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ABSTRACT
In this paper we study the numerical solution of miscible and immiscible flow in porous media, acknowledging that these phenomena entail a multiplicity
of scales. The governing equations are conservation laws, which take the form of a linear advection–diffusion equation and the Buckley–Leverett
equation, respectively. We are interested in the case of small diffusion, so that the equations are almost hyperbolic. Here we present a stabilized
finite element method, which arises from considering a multiscale decomposition of the variable of interest into resolved and unresolved scales. This
approach incorporates the effect of the fine (subgrid) scale onto the coarse (grid) scale. The numerical simulations clearly show the potential of the
method for solving multiphase compositional flow in porous media. The results for the Buckley–Leverett problem are particularly remarkable.

RÉSUMÉ
Nous proposons une nouvelle approche pour les écoulements miscibles et non miscibles en milieu poreux qui tient compte de la multiciplicité des
échelles. Les deux principes de conservation de la masse et de l’énergie sont pris en compte par l’équation linéaire de convection-diffusion et l’équation
de Buckley–Leverett. Dans le cas d’une diffusion réduite, ces équations sont quasi hyperboliques. Nous proposons alors un algorithme stable par
éléments finis basé sur une décomposition de la variabilité en deux échelles. L’algorithme incorpore l’impact de la petite échelle fine dans celui, plus
facile à modéliser, de la grande échelle. Une simulation numérique démontre le potentiel de la méthode pour la solution d’un écoulement multiphasique
et compositionnel. Les résultats obtenus pour le problème-type de Buckley–Leverett sont particulièrement remarquables.

Keywords: Flow in porous media, conservation laws, multiscale phenomena, finite elements, stabilized methods.

1 Introduction

One of the main difficulties when solving flow and transport
in fractured porous media stems from the fact that, very often,
these processes arenot dominated by diffusion. This makes the
mathematical problem almost hyperbolic, which naturally devel-
ops sharp features in the solution. Classical numerical methods
produce a solution that either lacksstability, resulting in nonphys-
ical oscillations, oraccuracy, by showing excessive numerical
diffusion.

A large number of publications, which we do not attempt to
review here, have emerged to provide a solution to this funda-
mental problem. Despite the attention advection-dominated flow
has received from the scientific community in the past decades,
there is still a need for new numerical techniques. Modern
characteristics methods like Eulerian–Lagrangian Localized
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Adjoint Methods (ELLAM) (Celiaet al., 1990) require a fine
grid to accurately track the characteristics in a highly nonlinear
problem, and state-of-the-art stabilized methods like Streamline-
upwind/Petrov–Galerkin (SUPG) (Brooks and Hughes, 1982) or
Galerkin Least Squares (GLS) (Hugheset al., 1989), are not
as effective in the presence of reaction and production terms
(Codina, 1998). Recently, stabilized finite element methods have
been re-interpreted from the point of view of multiscale phenom-
ena (Hughes, 1995), where the stabilizing terms arise naturally in
a variational multiscale method (Hugheset al., 1998). This idea
of a multiple-scale decomposition of the solution, which is now
dominant in fluid mechanics, is adopted here for the simulation
of subsurface flow and transport.

Development of novel numerical methods for the complete
equations of multiphase compositional flow in multidimen-
sions must necessarily start from simplified models in one
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space dimension. These reduced model problems should display,
however, the key features which pose difficulties in obtaining
satisfactory numerical solutions such as, for instance, wild non-
linearity, shocks or near-shocks, boundary layers, and degenerate
diffusion. The key point of the proposed formulation is a multi-
scale decomposition of the variable of interest into resolved (or
grid) scales and unresolved (or subgrid) scales, which acknowl-
edges the fact that the fine-scale structure of the solution cannot
be captured byanymesh. However, the influence of the subgrid
scales on the resolvable scales is not negligible. By account-
ing for the subgrid scales, the oscillatory behavior of classical
Galerkin is drastically reduced and confined to a small neigh-
borhood containing the sharp features, while the solution is
high-order accurate where the solution is smooth. This ensures
that the numerical solution is not globally deteriorated. The
method doesnot emanate from a monotonicity argument and,
therefore, it does not rule out small overshoots and under-
shoots near the sharp layers. These localized wiggles could be
removed using a shock-capturing technique (see, e.g. Codina,
1993 and the references therein). One of the original contri-
butions of this paper is the particular implementation of the
multiscale formalism for nonlinear problems. We perform the
multiscale decomposition directly on the weak form of the equa-
tions, prior to any linearization. This approach is different from
the most common one, which relies on linearizing the equa-
tions first, and then resorting to a multiscale decomposition
(Codina, 2002).

