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ABSTRACT

In this paper we study the numerical solution of miscible and immiscible flow in porous media, acknowledging that these phenomena entail § multiplic
of scales. The governing equations are conservation laws, which take the form of a linear advection—diffusion equation and the Buckley—Leve
equation, respectively. We are interested in the case of small diffusion, so that the equations are almost hyperbolic. Here we present a stabi
finite element method, which arises from considering a multiscale decomposition of the variable of interest into resolved and unresolvedscales.
approach incorporates the effect of the fine (subgrid) scale onto the coarse (grid) scale. The numerical simulations clearly show the potential of
method for solving multiphase compositional flow in porous media. The results for the Buckley—Leverett problem are particularly remarkable.

RESUME

Nous proposons une nouvelle approche pour les écoulements miscibles et non miscibles en milieu poreux qui tient compte de la multiciplicité
échelles. Les deux principes de conservation de la masse et de I'énergie sont pris en compte par I'équation linéaire de convection-diffion et I'équ
de Buckley—Leverett. Dans le cas d'une diffusion réduite, ces équations sont quasi hyperboliques. Nous proposons alors un algorithme stable
éléments finis basé sur une décomposition de la variabilité en deux échelles. L'algorithme incorpore I'impact de la petite échelle fine dass celui, |
facile a modéliser, de la grande échelle. Une simulation numérique démontre le potentiel de la méthode pour la solution d’'un écoulement multiphas
et compositionnel. Les résultats obtenus pour le probleme-type de Buckley—Leverett sont particulierement remarquables.

Keywords Flow in porous media, conservation laws, multiscale phenomena, finite elements, stabilized methods.

1 Introduction Adjoint Methods (ELLAM) (Celiaet al,, 1990) require a fine
grid to accurately track the characteristics in a highly nonlinear

One of the main difficulties when solving flow and transport problem, and state-of-the-art stabilized methods like Streamline-
in fractured porous media stems from the fact that, very often, upwind/Petrov—Galerkin (SUPG) (Brooks and Hughes, 1982) or
these processes amet dominated by diffusion. This makes the Galerkin Least Squares (GLS) (Hughesal.,, 1989), are not
mathematical problem almost hyperbolic, which naturally devel- as effective in the presence of reaction and production terms
ops sharp features in the solution. Classical numerical method¢Codina, 1998). Recently, stabilized finite element methods have
produce a solution that either lacksbility, resultingin nonphys-  been re-interpreted from the point of view of multiscale phenom-
ical oscillations, oraccuracy by showing excessive numerical ena(Hughes, 1995), where the stabilizing terms arise naturally in
diffusion. a variational multiscale method (Hughetsal., 1998). This idea

A large number of publications, which we do not attempt to of a multiple-scale decomposition of the solution, which is now
review here, have emerged to provide a solution to this funda-dominant in fluid mechanics, is adopted here for the simulation
mental problem. Despite the attention advection-dominated flowof subsurface flow and transport.
has received from the scientific community in the past decades, Development of novel numerical methods for the complete
there is still a need for new numerical techniques. Modern equations of multiphase compositional flow in multidimen-
characteristics methods like Eulerian—Lagrangian Localizedsions must necessarily start from simplified models in one
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space dimension. These reduced model problems should displa, Numerical formulation

however, the key features which pose difficulties in obtaining

satisfactory humerical solutions such as, for instance, wild non-2.1 Initial and boundary value problem

I|r_1ear_|ty, shocks orngar-shocks, boundarylayers,.anq degene_ra%e shall understand miscible and immiscible flow in porous

diffusion. The key point of the proposed formulation is a multi- . . .
o . . . media as scalar conservation laws of the form (Chavent and Jaffre,

scale decomposition of the variable of interest into resolved (0r1986)'

grid) scales and unresolved (or subgrid) scales, which acknowl- '

edges the fact that the fine-scale structure of the solution cannot g,u +V-F=¢q, xeQ, tec (0, T], )

be captured byany mesh. However, the influence of the subgrid ) o

scales on the resolvable scales is not negligible. By account-Where_”‘ |s.the conserved quan.tltyﬂ-‘ IS the.total flux (_)f that

ing for the subgrid scales, the oscillatory behavior of classicalquar_‘t'ty’q 1S Fhe rate of productl.on (per unit vo!umes), IS th?

