . . . . . . . . . . . . (27)

Because of space restrictions, we present only the main results and
their practical implications. The complete analysis is included in a
separate publication.37

Analysis Along the OW Edge. This edge corresponds to the
line of zero reduced gas saturation, v�0. The conditions for strict
hyperbolicity along this edge—and their particular form at the
vertices—are summarized in Table 1. Condition I is immediately
satisfied for any model, because the gas mobility is identically zero
along this edge. Condition II, on the other hand, is the fundamental
requirement for strict hyperbolicity of the system of equations of
three-phase flow. Because the inequalities in Table 1 are strict, this
condition dictates that the gas relative permeability must not have
a zero derivative at its endpoint saturation. We make the following
important remarks:

1. The requirement of a nonzero endpoint slope of the gas
relative permeability is a necessary condition for strict hyperbo-

Fig. 4—Schematic representation of the direction of fast (r2) and
slow (r1) eigenvectors along the edges of the saturation triangle
for the type of models we propose. The system is strictly hy-
perbolic everywhere inside the saturation triangle, and the only
umbilic point is located at the G vertex, where the fast paths
corresponding to the OG and WG edges coalesce.

Fig. 3—Schematic representation of the direction of fast eigen-
vectors r2 along the edges of the saturation triangle for the
models analyzed by Shearer20,21 and Holden.23 For models of
this type, vertices are umbilic points, and there must be an
elliptic region inside the saturation triangle, usually very close
to the oil-water edge.
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licity, which is violated by the models of all previous studies on
this subject.

2. This behavior of gas relative permeability is in good agree-
ment with experimental observations of two-phase and three-phase
flow, both in drainage and imbibition.37

3. A finite positive slope for the gas relative permeability, as
well as a zero slope for the water relative permeability in a three-
phase system, can also be justified from the point of view of
pore-scale processes using a wettability argument.37

Analysis Along the OG Edge. This edge corresponds to the
line of zero reduced water saturation, u�0. The conditions at the
OG edge are summarized in Table 2. Condition I is immediately
satisfied because water mobility is identically zero along this edge.
Condition II involves a strict inequality at the O vertex:

�g,v � � w,u , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (28)

and an equality at the G vertex (umbilic point):

�w,u + �o,v = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (29)

Eq. 28 requires again that the gas relative permeability have a
positive slope at its endpoint saturation.

Analysis Along the WG Edge. This edge corresponds to the
line of zero reduced oil saturation, v�1−u. The relevant conditions
are summarized in Table 3. As with the other two edges, Condi-
tion I is immediately satisfied because the oil relative permeability
is identically zero along this edge. At the W vertex, Condition II is
a strict inequality:

�g,v � −�o,u, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (30)

and at the G vertex (umbilic point) it reduces to the following
equality:

�w,u + �o,v = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (31)

Table 3 summarizes the conditions at the WG edge.

A Simple Model. Our interest here reduces to presenting a simple
model that satisfies the conditions above. A common practice in
petroleum engineering41,42 is to assume that relative permeabilities
of the most-wetting and the least-wetting fluids (usually water and
gas, respectively) depend only on their own saturation, whereas the
relative permeability of the intermediate wetting fluid (usually oil)
depends on all saturations. Although we do not defend this as-
sumption in general, here we show that it is possible to obtain

models which are strictly hyperbolic everywhere in the three-phase
flow region. We take, for example:

�w = �1��w�u2, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (32)

�g = �1��g���gv + �1 − �g�v
2�, �g � 0 . . . . . . . . . . . . . . . . . (33)

�o = �1��o��1 − u − v��1 − u��1 − v�. . . . . . . . . . . . . . . . . . . . . (34)

The most important feature of the model is the positive derivative
of the gas relative permeability function as it approaches zero. For
the particular function used here, oil isoperms are slightly convex.37

It is straightforward to check that relative mobilities in Eqs. 32
through 34 satisfy Condition I on all three edges. Whether Con-
dition II is satisfied will depend, in general, on the values of the
fluid viscosities and the endpoint-slope of the gas relative perme-
ability. Rather than performing a complete analysis,37 we simply
take reasonable values of the viscosities:

�w = 0.875, �g = 0.03, �o = 2, . . . . . . . . . . . . . . . . . . . . . . (35)

and a small value of the endpoint slope: �g�0.1.
In Fig. 5, we represent graphically the functions that define

Condition II along each edge:

How�u� = g,v − f,u � 0 along OW, . . . . . . . . . . . . . . . . . . . . . (36)

Hog�v� = g,v − f,u � 0 along OG, . . . . . . . . . . . . . . . . . . . . . . (37)

Hwg�u� = −g,u − f,v � 0 along WG, . . . . . . . . . . . . . . . . . . . . (38)

The inequalities above are satisfied (and the system is strictly
hyperbolic) if all three curves are positive everywhere. The curves
for the OG edge and the WG edge reach a zero value for v�1 and
u�0, respectively, so the G vertex is an umbilic point.

Fig. 5—Strict hyperbolicity on edges of the saturation triangle
(Condition II) requires that all three functions How(u), Hog(v), and
Hwg(u) are positive everywhere.
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Analytical Solution to the Riemann Problem
Introduction. Here we present the solution to the Riemann prob-
lem of three-phase flow given by Eqs. 13 and 14. As discussed in
the previous section, the system is assumed to be strictly hyper-
bolic for all saturation paths of interest. The theory of strictly
hyperbolic systems with characteristic fields that are either genu-
inely nonlinear or linearly degenerate was compiled by Lax.43 It
was then extended by Liu44,45 to systems with nongenuinely non-
linear fields. This well-known theory is used here to find solutions
to the three-phase flow Riemann problem. In an effort to make the
developments accessible to the nonspecialized reader, we include
in our discussion a review of the theory of strictly hyperbolic
conservation laws.

For a strictly hyperbolic system, waves of different character-
istic families are strictly separated.43 Thus, the solution to the
Riemann problem comprises three constant states ul,um,ur (left,
middle, and right states, respectively). States ul and um are joined
by a wave of the first family (slow wave, or 1-wave), and states um

and ur, are joined by a wave of the second family (fast wave, or
2-wave). Therefore, the solution to the Riemann problem for three-
phase flow reduces to finding the intermediate constant state um as
the intersection of an admissible 1-wave (W1) and an admissible
2-wave (W2) on the saturation triangle (Fig. 6):

ul →
w1

um →
w2

ur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (39)

Wave Structure. We now describe the structure of the waves in
the Riemann solution. From the theory of strictly hyperbolic con-
servation laws,43,46 a wave of the p-family consists of p-
rarefactions, p-shocks, and/or p-contact discontinuities. This is dis-
cussed next.

Hugoniot Loci and Shocks. Any propagating discontinuity
connecting two states u−�U(−) and u+�U(+) must satisfy an
integral conservation equation for each variable, known as the
Rankine-Hugoniot jump condition7,46:

f�u+� − f�u−� = ��u+;u−��u+ − u−�, . . . . . . . . . . . . . . . . . . . . . . . (40)

where �(u+;u−) is the speed of propagation of the discontinuity.
For a fixed state u−, one can determine the set of states u+ that can
be connected to u− so that Eq. 40 is satisfied. There are two
families of solutions, one for each characteristic family, which
form two curves passing through the reference state u−:H1(u−) and
H2(u−) (Fig. 7). The set of points on each of these curves is called
the Hugoniot locus. It is easy to show7 that the Hugoniot curves are
tangent to the corresponding eigenvectors at the reference point u−.

Moreover, in our case, Hugoniot loci are also transversal to
each other.46

Not every discontinuity satisfying the Rankine-Hugoniot con-
dition is a valid shock. For a genuine shock of the p-family (a
p-shock) to be physically admissible, it must satisfy the Lax en-
tropy condition7,43:

vp�u−� � �p�u+;u−� � vp�u+�, . . . . . . . . . . . . . . . . . . . . . . . . . . . (41)

where u− and u+ are the values at the left and at the right of the
discontinuity, respectively. Condition 41 implies that characteris-
tics of the p-family go into the shock. A shock curve of the p-
family passing through point u−, denoted as Sp(u−), corresponds to
a subset of the Hugoniot locus Hp(u−), for which entropy condition
Eq. 41 is satisfied.