A comment is in order regarding the differences between the
formulation presented here and other multiscale methods. In the
context of flow in porous media, a multiscale formulation often
refers toheterogeneityandupscaling. The numerical method is
devised to account for the small-scale variability of the medium
properties, which cannot be resolved directly on the coarse grid.
Examples of this type of formulation are the multiscale finite
element method (Hou and Wu, 1997) and the subgrid upscaling
technique (Arbogast, 2000, 2002). In the field of fluid mechanics,
the multiscale concept refers not to unresolved heterogeneity, but
to unresolved physics (Hughes, 1995; Hugheset al., 2000). This
paper concerns this latter aspect, where multiple scales appear
naturally in the solution even if the medium is homogeneous.
A similar framework has been recently applied to porous media
flows (Masud and Hughes, 2002), but only to thelinear equation
of steady-state single-phase Darcy flow, and with the motiva-
tion of dealing with the velocity–pressure instability, rather than
instabilities associated with advection- and reaction-dominated
flows.

An outline of the paper is as follows. The mathematical and
numerical formulations are described in Section 2, within the
unified framework of conservation laws. Under certain simpli-
fying assumptions, miscible flow takes the form of a linear
advection–diffusion equation, while immiscible flow leads to
the classical Buckley–Leverett equation. Several representative
numerical simulations for both miscible and immiscible flow
are presented in Section 3. In Section 4, we draw the main
conclusions of this investigation and suggest future lines of
research.

2 Numerical formulation

2.1 Initial and boundary value problem

We shall understand miscible and immiscible flow in porous
media as scalar conservation laws of the form (Chavent and Jaffré,
1986):

∂tu + ∇ · F = q, x ∈ �, t ∈ (0, T ], (1)

whereu is the conserved quantity,F is the total flux of that
quantity,q is the rate of production (per unit volume),� is the
spatial domain and (0,T ] is the time interval of interest. With
the usual notation,∂t (·) refers to partial derivative with respect
to time. The total flux has the form (Ewing, 1983; Chavent and
Jaffré, 1986; Dahleet al., 1995):

F = f (u) − D(u)∇u, (2)

wheref is the hyperbolic part of the flux andD is the diffusion ten-
sor. Both are allowed to be nonlinear functions of the unknownu.
For expositional simplicity, we consider homogeneous Dirichlet
boundary conditions only,

u = 0 on∂�, (3)

where ∂� is the boundary of the domain. The initial condi-
tions are:

u(x, t = 0) = u0(x), x ∈ �. (4)

For the linear case, we introduce the following equivalent
notation:

∂tu + Lu = q, x ∈ �, t ∈ (0, T ], (5)

whereLu is the linear advection–diffusion operator in conserva-
tion form,

Lu := ∇ · (au − D∇u), (6)

and the advective velocitya and the diffusion tensorD are inde-
pendent ofu. The boundary and initial conditions are given by
Eqs (3) and (4), as before.

2.2 Weak form

The weak form of the mathematical problem relaxes the regular-
ity requirements of the solutionu. It is obtained by multiplying
the differential equation by a smooth functionv which vanishes
on the boundary∂�, integrating over the entire domain�, and
applying Green’s formula to the flux term, to get the integral
equation:∫

�

∂tuv d� −
∫

�

F · ∇v d� =
∫

�

qv d�. (7)

The relation above needs to be satisfied at each fixed timet for all
functionsv belonging to some appropriate space of functionsV.
The choice of the functional spaceV depends on the form of the
diffusion tensor and, for the purpose of this paper, it is sufficient
to understand it as comprising smooth-enough functions which
vanish on the boundary. The weak form of problem (1)–(4) is then
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stated succinctly as follows: findu ∈ V for each fixedt ∈ (0, T ],
such that

(∂tu, v) + a(u, v; u) = l(v) ∀v ∈ V, (8)

where

(∂tu, v) :=
∫

�

∂tuv d�, (9)

a(u, v; w) := −
∫

�

F · ∇v d�

= −
∫

�

f (w) · ∇v d� +
∫

�

D(w)∇u · ∇v d�, (10)

l(v) :=
∫

�

qv d�. (11)

The weak form of thelinear problem given by Eqs (5) and (6)
with boundary and initial conditions (3) and (4) is to findu ∈ V
for each fixedt ∈ (0, T ], such that

(∂tu, v) + a(u, v) = l(v) ∀v ∈ V. (12)

The only difference with respect to Eq. (8) is thata(u, v) ≡
a(u, v; u) is now abilinear form.

2.3 Classical Galerkin method

With the notation above, it is straightforward to introduce the
standard Galerkin approximation. The method consists in seeking
a solutionuh in a finite-dimensional subspaceVh of the original
(infinite-dimensional) spaceV such that, for eacht :

(∂tuh, vh) + a(uh, vh; uh) = l(vh) ∀vh ∈ Vh, (13)

which constitutes a system of nonlinear ordinary differential
equations. The fully discrete system is obtained by further
discretizing in time.