Galerkin is drastically reduced and confined to a small neigh—s’p""tIal domaln'and (@] is the t|me'|nterv§1I OT mte'rest. With

borhood containing the sharp features, while the solution isthe usual notationd; () refers to partial derivative with respect

high-order accurate where the solution is smooth. This ensured® ti"je' The.total flux has the .form (Ewing, 1983; Chavent and
that the numerical solution is not globally deteriorated. The Jafire, 1986; Dahlet al,, 1995):
method doesot emanate from a monotonicity argument and, £ — f (4) — D(u)Vu, 2)

therefore, it does not rule out small overshoots and under- _ . _ o
shoots near the sharp layers. These localized wiggles could b&heref isthe hyperbolic part of the flux arfalis the diffusion ten-

removed using a shock-capturing technique (see, e.g. Codina°" Both are allowed to be nonlinear functions of the unknawn
1993 and the references therein). One of the original contri- FOr expositional simplicity, we consider homogeneous Dirichlet
butions of this paper is the particular implementation of the Poundary conditions only,
multiscale formalism for nonlinear problems. We perform the  _ o onog, )
multiscale decomposition directly on the weak form of the equa-
tions, prior to any linearization. This approach is different from where 92 is the boundary of the domain. The initial condi-
the most common one, which relies on linearizing the equa-tions are:
tions'first, and then resorting to a multiscale decomposition w(x.t = 0) = up(x). x €. 4)
(Codina, 2002).

A comment is in order regarding the differences between theFor the linear case, we introduce the following equivalent
formulation presented here and other multiscale methods. In thenotation:
context of flow in porous media, a multiscale formulation often
refers toheterogeneityndupscaling The numerical method is
devised to account for the small-scale variability of the medium whereZu is the linear advection—diffusion operator in conserva-
properties, which cannot be resolved directly on the coarse gridtion form,
Examples of this type of formulation are the multiscale finite
element method (Hou and Wu, 1997) and the subgrid upscaling
technique (Arbogast, 2000, 2002). In the field of fluid mechanics, and the advective velocityand the diffusion tensdd are inde-

the multiscale concept refers not to unresolved heterogeneity, bupendent of.. The boundary and initial conditions are given by
to unresolved physics (Hughes, 1995; Hugéal,, 2000). This  Eqs (3) and (4), as before.

paper concerns this latter aspect, where multiple scales appear
naturally in the solution even if the medium is homogeneous.
A similar framework has been recently applied to porous media2-2 Weak form

flows (Masud and Hughes, 2002), but only to linear equation  the yeak form of the mathematical problem relaxes the regular-
of steady-state single-phase Darcy flow, and with the motiva-jy, requirements of the solutiom. It is obtained by multiplying

tion of dealing with the velocity—pressure instability, rather than i« gitferential equation by a smooth functiemhich vanishes
instabilities associated with advection- and reaction-dominatedon the boundaryQ, integrating over the entire domae, and

flows. applying Green’s formula to the flux term, to get the integral
An outline of the paper is as follows. The mathematical and equation:

numerical formulations are described in Section 2, within the

unified framework of conservation laws. Under certain simpli- duv dQ — / F.vudQ = f qvds2. 7)

fying assumptions, miscible flow takes the form of a linear Q Q Q

advection—diffusion equation, while immiscible flow leads to The relation above needs to be satisfied at each fixed tiorall

the classical Buckley—Leverett equation. Several representativéunctionsv belonging to some appropriate space of functivns

numerical simulations for both miscible and immiscible flow The choice of the functional spatedepends on the form of the

are presented in Section 3. In Section 4, we draw the maindiffusion tensor and, for the purpose of this paper, it is sufficient

conclusions of this investigation and suggest future lines of to understand it as comprising smooth-enough functions which

research. vanish on the boundary. The weak form of problem (1)—(4) is then

u+Lu=q, xe, te(0T], (5)

Lu :=V - (au — DVu), (6)
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stated succinctly as follows: finde V for each fixed € (0, T],
such that

is based on a multiple-scale decomposition of any funatien)
as (Hughes, 1995):

(Ou,v) +a(u,v;u) =1v) Vve, (8) V=1V, + 7, (14)
where wherev, is the part that can be resolved by the grid, aritie
unresolved part. This decomposition is unique if we can express
Qyu, v) = / a,uv dQ, (9) the original functional spacg as the direct sum of two spaces:
Q

V=YV,8)V, 15
a(u,v;w):z—/}‘-Vde k (15)
Q

whereV), is the space ofesolved scaleandV is the space of
subgrid scalesThe spac® is an infinite-dimensional space that
completeq/,, in V. This space is generally unknown, and it is the

role of the subgrid model to provide a successful approximation
[(v) := [ qudQ. (11) toit.
Q

= —/f(w)-Vde—i—/ D(w)Vu - Vv dQ, (10)
Q Q

The weak form of théinear problem given by Eqgs (5) and (6)
with boundary and initial conditions (3) and (4) is to finde V
for each fixed € (0, T'], such that

2.4.1 The linear problem

For the linear advection—diffusion problem, the multiscale
decomposition allows one to split the original problem into two.
(12) To this end, we express= u; + u in Eq. (12), and exploit the
linearity of all the terms with respect to We obtain one equation
for thegrid scales

Oiu,v) +a(m,v) =I1(v) Yve)l.