Integral Curves and Rarefactions. A curve whose tangent at
any point u lies in the direction of the right eigenvector rp(u) is
called an integral curve for the p-family. There are two integral
curves passing through each reference point û:I1(û), corresponding
to the first eigenvector r1, and I2(û), corresponding to the second
eigenvector r2. The two families of integral curves for the relative
permeability model discussed in the previous section (Eqs. 32 and
33) are shown in Fig. 8.

A necessary condition for two states ul (left) and ur (right) to
be connected by a rarefaction wave is that these two states lie on
the same integral curve.7,43 Therefore, a rarefaction curve of the
p-family (hereafter noted Rp), is a subset of integral curve Ip, much
in the same way as a shock curve is a subset of the corresponding
Hugoniot locus. A p-rarefaction wave is a self-similar solution
Up() satisfying Eq. 17 where the parameter  is not arbitrary, but
an eigenvalue of the problem7

 = vp�Up���. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (42)

A rarefaction curve Up() will provide a single-valued solution if
the similarity variable parameter  (that is, the eigenvalue vp)
increases monotonically along the curve from the left state ul to the
right state ur.

Inflection Loci and Rarefaction-Shocks. The notion of genu-
ine nonlinearity is crucial to the wave structure arising in mul-
tiphase flow. The p-field is said to be genuinely nonlinear if the
p-eigenvalue vp varies monotonically along integral curves of the
p-family. This is expressed mathematically as

�vp�U� � rp�U� � 0 for all U, . . . . . . . . . . . . . . . . . . . . . . . . (43)

where �vp(U):�[�vp/�u,�vp/�v]t is the gradient of vp(U). This
condition is equivalent to that of convexity, f �(u)�0��, for scalar
conservation laws. The p-field is said to be linearly degenerate if
vp is constant along integral curves of the p-family; that is,

Fig. 6—Generic solution to the Riemann problem of three-phase
flow with two waves connecting three constant states.

Fig. 7—Plot of the Hugoniot loci of both characteristic families
passing through the reference state �.
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�vp�U� � rp�U� ≡ 0 for all U. . . . . . . . . . . . . . . . . . . . . . . . . . (44)

Of course, the value of vp(U) may vary from one integral curve to
the next. The characteristic fields of the system describing three-
phase flow are neither genuinely nonlinear nor linearly degenerate:
eigenvalues attain local maxima along integral curves. The inflec-
tion locus Vp for the p-characteristic field is defined as the set of
points U so that

�vp�U� � rp�U� = 0; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (45)

that is, the locations at which vp attain either a maximum or a
minimum value when moving along integral curves of the p-
family. In Fig. 9 we show contour plots of eigenvalues and the
inflection loci for both characteristic families. We note that in
realistic models of multiphase flow, the inflection locus corre-
sponds to maxima of eigenvalues. This is consistent with the com-
mon behavior of the flux function for the two-phase flow case,
where the fractional-flow function is S-shaped, and the inflection
point corresponds to the maximum value of the derivative (Fig. 10).

For a strictly hyperbolic system whose characteristic fields are
genuinely nonlinear, any wave connecting two states ul and ur can
only be a rarefaction or a genuine shock, and any discontinuity
must satisfy the Lax entropy condition in Eq. 41. When the genu-
ine nonlinearity condition is not satisfied, each wave might consist
of a combination of rarefactions and discontinuities.44,45 For the
strictly hyperbolic models of multiphase flow we propose, the
inflection locus for each field is a single connected curve, which is
transversal to integral curves of the same family. In this case, the
composite wave has at most one rarefaction and one discontinuity.
Moreover, because inflection loci correspond to local maxima of
eigenvalues along integral curves, the rarefaction is always slower
than the shock.47 Therefore, a wave consisting of a shock followed
by a rarefaction is not possible.