The important point is that thetrial functionsuh and thetest
functionsvh (usually piecewise polynomials) can only capture
variability at a scale larger than the mesh resolution. All sub-
grid variability, that is, all features at a scale smaller than the
element size, is automatically neglected. The well-known fact
that the standard Galerkin method lacks stability for advection-
dominated problems can be understood in this context. If the
subscales are not captured adequately (or if they are completely
ignored, as in the classical Galerkin method), their effects
can propagate to larger scales, and deteriorate the coarse-scale
calculations. In Section 3 we show examples of this behavior.

2.4 Multiscale approach

The fundamental principle of the multiscale approach is to
acknowledge the presence of fine scales, which cannot be cap-
tured by the mesh. This is particularly important for advection-
dominated problems, where the solution develops sharp features
that would require an impractical grid resolution. The formulation

is based on a multiple-scale decomposition of any functionv ∈ V
as (Hughes, 1995):

v = vh + ṽ, (14)

wherevh is the part that can be resolved by the grid, andṽ the
unresolved part. This decomposition is unique if we can express
the original functional spaceV as the direct sum of two spaces:

V = Vh ⊕ Ṽ, (15)

whereVh is the space ofresolved scalesand Ṽ is the space of
subgrid scales. The spacẽV is an infinite-dimensional space that
completesVh in V. This space is generally unknown, and it is the
role of the subgrid model to provide a successful approximation
to it.

2.4.1 The linear problem
For the linear advection–diffusion problem, the multiscale
decomposition allows one to split the original problem into two.
To this end, we expressu ≡ uh + ũ in Eq. (12), and exploit the
linearity of all the terms with respect tov. We obtain one equation
for thegrid scales,

(∂t (uh + ũ), vh) + a(uh + ũ, vh) = l(vh) ∀vh ∈ Vh, (16)

and one for thesubscales,

(∂t (uh + ũ), ṽ) + a(uh + ũ, ṽ) = l(ṽ) ∀ṽ ∈ Ṽ. (17)

The former is a finite-dimensional problem, whereas the latter is
infinite-dimensional.

After assuming quasistatic subscales (Codina, 2002), that is,
∂t ũ ≈ 0, integrating by parts on each element and making use
of the linearity ofa(·, ·) and continuity of diffusive fluxes of
u = uh + ũ across interelement boundaries (Codina, 2000), we
get the following equation for the subscales:

∑
e

∫
�e

ṽLũ d� =
∑

e

∫
�e

ṽRuh d� ∀ṽ ∈ Ṽ, (18)

whereRuh := q − ∂tuh − Luh is thegrid scale residual. At
this point, there are several options to solve the subgrid prob-
lem (Eq. 18), most of which resort to some kind of localization
assumption (Hughes, 1995; Brezziet al., 1997; Arbogast, 2002).

In this investigation, the subscale problem ismodeled—
rather than solved—using an algebraic subgrid-scale (ASGS)
approximation (Codina, 2000):

ũ ≈ τRuh, (19)

where the algebraic operatorτ is calledintrinsic time(or relax-
ation time). The expression ofτ is one of the most difficult
issues when devising stabilized methods. It should depend on
the parameters of the problem, and on the actual discretiza-
tion. From a numerical standpoint, a proper formulation of the
intrinsic time should enhance stability of the coarse-scale calcu-
lations without degrading the order of accuracy of the method.
Here we use the following expression, which has proven useful
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in the context of linear systems of advection–diffusion–reaction
equations (Codina, 2000):

τ =
(

c1
||D||
h2

+ c2
|a|
h

)−1

, (20)

whereh is a characteristic length of the element under consid-
eration, andc1 = 4, c2 = 2 for linear elements (Codina, 1998,
2000). Equation (20) used tomodelthe relaxation time can also
be justified from heuristic physical considerations (see Section
3.1) and from an asymptotic Fourier analysis (Codina and Blasco,
2002). This completes the description of the subgrid scales.

After integration by parts on each element of the terma(ũ, vh)

in Eq. (16) and using a localization assumption (Codina, 2000),
the equation for the grid scales takes the form:

(∂tuh, vh) + a(uh, vh) +
∑

e

∫
�e

ũL∗vhd� = l(vh)

∀vh ∈ Vh, (21)

whereL∗ is the adjoint ofL, defined in Eq. (6). When com-
pared with the standard Galerkin method, the multiscale approach
involves additional integrals evaluated element by element (com-
pare Eq. 21 with Eq. 13), which incorporate the effect of the
subgrid scales̃u on the coarse scales. The subscalesũ are mod-
eled analytically and eliminated from the global problem. With
the algebraic approximation used here, they are proportional to
the grid-scale residual (Eq. 19). The method is residual-based
and, therefore, automatically consistent.