The only difference with respect to Eq. (8) is thau, v) =

a(u, v; u) is now abilinear form. . _
O (up + 1), vp) +aup + i, vp) =1L(vy) Yv, €Vy, (16)

. ) and one for thesubscales
2.3 Classical Galerkin method
With the notation above, it is straightforward to introduce the @ (up +i0), D) + aup + 1, 0) =1@®) Vi eV. (17)
standard Galerkin approximation. The method consists in seekingrpe former is a finite-dimensional problem, whereas the latter is
a solutionyy, in a finite-dimensional subspat# of the original
(infinite-dimensional) spack such that, for each

infinite-dimensional.

After assuming quasistatic subscales (Codina, 2002), that is,
o,u ~ 0, integrating by parts on each element and making use
of the linearity ofa(-, -) and continuity of diffusive fluxes of

which constitutes a system of nonlinear ordinary differential # = u» + i across interelement boundaries (Codina, 2000), we
equations. The fully discrete system is obtained by further 9€t the following equation for the subscales:

discretizing in time. o . -
The important point is that thigial functionsu;, and thetest ) /Q L dQ2 = Z/Q TRup 2 Vo €V, (18)

functionsv,, (usually piecewise polynomials) can only capture ¢ ¢

variability at a scale larger than the mesh resolution. All sub- whereRu;, := ¢ — d,u;, — Luy, is thegrid scale residual At

grid variability, that is, all features at a scale smaller than the this point, there are several options to solve the subgrid prob-

element size, is automatically neglected. The well-known fact lem (Eq. 18), most of which resort to some kind of localization

that the standard Galerkin method lacks stability for advection- assumption (Hughes, 1995; Breetial., 1997; Arbogast, 2002).

dominated problems can be understood in this context. If the In this investigation, the subscale problem nwodeled—

subscales are not captured adequately (or if they are completelyather than solved—using an algebraic subgrid-scale (ASGS)

ignored, as in the classical Galerkin method), their effects approximation (Codina, 2000):

can propagate to larger scales, and deteriorate the coarse-scale
calculations. In Section 3 we show examples of this behavior. % ~ TRux, (19)

Orup, vp) +a(up, vp; up) =1(vy) Yo, € Vy, (13)

where the algebraic operateris calledintrinsic time(or relax-
ation time). The expression af is one of the most difficult
issues when devising stabilized methods. It should depend on
The fundamental principle of the multiscale approach is to the parameters of the problem, and on the actual discretiza-
acknowledge the presence of fine scales, which cannot be caption. From a numerical standpoint, a proper formulation of the
tured by the mesh. This is particularly important for advection- intrinsic time should enhance stability of the coarse-scale calcu-
dominated problems, where the solution develops sharp featurefations without degrading the order of accuracy of the method.
thatwould require animpractical grid resolution. The formulation Here we use the following expression, which has proven useful

2.4 Multiscale approach
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in the context of linear systems of advection—diffusion—reaction different context (Garikipati and Hughes, 1998; Ainsworth and

equations (Codina, 2000): Oden, 2000; Hughest al., 2000).
1 Specifically, we propose an incremental formulation and
= (ClM + CZE) i (20) a multiple scale decomposition of the increment (Juanes and
h? h Patzek, submitted):

whereh is a characteristic length of the element under consid-
eration, and; = 4, ¢, = 2 for linear elements (Codina, 1998,
2000). Equation (20) used tnodelthe relaxation time can also  The incremental subscabs may be understood as a pertur-
be justified from heuristic physical considerations (see Sectionbation. Since the forna(u, v; w) is linear with respect to the
3.1) and from an asymptotic Fourier analysis (Codina and Blasco second argument (test function), the multiscale approach leads
2002). This completes the description of the subgrid scales.  also to a grid-scale problem and a subscale problem. Expanding

u~u,+68u. (25)

After integration by parts on each element of the texm v;,) the constitutive relation§(xz) and D(u) to first order about an
in Eq. (16) and using a localization assumption (Codina, 2000),approximate coarse-scale solutipn we obtain equations which
the equation for the grid scales takes the form: are formally identical to those of the linear case (see (Juanes and
Patzek, submitted) for the derivation), except that now involve a
(0;up, vy) + a(uy, vy) + Z/ i L, dQ2 = 1(vy) linearizedadvection—diffusion operator:
QL’
. ‘ 1) L., =V - [au)v — D(uy)Vol. (26)

wherea(u;,) := f'(u;,)—D’(u;) Vu, plays the role of an advective

where L* is the adjoint ofL, defined in Eq. (6). When com- o incity. n particular, the equation for the incremental subscales
pared with the standard Galerkin method, the multiscale approaci?eads.