More precisely, a rarefaction-shock of the p-family connecting
the left and right states ul and ur, respectively, is a curve on the
phase plane consisting of a p-rarefaction curve emanating from ul,
connected to a p-shock curve at some intermediate point u*, which
ends at the right state. This rarefaction-shock curve is denoted as
RpSp(ur;ul) and, unlike rarefaction curves or shock curves alone, is
defined through both endpoints. The intermediate state u* is the
postshock state, at which the following property holds:

vp�u*� = �p�ur;u*�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (46)

A necessary condition for an RpSp(ur;ul) wave is that the left and
right states lie on opposite sides with respect to the inflection locus

Vp. This rules out the possibility of such two states being con-
nected by a rarefaction wave, because the characteristic speed
would not be monotonically increasing, and, as a result, the solu-
tion would not be single-valued. This composite wave also satis-
fies Liu’s extended entropy condition,44 which reduces to the ex-
tended Lax entropy condition43 (originally developed for systems
with genuinely nonlinear and linearly degenerate fields) when the
inflection locus is a single hypersurface.47 Therefore, all discon-
tinuities must satisfy

vp�u−� � �p�u+;u−� � vp�u+�. . . . . . . . . . . . . . . . . . . . . . . . . . . (47)

Fig. 11 shows two rarefaction-shock curves for the first charac-
teristic family, corresponding to the same left state but two dif-
ferent right states. Note that the postshock state u*, at which the
R1 and S1 curves are connected, is different for each case. This
connection is always very smooth. In fact, it can be shown43 that
both curves are connected with second-order tangency (same slope
and curvature).

Fig. 9—Eigenvalues and inflection loci for both families of char-
acteristics. Inflection loci correspond to local maxima of eigen-
values when moving along integral curves.

Fig. 8—Plot of the integral curves (usually termed slow paths
and fast paths) for a relative permeability model that produces
a strictly hyperbolic system.
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Complete Set of Solutions. Based on the analysis above, a wave
of the p-family connecting two constant states may only be one of
the following: a p-rarefaction (Rp), a p-shock (Sp), or a p-
rarefaction-shock (RpSp). Because the full solution to the Riemann
problem is a sequence of two waves, W1 and W2, there are only
nine possible combinations of solutions. A schematic tree with all
possible solution types is shown in Fig. 12.

Example: R1S1R2S2 Solution. We describe in some detail the
case with the most complicated wave structure that may arise in
the Riemann problem of three-phase flow. In this case, both waves
are composite rarefaction-shocks: W1≡R1S1 and W2≡R2S2.

The variables that need to be determined to fully characterize
the solution are the intermediate constant state um, the shock
speeds �1 and �2, and the postshock states u1* and u2* of each
wave. The constant state um corresponds to the intersection of the
two wave curves, while the postshock states are the points at which
the rarefaction curve and the shock curve of the same family are
joined. Schematically, this can be represented as follows:

ul →
R1

u*1 →
S1

um →
R2

u*2 →
S2

ur. . . . . . . . . . . . . . . . . . . . (48)

The solution is admissible if each of the two waves is admissible
individually; that is,

R1S1: �v1 increases monotonically along ul →
R1

u*1,
v1�u*1� = �1 � v1�um�,

. . . (49)

R2S2: �v2 increases monotonically along um →
R2

u*2,

v2�u*2� = �2 � v2�ur�.
. . . . . . . . . . . . . . . . . . . . . . . . . . (50)

The major difficulty in computing the solution is that both end-
points of the R2 curve are unknown, so that the initial condition for
the integral curve is not known a priori. We have developed
efficient algorithms for the solution of this highly nonlinear prob-
lem. They are based on a predictor-corrector strategy combined
with Newton’s method, and they yield quadratic convergence in
all cases.48

In Fig. 13, we represent the solution as a saturation path in the
ternary diagram. It is immediate to check that the solution is ad-
missible. Each composite wave crosses the inflection locus of the
corresponding family. We note that the 2-shock has very small
amplitude because the right state almost coincides with the inflec-
tion locus of the 2-family.