The new term in the grid-scale Eq. (21) is very similar to that
of other stabilized formulations, the only difference being the
form of the operator multiplying the subscales (Codina, 1998):

ASGS[21] :
∫

�e

ũL∗vh d�,

L∗v := −a · ∇v − ∇ · (D∇v), (22)

SUPG[8] :
∫

�e

ũ(−Ladvvh) d�, −Ladvv := −a · ∇v, (23)

GLS [23] :
∫

�e

ũ(−Lvh) d�,

− Lv := −∇ · (av) + ∇ · (D∇v). (24)

The multiscale approach has several advantages over other
stabilized formulations: (1) the stabilizing term arises naturally;
(2) it is not restricted to a particular subgrid model; and (3) the
ASGS formulation is endowed with better stability properties
than SUPG and GLS (Codina, 1998, 2000).

2.4.2 The nonlinear problem
Extension of the multiscale approach to the nonlinear problem
given by Eqs (1)–(4) is not straightforward, mainly because the
form a(u, v; w) in Eq. (8) is not linear inw. One of the key
features of our approach is that nonlinearity of the equations is
retained at the time of invoking the multiscale split. This dis-
tinguishes our method from the most common approach, which
relies on linearizing the conservation equations upfront (Codina,
2002). An approach similar to ours has also been presented in a

different context (Garikipati and Hughes, 1998; Ainsworth and
Oden, 2000; Hugheset al., 2000).

Specifically, we propose an incremental formulation and
a multiple scale decomposition of the increment (Juanes and
Patzek, submitted):

u ≈ uh + δũ. (25)

The incremental subscaleδũ may be understood as a pertur-
bation. Since the forma(u, v; w) is linear with respect to the
second argument (test function), the multiscale approach leads
also to a grid-scale problem and a subscale problem. Expanding
the constitutive relationsf (u) andD(u) to first order about an
approximate coarse-scale solutionuh, we obtain equations which
are formally identical to those of the linear case (see (Juanes and
Patzek, submitted) for the derivation), except that now involve a
linearizedadvection–diffusion operator:

Luh
v := ∇ · [a(uh)v − D(uh)∇v]. (26)

wherea(uh) := f ′(uh)−D′(uh)∇uh plays the role of an advective
velocity. In particular, the equation for the incremental subscales
reads:

δũ ≈ τuh
R(uh), (27)

whereτuh
(intrinsic time) is now a nonlinear function of the grid

scale solutionuh:

τuh
=

(
c1

||D(uh)||
h2

+ c2
|a(uh)|

h

)−1

. (28)

The coarse-scale equation reads

(∂tuh, vh) + a(uh, vh; uh) +
∑

e

∫
�e

δũL∗
uh

vh d� = l(vh)

∀vh ∈ Vh, (29)

whereL∗
uh

is the adjoint of thelinearizedoperatorLuh
, defined

in Eq. (26).
Equations (27) and (29) describe the ASGS finite element

method for a nonlinear advection–diffusion equation, and are
analogous to Eqs (19) and (21) for the linear case. In the non-
linear case, however, these equations need to be solved using an
iterative procedure, such as Newton’s method.

3 Representative numerical simulations

In this section we present some numerical simulations of miscible
and immiscible flow. We concentrate, for simplicity, on the one-
dimensional problem. Therefore, the flux vector and the diffusion
tensor reduce to scalar quantities. It is not the purpose of this
paper to derive the equations for miscible and immiscible flow
(see Juanes and Patzek, submitted and the references therein for
a derivation).

For each of the test cases presented here, we compare the
standard Galerkin solution with theASGS solution. This compar-
ison may seem a little unfair, as the test cases involve advection-
and reaction-dominated flows, for which the classical Galerkin
method is known to have unstable behavior. The motivation is
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to show the stabilizing effect of the new terms in the ASGS
formulation, which arise from consideration of the subgrid scales.
It is interesting to note that:

1. The ASGS method is in fact a Galerkin method—the coarse-
scale trial and test functions belong to the same finite element
space. The difference with respect to the classical Galerkin
method is that the subgrid scales are modeled separately.

2. The computational cost of the ASGS method is essentially
the same as that of the standard Galerkin method, as the for-
mer involves the calculation of just a few additional integrals,
which are evaluated elementwise.

3.1 One-dimensional miscible flow

We consider one-dimensional flow of a tracer that is perfectly
miscible with water. Under certain assumptions, the governing
equation of tracer transport is a transient linear advection–
diffusion–reaction equation (Juanes and Patzek, submitted):

∂tu+vT ∂xu−D∂xxu+σu = q, x ∈ (0, L), t ∈ (0, T ] (30)

whereu is the mass fraction of the tracer (tracer concentration),
vT is the total velocity of the mixture,D is the diffusion coef-
ficient, σ is the decay constant for a radioactive tracer,q is
the distributed source term, andL is the length of the one-
dimensional domain. The diffusion coefficientD is taken as a
constant, thus neglecting the effects of hydrodynamic dispersion.
We intentionally do not account for dispersion because it would
smear out the fronts, thus reducing considerably the numerical
complexity of the problem.