involves additional integrals evaluated element by element (com-
pare Eq. 21 with Eq. 13), which incorporate the effect of the it ~ 7, R(un), (27)
subgrid scgles on the gogrse scales. The subscalese mod- . wherer,, (intrinsic time) is now a nonlinear function of the grid
eled analytically and eliminated from the global problem. With scale solution,:
the algebraic approximation used here, they are proportional to ' .
the grid-scale residual (Eq. 19). The method is residual-based (. ID(up)l| [a(un)] o8
\ ) Ty, = | C1 > + c2 . ( )
and, therefore, automatically consistent. h h
The new term in the grid-scale Eq. (21) is very similar to that The coarse-scale equation reads
of other stabilized formulations, the only difference being the
form of the operator multiplying the subscales (Codina, 1998): O;up, vp) +a(uy, vy up) + Z/ &wjh v, dQ = I(vy)
e Q¢

ASGSI[2]1] : / ul*v, dQ2, Y, € Vp, (29)
Qe
L*v:=—a-Vv—V-(DVv), (22) where.;, is the adjoint of thdinearizedoperator.,,,, defined
in Eq. (26).
SUPGI8] : / U(—Lagwp) A2, —Lagw := —a- Vv, (23) Equations (27) and (29) describe the ASGS finite element
o method for a nonlinear advection—diffusion equation, and are
GLS[23]: / i (—Lvy) dS2, analogous to Egs (19) and (21) for the linear case. In the non-
8 linear case, however, these equations need to be solved using ar
—Lv:i=-V-(a)+ V- (DVv). (24) iterative procedure, such as Newton’s method.

The multiscale approach has several advantages over other

stall)llfzed formu!anons: 1) thg stabilizing t.erm arises naturally; 3 Repr tative numerical simulations
(2) it is not restricted to a particular subgrid model; and (3) the
ASGS formulation is endowed with better stability properties

. In this section we present some numerical simulations of miscible
than SUPG and GLS (Codina, 1998, 2000).

and immiscible flow. We concentrate, for simplicity, on the one-
dimensional problem. Therefore, the flux vector and the diffusion
2.4.2 The nonlinear problem tensor reduce to scalar quantities. It is not the purpose of this
Extension of the multiscale approach to the nonlinear problempaper to derive the equations for miscible and immiscible flow
given by Egs (1)—(4) is not straightforward, mainly because the (see Juanes and Patzek, submitted and the references therein fo
form a(u, v; w) in Eg. (8) is not linear inw. One of the key  a derivation).

features of our approach is that nonlinearity of the equations is For each of the test cases presented here, we compare the
retained at the time of invoking the multiscale split. This dis- standard Galerkin solution with the ASGS solution. This compar-
tinguishes our method from the most common approach, whichison may seem a little unfair, as the test cases involve advection-
relies on linearizing the conservation equations upfront (Codina,and reaction-dominated flows, for which the classical Galerkin
2002). An approach similar to ours has also been presented in anethod is known to have unstable behavior. The motivation is
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to show the stabilizing effect of the new terms in the ASGS Table 1 Expressions ofthe characteristic times

formulation, which arise from consideration of the subgrid scales. for advection, diffusion, and reaction pro-
It is interesting to note that: cesses, taking as a reference length one-half

of the element size

1. The ASGS method is in fact a Galerkin method—the coarse-
scale trial and test functions belong to the same finite element
space. The difference with respect to the classical Galerkin 14 = h2/AD o = h/2vr 1, = 1o
method is that the subgrid scales are modeled separately.

2. The computational cost of the ASGS method is essentially
the same as that of the standard Galerkin method, as the for-Table 2 Courant, Peclet, and Damkholer dimensionless numbers for
mer involves the calculation of just a few additional integrals, each test case of the linear advection—diffusion—reaction problem
which are evaluated elementwise. Courant # Peclet # Damkholer #

Diffusion Advection Reaction

Co:=6t/tmn Pe:=1/t, Da:=1/7,

3.1 One-dimensional miscible flow Dominant advection 0.8 125 0

We consider one-dimensional flow of a tracer that is perfectly Advection-reaction 0.8 125 67.5
miscible with water. Under certain assumptions, the governing
equation of tracer transport is a transient linear advection—
diffusion—reaction equation (Juanes and Patzek, submitted):