Profiles of wave speeds v1. and v2, and phase saturations Sw,
Sg , and So are plotted in Fig. 14. These quantities are plotted
against the similarity variable  defined in Eq. 16. We decided to
split each plot into two and use a different scale on the -axis,
because of the very different speeds of the 1- and 2-wave. Other-
wise, the structure of the 1-rarefaction-shock would not be visible
on the plots. Points a<b<c<d on the -axis correspond to the wave
speeds v1(ul)<�1<v2(um)<�2.

Remaining Types of Solution. For completeness, we present
in Fig. 15 the saturation paths in the ternary diagram for all nine
solution types. These are:

1. S1S2: Both waves are genuine shocks, and, therefore, the
solution comprises three constant states separated by two discon-
tinuities.

2. S1R2: The solution consists of a 1-shock and a 2-rarefaction.
3. S1R2S2: The solution comprises a genuine 1-shock through

the left state and a composite 2-rarefaction-shock through the
right state.

Fig. 10—Typical plot of the flux function f (fractional flow) for
two-phase flow. The function is S-shaped, and the slope attains
a maximum value at the inflection point u0.

Fig. 11—Rarefaction-shock curves for the 1-family with the
same left state and two different right states. Note that the post-
shock state u

*
is different for each case.
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4. R1S2: The left state and the right state are joined by a 1-rare-
faction followed by a 2-shock.

5. R1R2: Both waves are rarefactions, so the solution is con-
tinuous everywhere.

6. R1R2S2: A 1-rarefaction from the left state is followed by a
composite 2-rarefaction-shock to the right state.

7. R1S1S2: The slow wave emanating from the left state is a
composite rarefaction-shock, which is followed by a genuine
2-shock to the right state.

8. R1S1R2: The left state is joined to the intermediate constant
state by a composite rarefaction-shock, and the right state is
reached along a 2-rarefaction.

9. R1S1R2S2: Both waves are rarefaction-shocks.
All cases discussed above give a complete set of solutions to

the Riemann problem of three-phase flow, under the following
assumptions: (1) the system is strictly hyperbolic; and (2) inflec-

tion loci are single connected curves, transversal to the integral
curves, and correspond to maxima of the eigenvalues.

The widely used conceptual model of three-phase flow as con-
sisting of two successive two-phase flow displacements10,49,50 can
now be understood in the context of the complete solution. This
model is an approximation to the actual solution, which assumes
that each wave (W1 and W2) is parallel to one of the edges of the
ternary diagram. This approximation is accurate only under very
restrictive initial and injected conditions.48

Fig. 13—R1S1R2S2 solution path in the ternary diagram. Both
waves are rarefaction-shocks, which intersect at the intermedi-
ate constant state um. The postshock states u1* and u2* corre-
spond to the points at which the rarefaction curve and the
shock curve of the same family are joined.

Fig. 14—Profiles of wave speeds v1 and v2, and phase saturations Sw, Sg, and So, for the R1S1R2S2 solution. The solution is plotted
against the similarity variable �. Points a<b<c<d on the �-axis correspond to the wave speeds v1(ul)<�1<v2(um)<�2.

Fig. 12—Schematic tree with all nine possible combinations of
solutions to the Riemann problem of three-phase flow.
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Conclusions
Following the unambiguous hints from physics, we have first as-
sumed the hyperbolicity of the system of equations describing
three-phase immiscible flow, and then investigated the conditions
on relative permeabilities that follow from this assumption. The
mathematical derivations presented here lead to meaningful con-
ditions that agree with experimental observations and pore-scale
physics.37 Our paper has two key results:
1. The derivation of general conditions on relative permeabilities

necessary to preserve strict hyperbolicity.
2. The presentation of the complete solution to the Riemann prob-