We solve the problem with homogeneous Dirichlet boundary
conditions:

u(0, t) = u(L, t) = 0, (31)

and the following parameters:L = 10, D = 10−3, q = 1. We
investigate two test cases, each one with particular values of the
advective velocityvT and the reaction coefficientσ :

1. Dominant advection:vT = 1, σ = 0.
2. Advection and reaction:vT = 1, σ = 4.

In both cases we used a very coarse uniform grid of 40 linear
elements (the element size ish = 0.25), and a backward Euler
time-stepping scheme with constant time stepδt = 0.1.

It is illustrative to compute the intrinsic times for each of the
physical processes involved, taking as a reference length one-
half of the element size. The expressions for the characteristic
times are given in Table 1. From the intrinsic times, the Courant,
Peclet and Damkholer numbers can be calculated for each of the
test cases (see Table 2). TheCourant numberindicates whether
the time discretization is fine enough to simulate the fastest pro-
cess. It is usually restricted to be less than 1.0 for stability or
accuracy requirements. ThePecletandDamkholer numbersmea-
sure, respectively, the preeminence of advection and reaction
with respect to diffusion. Values of these dimensionless numbers
much greater than 1.0 imply that the problem isnot dominated
by diffusion, suggesting that the solution may present sharp
features.

Table 1 Expressions of the characteristic times
for advection, diffusion, and reaction pro-
cesses, taking as a reference length one-half
of the element size

Diffusion Advection Reaction

τd = h2/4D τa = h/2vT τr = 1/σ

Table 2 Courant, Peclet, and Damkholer dimensionless numbers for
each test case of the linear advection–diffusion–reaction problem

Courant # Peclet # Damkholer #
Co := δt/τmin Pe := τd/τa Da := τd/τr

Dominant advection 0.8 125 0
Advection–reaction 0.8 125 67.5

The expression of the intrinsic time used in the subgrid model
(Eq. 19) is the harmonic mean of the characteristic time of each
process (Codina, 2000), that is

τ = (τ−1
d + τ−1

a + τ−1
r )−1 =

(
4

D

h2
+ 2

vT

h
+ σ

)−1

. (32)

The expression above generalizes Eq. (20) for cases when a reac-
tion term is present, and provides a physical interpretation of the
intrinsic time used in the multiscale approach.

3.1.1 Test case 1: Dominant advection
The governing equation is(σ = 0 in Eq. 30):

∂tu + vT ∂xu − D∂xxu = q, (33)

and the concentration is initially zero everywhere. For early
times, the behavior of the solution is as follows:

1. Away from both boundaries. Because the initial concentra-
tion is uniform, and so is the source term, the concentration
gradients will be zero as long as the region is not affected by
the boundaries. Since∂xu ≈ 0, the equation reduces to:

∂tu ≈ q. (34)

Therefore, the solution consists in aplateau, rising at a rate
of q = 1 concentration units per unit time.

2. Near the left (inlet) boundary. Physically, what happens is
that water with zero concentration from the inlet boundary
“washes” water with tracer inside the domain. A steady tracer
profile is established near the inlet, accommodating the effects
of advection and distributed sources. Since the concentration
profile is steady(∂tu ≈ 0)and diffusion is negligible(D ≈ 0),
the approximate governing equation for this conditions is:

vT ∂xu ≈ q. (35)

The solution near the left boundary is, thus, arampof slope
q/vT = 1.

3. Near the right (outlet) boundary. In the neighborhood of this
boundary, diffusion cannot be ignored. Aboundary layer
develops to connect the solution far away from the boundary
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Figure 1 Linear advection–diffusion–reaction with sources. Test case 1:
dominant advection. Classical Galerkin and ASGS solutions at three
different times.

(given by the rising plateau) to the Dirichlet boundary condi-
tion. The width of this layer is of the order ofD/vT = 10−3.

For long simulation times, steady-state conditions are reached
when the effect of the inlet boundary is felt at the outlet. The
solution then consists of a ramp of slopeq/vT = 1 and a sharp
boundary layer whose width is of the order ofD/vT = 10−3.

Solution by the classical Galerkin method and the ASGS
method are shown in Fig. 1 at three different times(t = 2, t = 5,
and steady-state). At timet = 2, the standard Galerkin solution
is wildly oscillatory. Oscillations are more pronounced near the
outlet face, but significant in more than half of the computational
domain. For later times, the solution is globally polluted with
nonphysical oscillations. The oscillatory behavior arises because
the method lacks stability: the boundary layer cannot be resolved
with the discretization used (the boundary layer width is two
orders of magnitude smaller than the element size), and this
loss of accuracy at the subgrid scale “propagates” to degrade
the coarse-scale calculations.