The expression of the intrinsic time used in the subgrid model
(Eg. 19) is the harmonic mean of the characteristic time of each
dutvrdu—Doyutou=gq, x€(0,L), 1€(0,T] (30)  process (Codina, 2000), that is

whereu is the mass fraction of the tracer (tracer concentration), L L L D vy -1
vr is the total velocity of the mixture] is the diffusion coef- t=(, +r +n )= (4ﬁ +t2-+ o) - (32

ficient, o is the decay constant for a radioactive tracgris ) .
The expression above generalizes Eq. (20) for cases when areac-

the distributed source term, arid is the length of the one- ) i . Rk .
dimensional domain. The diffusion coefficiebt is taken as a F|on. te.rmlls present., and prow.des a physical interpretation of the
intrinsic time used in the multiscale approach.

constant, thus neglecting the effects of hydrodynamic dispersion.
We intentionally do not account for dispersion because it would
smear out the fronts, thus reducing considerably the numerica3.1.1 Test case 1: Dominant advection

complexity of the problem. The governing equation i = 0 in Eq. 30):
We solve the problem with homogeneous Dirichlet boundary

conditions: Ot + vrdut — Doy =g, (33)
w(0.1) = u(L.1) =0, (31 and the concentration is initially zero everywhere. For early

times, the behavior of the solution is as follows:
and the following parameters = 10, D = 1073, ¢ = 1. We

investigate two test cases, each one with particular values of thét- Away from both boundariesBecause the initial concentra-
advective velocity; and the reaction coefficient tion is uniform, and so is the source term, the concentration

gradients will be zero as long as the region is not affected by

1. Dominant advectionir = 1,0 = 0. the boundaries. Sindgu ~ 0, the equation reduces to:

2. Advection and reactionir = 1,0 = 4.

. . . ou~q. 34
In both cases we used a very coarse uniform grid of 40 linear ' 4 (34)
elements (the element sizelis= 0.25), and a backward Euler Therefore, the solution consists impkateay rising at a rate
time-stepping scheme with constant time step- 0.1. of ¢ = 1 concentration units per unit time.

It is illustrative to compute the intrinsic times for each of the 2. Near the left (inlet) boundaryPhysically, what happens is
physical processes involved, taking as a reference length one- that water with zero concentration from the inlet boundary
half of the element size. The expressions for the characteristic “washes” water with tracer inside the domain. A steady tracer
times are given in Table 1. From the intrinsic times, the Courant,  profile is established near the inlet, accommodating the effects
Peclet and Damkholer numbers can be calculated for each of the of advection and distributed sources. Since the concentration
test cases (see Table 2). T@eurant numbeindicates whether profile is steadyd,u ~ 0) and diffusionis negligibl¢D ~ 0),
the time discretization is fine enough to simulate the fastest pro- the approximate governing equation for this conditions is:
cess. It is usually restricted to be less than 1.0 for stability or
accuracy requirements. TRecletandDamkholer numbensea-
sure, respectively, the preeminence of advection and reaction The solution near the left boundary is, thusaap of slope
with respect to diffusion. Values of these dimensionless numbers  ¢g/vy = 1.
much greater than 1.0 imply that the problermét dominated 3. Near the right (outlet) boundaryn the neighborhood of this
by diffusion, suggesting that the solution may present sharp boundary, diffusion cannot be ignored. Boundary layer
features. develops to connect the solution far away from the boundary

vt R q. (35)
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10

The solution is:

Galerkin
—— ASGS

wy =L@ — e, 37)
(o2

so the rising plateau tends asymptotically to a steady value of
q/o = 0.25.

2. Near the left (inlet) boundaryit is difficult to obtain an ana-
lytical description of the solution during the transient phase.
However, when steady-state conditions are rea¢had= 0)
and neglecting the effects of diffusion, the governing equation

20+ @ P $OL -__' _' -  reduces to:
o , = vr— t+ou=gq, ulx=0)=0. (38)
dx
0 2 4 6 8 10
X The solution to the problem above is the concentration profile:
Figure1l Linearadvection—diffusion—reactionwith sources. Testcase 1:
dominant advection. Classical Galerkin and ASGS solutions at three u= 2(1 — 7oy, (39)
o

different times.