lem of three-phase, incompressible, and immiscible flow, under
the assumptions that the system is strictly hyperbolic and that
the inflection loci are single connected curves corresponding to
maxima of eigenvalues.
It turns out that a physically reasonable requirement of a finite

positive slope of the gas relative permeability function is the most
serious condition that must be imposed, so that all three relative

permeabilities yield a strictly hyperbolic system everywhere in the
three-phase flow region. For a commonly used model of three-
phase relative permeabilities, reasonable values of fluid viscosities
are sufficient to preserve strict hyperbolicity. The analysis pre-
sented here has recently been extended to the case of cocurrent
three-phase flow with gravity.51

We have shown that, under certain physical conditions, the
complete solution to the Riemann problem of three-phase immis-
cible, incompressible flow with negligible capillarity and gravity,
involves a sequence of two waves, and that each wave may only be
a rarefaction, a shock, or a rarefaction-shock. Thus, there can be
only nine possible combinations of the admissible waves. All these
combinations are discussed in our paper. Moreover, the widely
used model of three-phase displacement as two successive two-
phase displacements is identified as an approximation to the full
solution. Such approximation is sufficiently accurate only under
very restrictive conditions.48

The results of this paper will be useful for the following:

Fig. 15—Examples of saturation paths for all nine solution types. These nine cases constitute the complete set of solutions to the
Riemann problem of three-phase flow.
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• Planning and interpretation of three-phase displacement experi-
ments.

• Obtaining significantly more information from the existing dis-
placement experiments.

• Designing the first complete analytical forward simulator to in-
terpret three-phase displacement experiments.

• Formulating better relative permeability models.
• Formulating efficient streamline simulators of three-

phase flow.52,53

Nomenclature
A � Jacobian matrix of the system, dimensionless
f � water fractional flow, dimensionless

f� � fractional flow of the � phase, dimensionless
f � fractional flow vector [f,g]�[fw,fg], dimensionless

F� � mass flux of the � phase, m/L2t
g � gas fractional flow, dimensionless
g � gravitational acceleration, L/t2

Hp � Hugoniot locus of the p-characteristic family
Ip � integral curve of the p-characteristic family
I � 2×2 identity matrix, dimensionless
k � absolute permeability, L2

kr� � relative permeability of the � phase, dimensionless
m� � mass of the � phase p.u. bulk volume, m/L3

p � global pressure, m/Lt2

p� � pressure of the � phase, m/Lt2

rp � eigenvector of the p family, dimensionless
Rp � rarefaction curve of the p-characteristic family
Sp � shock curve of the p-characteristic family
S� � saturation of the � phase, dimensionless
S�i � immobile saturation of the � phase, dimensionless
S̃� � reduced saturation of the � phase, dimensionless

t � time, t
T � saturation triangle
u � water saturation Sw, dimensionless
u � vector of saturations [u,v]�[Sw,Sg], dimensionless
ũ � vector of reduced saturations, dimensionless
U � self-similar solution [u,v], dimensionless
v � gas saturation Sg, dimensionless

vT � total velocity, L/t
ṽT � reduced total velocity, L/t
v� � velocity of the � phase, L/t
Vp � inflection locus of the p-characteristic family
Wp � wave of the p-characteristic family

x � space coordinate, L
z � vertical coordinate, L
� � discriminant of the eigenvalue problem, dimensionless
 � self-similarity variable, dimensionless

�T � total mobility, Lt/m
�� � relative mobility of the � phase, Lt/m
�� � dynamic viscosity of the � phase, m/Lt
vp � eigenvalue of the p family, dimensionless
�� � density of the � phase, m/L3

�p � speed of a shock of the p-characteristic family,
dimensionless

� � porosity, dimensionless

Subscripts

g � gas phase
l � left state

m � intermediate constant state
o � oil phase
r � right state

,u � partial derivative w.r.t. u
w � water phase
1 � 1-characteristic family

2 � 2-characteristic family
+ � state to the right of a discontinuity
− � state to the left of a discontinuity
* � post-shock state
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