On the other hand, the solution obtained by the ASGS method
is perfectly nonoscillatory. The calculated concentration profiles
reproduce the transient behavior described above: a ramp near the
inlet boundary, a rising plateau in the center region, and a sharp
layer at the outlet boundary. The slope of the ramp and the rate
of increase of the plateau concentration agree with the predicted
values. Moreover, the boundary layer is reproduced in the best
possible way given the actual discretization: it is captured with
just one element, and without a single overshoot.

3.1.2 Test case 2: Dominant advection and reaction
The governing equation is the full Eq. (30), with zero initial and
boundary conditions. We can identify the following features in
the solution:

1. Away from both boundaries. Using the same arguments as
before, this is a region of uniform concentrationu∗, described
by the initial value problem:

du∗
dt

+ σu∗ = q, u∗(t = 0) = 0. (36)

The solution is:

u∗ = q

σ
(1 − e−σ t ), (37)

so the rising plateau tends asymptotically to a steady value of
q/σ = 0.25.

2. Near the left (inlet) boundary. It is difficult to obtain an ana-
lytical description of the solution during the transient phase.
However, when steady-state conditions are reached(∂tu = 0)

and neglecting the effects of diffusion, the governing equation
reduces to:

vT

du

dx
+ σu = q, u(x = 0) = 0. (38)

The solution to the problem above is the concentration profile:

u = q

σ
(1 − e−σ/vT x), (39)

The width of this profile can be estimated by the value ofx such
thatu ≈ 0.95umax, which gives a width of approximately 0.75.

3. Near the right (outlet) boundary. The solution consists of a
boundary layer with the same characteristics as in Case 1.

In Fig. 2 we show the results obtained with the classical
Galerkin method and theASGS approach, at three different times
(t = 0.2, t = 0.4, and steady-state). The standard Galerkin solu-
tion reproduces the rising plateau, and it captures the structure of
the solution at the left boundary. We recall that, for the parame-
ters used in this simulation, the concentration profile at the inlet
has a width of the order of 2 or 3 elements. However, the clas-
sical Galerkin method displays nonphysical oscillations at the
right end, which propagate well into the domain. This nonlocal
oscillatory behavior denotes the lack of stability of the method,
and its inability to appropriately “damp out” subgrid effects.

By contrast, the ASGS solution is accurate and stable: it
captures sharply all the features of the solution, and does not
present spurious oscillations. We remark that the ASGS formu-
lation introduces just a marginal additional computational cost
with respect to the classical Galerkin method.
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Figure 2 Linear advection–diffusion–reaction with sources. Test case 2:
combination of advection and reaction. Classical Galerkin and ASGS
solutions at three different times.
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3.2 One-dimensional immiscible flow

Flow of two incompressible immiscible fluids is described, using
the fractional-flow approach (Chavent and Jaffré, 1986), by an
elliptic “pressure” equation and a parabolic “saturation” equation.
In the one-dimensional case, the pressure equation has a trivial
solution, because the total velocity depends only on the bound-
ary conditions (see (Chavent and Jaffré, 1986; Juanes and Patzek,
submitted) for the details). The saturation equation takes the form
of a nonlinear advection–diffusion scalar conservation law:

∂tu + ∂x(f (u)−D(u)∂xu) = q, x ∈ (0, L), t ∈ (0, T ], (40)

whereu is the water saturation, andq is the distributed source
term. Functionsf andD take the following expressions:

f (u) = vT
λw

λw + λo

, (41)

D(u) = λwλo

λw + λo

k

φ
(−P ′

c), (42)

wherevT is the total velocity (assumed constant and known from
the pressure equation),λα is the mobility of theα-phase,k is the
intrinsic permeability,φ is the porosity, andP ′

c is the derivative
of the capillary pressure with respect to saturation. The fractional
flow functionf is typically S-shaped and, thus, nonconvex. We
shall consider the following model (Le Veque, 1992; Dahleet al.,
1995) (Fig. 3):

f (u) = vT

u2

u2 + µ(1 − u)2
, (43)

whereµ is the viscosity ratio, taken here as 1. The diffusion
coefficientD, which arises from capillarity effects, is typically
degenerate at the endpoint saturations, that is, it vanishes for
u = 0 and u = 1, and is positive otherwise (Chavent and
Jaffré, 1986). To mimic this behavior, we choose the following
expression (Dahleet al., 1995) (Fig. 4):

D(u) = εu(1 − u). (44)

We solve Eq. (40) on the unit segment� = [0, 1] with
Dirichlet boundary conditionsu(0, t) = 1, u(1, t) = 0, and
zero initial conditions. The total flux isvT = 1, the distributed
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u

f(
u
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v T

Figure 3 Fractional flow functionf used in the immiscible flow
simulations. The function is typically S-shaped and, thus, nonconvex.
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u

D
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) 
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Figure 4 Capillary diffusion functionD used in the immiscible flow
simulations. The function typically vanishes at the endpoint saturations,
and is positive elsewhere.

source term isq = 0, and the constant in the degenerate diffusion
coefficient isε = 10−4. We used a very small value of the param-
eterε to minimize the effects of capillary pressure and solve the
near-hyperbolic problem.