(given by the rising plateau to the Dirichlet boundary condi- 1€ Wwidthofthis profile can be estimated by the valuestich
tion. The width of this layer is of the order @ /v, = 10-3. thatu ~ 0.95umax Which gives awidth of approximately 0.75.
3. Near the right (outlet) boundaryThe solution consists of a

For long simulation times, steady-state conditions are reached boundary layer with the same characteristics as in Case 1.
when the effect of the inlet boundary is felt at the outlet. The

solution then consists of a ramp of slopgvy = 1 and a sharp In Fig. 2 we show the results obtained with the classical

boundary layer whose width is of the order@fv; = 1073, Galerkin method and the ASGS approach, at three different times
Solution by the classical Galerkin method and the ASGS (+ = 0.2,t = 0.4, and steady-state). The standard Galerkin solu-

method are shown in Fig. 1 at three different tinfes- 2,1 = 5, tion reproduces the rising plateau, and it captures the structure of

and steady-state). At time= 2, the standard Galerkin solution the solution at the left boundary. We recall that, for the parame-
is wildly oscillatory. Oscillations are more pronounced near the ters used in this simulation, the concentration profile at the inlet
outlet face, but significant in more than half of the computational has a width of the order of 2 or 3 elements. However, the clas-
domain. For later times, the solution is globally polluted with sical Galerkin method displays nonphysical oscillations at the
nonphysical oscillations. The oscillatory behavior arises becauseight end, which propagate well into the domain. This nonlocal
the method lacks stability: the boundary layer cannot be resolvedoscillatory behavior denotes the lack of stability of the method,
with the discretization used (the boundary layer width is two and its inability to appropriately “damp out” subgrid effects.
orders of magnitude smaller than the element size), and this By contrast, the ASGS solution is accurate and stable: it
loss of accuracy at the subgrid scale “propagates” to degradeaptures sharply all the features of the solution, and does not
the coarse-scale calculations. present spurious oscillations. We remark that the ASGS formu-
On the other hand, the solution obtained by the ASGS methodation introduces just a marginal additional computational cost
is perfectly nonoscillatory. The calculated concentration profiles with respect to the classical Galerkin method.
reproduce the transient behavior described above: a ramp near the
inlet boundary, a rising plateau in the center region, and a sharp
layer at the outlet boundary. The slope of the ramp and the rate Galerkin
of increase of the plateau concentration agree with the predicted 0.35f| -o— ASGS
values. Moreover, the boundary layer is reproduced in the best

0.4

. . . . . . 0.3
possible way given the actual discretization: it is captured with
just one element, and without a single overshoot. 0.25}

Y 02}

3.1.2 Test case 2: Dominant advection and reaction d
The governing equation is the full Eqg. (30), with zero initial and 01517
boundary conditions. We can identify the following features in 0.1}
the solution:

0.05

1. Away from both boundariedJsing the same arguments as
before, this is a region of uniform concentration described

by the initial value problem: X
du,, Figure2 Linearadvection—diffusion—reaction with sources. Testcase 2:
ar +ou,=¢q, u(t=0=0. (36) combination of advection and reaction. Classical Galerkin and ASGS

solutions at three different times.
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3.2 One-dimensional immiscible flow

Flow of two incompressible immiscible fluids is described, using 0.25 |
the fractional-flow approach (Chavent and Jaffré, 1986), by an
elliptic “pressure” equation and a parabolic “saturation” equation.

In the one-dimensional case, the pressure equation has a trivial
solution, because the total velocity depends only on the bound-
ary conditions (see (Chavent and Jaffré, 1986; Juanes and Patzek,
submitted) for the details). The saturation equation takes the form

of a nonlinear advection—diffusion scalar conservation law:
Ou+ 0 (f(w)—Dw)ou) = q, (40)

whereu is the water saturation, andis the distributed source 0
term. Functionsf and D take the following expressions: 0 u !

D(u) /e

xe (O, L), te(0,T1],

Figure 4 Capillary diffusion functiorD used in the immiscible flow

(1) = vy — (41)
fw) =vr simulations. The function typically vanishes at the endpoint saturations,

Aw + Ao

ko ko
_(_Pc)v

bwy ="

(42)

wherevr is the total velocity (assumed constant and known from

the pressure equatior), is the mobility of thex-phasek is the
intrinsic permeabilityg is the porosity, andP/ is the derivative

and is positive elsewhere.

source termig = 0, and the constant in the degenerate diffusion
coefficientise = 107, We used a very small value of the param-

of the capillary pressure with respect to saturation. The fractional€tere to minimize the effects of capillary pressure and solve the
flow function £ is typically S-shaped and, thus, nonconvex. We nhear-hyperbolic problem.