The diffusion-free problem, or Buckley–Leverett problem
(Buckley and Leverett, 1942), admits a straightforward analyti-
cal solution. During thetransient phase(before breakthrough),
the solution consists of a rarefaction fan and a shock. Both the
shock speed and the post-shock value are constant, and eas-
ily computable from the flux function (Le Veque, 1992). As a
result, the solution “stretches” with time in a self-similar fash-
ion. For long simulation times(after breakthrough), the system
reaches a quasi-steady state. Dirichlet boundary conditions are
particularly challenging, because they force a very fast initial
transient at the inlet, and a sharp boundary layer at the outlet after
breakthrough. This problem “exhibits several difficult features
beyond the usual ones of advection-dominated flow: degenerate
diffusion, sharpening near-shock solutions, and capillary outflow
boundary layers”. Numerical solutions to the Buckley–Leverett
problem include the early works of Toddet al. (1972), Aziz and
Settari (1979), Settari andAziz (1975), and, more recently, Dahle
et al. (1995), and Binning and Celia (1999).

Since we use a very small value of the parameterε, capil-
lary diffusion effects do not greatly influence theglobalstructure
of the solution. However, capillarity isnot negligible in the
neighborhood of sharp features, because of the extremely high
saturation gradients. In particular, the width of the traveling shock
(before breakthrough) and the boundary layer at the outlet face
(after breakthrough) are of the order ofε/vT = 10−4. Of course,
resolving the fine-scale structure of the solution would require
elements smaller than this length. This is not feasible in practical
problems, and the goal is to obtain an accurate numerical solution
on a coarse grid, which preserves the global structure of the exact
solution.

Results for a very coarse grid(Ne = 20, δt = 0.01, Fig. 5)
and a finer grid(Ne = 500,δt = 0.0005, Fig. 6) are provided,
which correspond to element Peclet numbers ofPe ≈ 2500 and
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Figure 5 One-dimensional immiscible flow. The classical Galerkin
solution and the ASGS solution on avery coarse grid(20 linear ele-
ments) are compared with the Buckley–Leverett solution for transient
and quasi-steady conditions.
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Figure 6 One-dimensional immiscible flow. The ASGS solution on a
finer grid (500 linear elements) is compared with the Buckley–Leverett
solution for transient and quasi-steady conditions. The classical Galerkin
method did not converge fort = 1.

Pe ≈ 100, respectively.1 In all cases we used a backward Euler
time-stepping scheme. The expression of the relaxation time used
in the ASGS formulation is:

τuh
= (τ−1

d + τ−1
a )−1 =

(
4
D(uh)

h2
+ 2

a(uh)

h

)−1

, (45)

where the “advective velocity”a(uh) comes from the proposed
linearization of the problem, and is given by:

a(uh) = f ′(uh) + D′(uh)∂xuh. (46)

In Fig. 5, the numerical solutions obtained by the standard
Galerkin method and the ASGS method on the coarse grid are
compared with the analytical solution of the hyperbolic problem.
The classical Galerkin method produces a big overshoot and a

1This range of Peclet numbers is to be compared with that of simulations
using characteristics methods (Dahleet al., 1995; Binning and Celia,
1999), where the highest Peclet number considered is about 2.
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Figure 7 One-dimensional immiscible flow. Evolution of the Newton
iterative scheme for the standard Galerkin and ASGS methods on the
coarse grid, for two typical time steps(t = 0.4 andt = 1). Convergence
is monotonic and quadratic in both cases.

nonphysical saturation plateau upstream of the front during the
transient state (shown is a snapshot of the solution att = 0.4).
More noticeably, it gives a completely oscillatory solution after
breakthrough (the results are displayed att = 1). On the other
hand, theASGS solution isnotglobally polluted with oscillations,
and preserves a sharp definition of the saturation front and the
boundary layer. TheASGS solution is remarkably accurate wher-
ever the actual solution is smooth (i.e. along the rarefaction fan),
even though an extremely coarse mesh of just 20 linear elements
was used. The oscillatory behavior of the numerical solution is
confined to a single undershoot at the downstream end of the
traveling shock, and a single overshoot at the boundary layer for
the long-time solution.