shall consider the following model (Le Veque, 1992; Datlal., The diffusion-free problem, or Buckley—Leverett problem
1995) (Fig. 3): (Buckley and Leverett, 1942), admits a straightforward analyti-
2 cal solution. During theransient phasé¢before breakthrough),
T (43) the solution consists of a rarefaction fan and a shock. Both the
ut 4 pd—u shock speed and the post-shock value are constant, and eas-
where u is the viscosity ratio, taken here as 1. The diffusion ily computable from the flux function (Le Veque, 1992). As a
coefficientD, which arises from capillarity effects, is typically yegylt, the solution “stretches” with time in a self-similar fash-
degenerate at the endpoint saturations, that is, it vanishes fofy, Forlong simulation timegafter breakthrough), the system
u = 0andu = 1, and is positive otherwise (Chavent and yeaches a quasi-steady state. Dirichlet boundary conditions are
Jaffré, 1986). To mimic this behavior, we choose the following particularly challenging, because they force a very fast initial
expression (Dahlet al,, 1995) (Fig. 4): transient at the inlet, and a sharp boundary layer at the outlet after
breakthrough. This problem “exhibits several difficult features
beyond the usual ones of advection-dominated flow: degenerate
diffusion, sharpening near-shock solutions, and capillary outflow
boundary layers”. Numerical solutions to the Buckley—Leverett
problem include the early works of Todd al. (1972), Aziz and
Settari (1979), Settariand Aziz (1975), and, more recently, Dahle
1 et al. (1995), and Binning and Celia (1999).
Since we use a very small value of the parametecapil-
lary diffusion effects do not greatly influence thi@bal structure
of the solution. However, capillarity isot negligible in the
neighborhood of sharp features, because of the extremely high
saturation gradients. In particular, the width of the traveling shock
(before breakthrough) and the boundary layer at the outlet face
(after breakthrough) are of the orderegfv; = 1074, Of course,
resolving the fine-scale structure of the solution would require
elements smaller than this length. This is not feasible in practical
problems, and the goal is to obtain an accurate numerical solution
on a coarse grid, which preserves the global structure of the exact
05 1 solution.
u Results for a very coarse gri?v, = 20, §r = 0.01, Fig. 5)
Figure 3 Fractional flow functionf used in the immiscible flow  and a finer grid N, = 500, 8¢ = 0.0005, Fig. 6) are provided,
simulations. The function is typically S-shaped and, thus, nonconvex. which correspond to element Peclet number® et~ 2500 and

fu)=v

D) = eu(l—u). (44)

We solve Eq. (40) on the unit segmefit = [0, 1] with
Dirichlet boundary condition&(0,7) = 1, u(1,¢r) = 0, and
zero initial conditions. The total flux is; = 1, the distributed

f(u) / v
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X Figure 7 One-dimensional immiscible flow. Evolution of the Newton

Figure 5 One-dimensional immiscible flow. The classical Galerkin jterative scheme for the standard Galerkin and ASGS methods on the
solution and the ASGS solution onvary coarse grid20 linear ele- coarse grid, for two typical time steps= 0.4 andr = 1). Convergence
ments) are compared with the Buckley—Leverett solution for transientjs monotonic and quadratic in both cases.

and quasi-steady conditions.

nonphysical saturation plateau upstream of the front during the
transient state (shown is a snapshot of the solutian=at0.4).

More noticeably, it gives a completely oscillatory solution after
breakthrough (the results are displayed at 1). On the other
hand, the ASGS solutionimtglobally polluted with oscillations,

and preserves a sharp definition of the saturation front and the
boundary layer. The ASGS solution is remarkably accurate wher-
ever the actual solution is smooth (i.e. along the rarefaction fan),
even though an extremely coarse mesh of just 20 linear elements
was used. The oscillatory behavior of the numerical solution is

i 2§§;ical confined to a single undershoot at the downstream end of the
0.2 - - - - traveling shock, and a single overshoot at the boundary layer for
0 0.2 0.4 0.6 0.8 1

the long-time solution.
) _ ) o ) These observations are further confirmed by the simulations on
Figure 6 One-dimensional immiscible flow. The ASGS solution on @ , finer grid (500 linear elements, Fig. 6). I this case, the standard
finer grid (500 linear elements) is compared with the Buckley—Leverett - . .
; . : i, i . Galerkin method did not converge at all foe= 1 and, thus, is
solution for transient and quasi-steady conditions. The classical Galerkin . . .
. not shown in the figure. The most important feature of the ASGS
method did not converge for= 1. o .
solution is that the advancing front (before breakthrough) and the
boundary layer (after breakthrough) are captured sharply, avoid-
Pe =~ 100, respectively.In all cases we used a backward Euler ing the excessive smearing of traditional upwind formulations.
time-stepping scheme. The expression of the relaxation time usedhe localized wiggles that remain in the solution can be success-

X

in the ASGS formulation is: fully removed by using a shock-capturing technique (Juanes and
D(uy) ( -1 Patzek, submitted), which introduces numerical dissipation only
] —1y-1_ (4 h 2“ up) 45 . . . L .
W, = (T 1) = At 2, , (45) inthe neighborhood of discontinuities (Codina, 1993).