These observations are further confirmed by the simulations on
a finer grid (500 linear elements, Fig. 6). In this case, the standard
Galerkin method did not converge at all fort = 1 and, thus, is
not shown in the figure. The most important feature of the ASGS
solution is that the advancing front (before breakthrough) and the
boundary layer (after breakthrough) are captured sharply, avoid-
ing the excessive smearing of traditional upwind formulations.
The localized wiggles that remain in the solution can be success-
fully removed by using a shock-capturing technique (Juanes and
Patzek, submitted), which introduces numerical dissipation only
in the neighborhood of discontinuities (Codina, 1993).

A Newton scheme was used in all cases to solve the system of
nonlinear algebraic equations. In Fig. 7 we show the evolution of
theL2-norm of the residual for two typical time steps(t = 0.4
for transient conditions, andt = 1.0 for quasi-steady condi-
tions) of the coarse grid simulations. The main observation is that
convergence is monotonic and asymptotically quadratic for both
methods (classical Galerkin and ASGS). The additional stabiliz-
ing term of the ASGS formulation does not degrade convergence
of the Newton iterative scheme. On the contrary, convergence
of the ASGS method on the finer grid is also quadratic at all
times, whereas the standard Galerkin method fails to converge
shortly after breakthrough, due to unbounded growth of spurious
oscillations.
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4 Conclusions

We have presented a formalism for the numerical solution of
nonlinear conservation laws, which is based on a multiscale
decomposition of the variable of interest, and applied it to the
problems of miscible and immiscible two-phase flow in porous
media. The main idea is to acknowledge that the fine-scale struc-
ture of the solution cannot be captured by any grid, and to
incorporate the net effect of the subgrid scales onto the scales
resolved by the mesh (Hughes, 1995; Hugheset al., 1998).
An algebraic approximation of the subscales (Codina, 2000)
is used to model subgrid variability. The key parameter of the
formulation is the intrinsic timeτ , which is calculated as the har-
monic mean of the characteristic times of diffusion, advection,
and reaction at the length scale of the element size. This mul-
tiscale approach leads to stabilized finite element methods with
excellent properties. The numerical simulations clearly show the
ability of the method to accurately simulate miscible and immis-
cible flows on very coarse grids, even when the solution develops
sharp features. Furthermore, the proposed methodology involves
only a marginal additional computational cost with respect to the
standard Galerkin method.

The formalism of the multiscale approach is very general,
and several issues need to be investigated further. Of particular
interest is the development of alternative subscale models. In
this paper, we focused our attention on the efficient numerical
solution ofstandardmathematical formulations of miscible and
immiscible flow. The only link to the physical processes at the
micro-scale was through the expression we used for the intrin-
sic time. The multiscale framework could be used, however, to
incorporatephysically basedmodels of micro-scale processes in
the field-scale equations (Hugheset al., 2000).

From the standpoint of numerical methods, the multiscale
approach constitutes also a paradigm fora posteriorierror esti-
mation (Ainsworth and Oden, 2000), shock-capturing techniques
(Juanes and Patzek, 2002), and temporal integration (Botasso,
2002). We are now extending this methodology to multiphase
compositional flows in several dimensions.
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Notation

Roman letters

a(·, ·, ·) = form in the weak formulation

a = advective velocity, L/t
c1, c2 = constants in the definition ofτ , dimensionless

Co = Courant number, dimensionless
D = diffusion tensor, L2/t

Da = element Damkholer number, dimensionless
f = hyperbolic part of the fluxF , L/t

F = total flux ofu, L/t
h = characteristic length of an element, L
k = absolute permeability tensor, L2

L = linear advection–diffusion operator, 1/t
L∗ = adjoint ofL, 1/t

Luh
= linearized advection–diffusion operator, 1/t

L∗
uh

= adjoint ofLuh
, 1/t

l(·) = linear form in the weak formulation
Ne = number of elements, dimensionless
Pc = capillary pressure, m/Lt2

Pe = element Peclet number, dimensionless
q = distributed source term ofu, 1/t

R(uh) = grid-scale residual, 1/t
t = time, t

T = time interval, t
u = generic conserved quantity, dimensionless

uh = grid-scale part ofu, dimensionless
ũ = subgrid-scale part ofu, dimensionless

u0 = initial conditions ofu, dimensionless

vT = total fluid velocity, L/t
V = space of trial and test functions

Vh = space of grid-scale functions
Ṽ = space of subgrid scales
x = space coordinate, L

Greek letters

δ = increment
λw, λo = relative mobility of water and oil, Lt/m

µ = viscosity ratio, dimensionless
τ = relaxation time, t
φ = porosity, dimensionless
� = spatial domain, L in 1-D, L2 in 2-D, L3 in 3-D

∂� = boundary of the domain
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