A Newton scheme was used in all cases to solve the system of
where the “advective velocityii(u;) comes from the proposed  noplinear algebraic equations. In Fig. 7 we show the evolution of
linearization of the problem, and is given by: the L,-norm of the residual for two typical time steps= 0.4

alup) = f'un) + D' (up)dyiun. (46) fgr transient conditiops, .and = 1.0 for quqsi-steady f:on.di—
tions) of the coarse grid simulations. The main observation is that
In Fig. 5, the numerical solutions obtained by the standard convergence is monotonic and asymptotically quadratic for both
Galerkin method and the ASGS method on the coarse grid arenethods (classical Galerkin and ASGS). The additional stabiliz-
compared with the analytical solution of the hyperbolic problem. ing term of the ASGS formulation does not degrade convergence
The classical Galerkin method produces a big overshoot and @f the Newton iterative scheme. On the contrary, convergence
of the ASGS method on the finer grid is also quadratic at all

1This range of Peclet numbers is to be compared with that ofsimulationstlmes' whereas the standard Galerkin method fails to converge

using characteristics methods (Dalefeal, 1995; Binning and Celia, shortly after breakthrough, due to unbounded growth of spurious
1999), where the highest Peclet number considered is about 2. oscillations.




Multiscale-stabilized finite element methods for miscible and immiscible flow in porous madi

4 Conclusions a = advective velocity, L/t
c1, c2 = constants in the definition af, dimensionless
We have presented a formalism for the numerical solution of  Co = Courant number, dimensionless
nonlinear conservation laws, which is based on a multiscale D = diffusion tensor, B/t
decomposition of the variable of interest, and applied it to the =~ Da = element Damkholer number, dimensionless
problems of miscible and immiscible two-phase flow in porous f = hyperbolic part of the fluxF, L/t
media. The main idea is to acknowledge that the fine-scale struc-  F = total flux ofu, L/t
ture of the solution cannot be captured by any grid, and to h = characteristic length of an element, L
incorporate the net effect of the subgrid scales onto the scales  k = absolute permeability tensor? L
resolved by the mesh (Hughes, 1995; Hugkéesl, 1998). L = linear advection—diffusion operator, 1/t
An algebraic approximation of the subscales (Codina, 2000) £* = adjoint of, 1/t
is used to model subgrid variability. The key parameter of the £,, = linearized advection—diffusion operator, 1/t
formulation is the intrinsic time, which is calculated as the har- L, = adjointofL,,, 1/t
monic mean of the characteristic times of diffusion, advection, [(-) = linear form in the weak formulation
and reaction at the length scale of the element size. This mul- N, = number of elements, dimensionless
tiscale approach leads to stabilized finite element methods with ~ P. = capillary pressure, m/Et
excellent properties. The numerical simulations clearly show the  Pe = element Peclet number, dimensionless
ability of the method to accurately simulate miscible and immis- g = distributed source term of, 1/t
cible flows on very coarse grids, even when the solution developsR (1) = grid-scale residual, 1/t
sharp features. Furthermore, the proposed methodology involves ¢ =time, t
only a marginal additional computational cost with respect to the T =time interval, t
standard Galerkin method. u = generic conserved quantity, dimensionless
The formalism of the multiscale approach is very general, u, = grid-scale part ofr, dimensionless
and several issues need to be investigated further. Of particular % = subgrid-scale part af, dimensionless
interest is the development of alternative subscale models. In  ug = initial conditions ofu, dimensionless
this paper, we focused our attention on the efficient numerical vy = total fluid velocity, L/t

solution ofstandardmathematical formulations of miscible and V = space of trial and test functions
immiscible flow. The only link to the physical processes at the V), = space of grid-scale functions
micro-scale was through the expression we used for the intrin- V = space of subgrid scales

sic time. The multiscale framework could be used, however, to x = space coordinate, L

incorporatephysically basednodels of micro-scale processes in

the field-scale equations (Hughetsal., 2000). .
From the standpoint of numerical methods, the multiscale 8 = Increment

approach constitutes also a paradigmdgosteriorierror esti- 4. Ao = relative mobility of water and oil, Lt/m

mation (Ainsworth and Oden, 2000), shock-capturing techniques = Viscosity ratio, dimensionless

(Juanes and Patzek, 2002), and temporal integration (Botasso, T = relaxation time, t

2002). We are now extending this methodology to multiphase @ = Porosity, dimensionless

compositional flows in several dimensions. Q = spatial domain, L in 1-D, £in 2-D, L in 3-D
92 = boundary of the domain

Greek letters
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