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Abstract Accurate streamline tracing and travel time computation are essential ingredients
of streamline methods for groundwater transport and petroleum reservoir simulation. In this
paper we present a unified formulation for the development of high-order accurate stream-
line tracing algorithms on unstructured triangular and quadrilateral grids. The main result of
this paper is the identification of velocity spaces that are suitable for streamline tracing. The
essential requirement is that the divergence-free part of the velocity must induce a stream
function. We recognize several classes of velocity spaces satisfying this requirement from
the theory of mixed finite element methods and, for each class, we obtain the precise func-
tional form of the stream function. Not surprisingly, the most widely used tracing algorithm
(Pollock’s method) emanates in fact from the lowest-order admissible velocity approxima-
tion. Therefore, we provide a sound theoretical justification for the low-order algorithms
currently in use, and we show how to achieve higher-order accuracy both in the streamline
tracing and the travel time computation.

Keywords Streamline methods · Streamline tracing · Mixed finite elements · Stream
function · Darcy flow · Groundwater · Petroleum reservoir simulation

1 Introduction

Streamline methods have re-emerged in recent years as an attractive alternative to traditional
petroleum reservoir simulation based on finite difference methods [4, 6, 23]. The equations
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governing the flow of fluids in the subsurface (oil and gas reservoirs, confined aquifers, va-
dose zone, etc.) are mass conservation equations for a number of chemical species, coupled
with constitutive relations defining the flux of the different phases and algebraic equations
describing phase transitions and physical constraints [2, 5]. In many cases, it is possible to
formulate the problem in terms of a single “pressure” equation (or flow equation) describ-
ing an overall mass balance, and “component” equations (or transport equations) governing
the differential displacement of each component [2, 13, 14]. In the streamline approach, the
three-dimensional transport equations are decoupled into a set of one-dimensional problems
along streamlines. Streamlines are traced using the velocity field obtained from the solu-
tion of the pressure equation. In this way, streamline methods exploit the markedly different
character of the essentially elliptic pressure equation, and the essentially hyperbolic system
of transport equations.

Current streamline methods employ a low-order velocity field proposed by Pollock [33]
as a basis for streamline tracing. It has been shown, however, that low-order accurate stream-
line tracing may lead to large errors in both streamline location and in the travel time of
particles along streamlines, concluding that a higher-order method is desirable [25–27, 30].
Accurate streamline tracing is also often needed for the evaluation of travel times in stochas-
tic subsurface simulation [19], and for computer-aided visualization [18].

Most subsurface-flow streamline simulators are based on the use of Pollock’s method,
which is valid only for rectangular, Cartesian grids. An extension of Pollock’s tracing al-
gorithm to distorted quadrilateral grids was first proposed (in the groundwater hydrology
literature) by Cordes and Kinzelbach [15]. They presented a generalization in the context of
nodal-based finite element models, which requires a flux reconstruction step to obtain con-
tinuous velocity fields. Shortcomings associated with the use of nodal-based finite element
methods (such as lack of mass conservation at the element level, discontinuous velocity
fields, incorrect averaging in the presence of heterogeneity, and nonphysical streamlines)
have been pointed out by several authors [1, 16, 17, 31]. Such problems are not present in
the finite difference method or the mixed finite element method—in which the pressure and
the velocity are solved for simultaneously. For triangular grids, the tracing of streamlines
is straightforward, and mixed finite element methods have been shown to produce physical
streamlines even on very coarse grids [17, 22, 31]. Recently, extensions of the streamline
tracing algorithms to unstructured triangular and quadrilateral grids have been proposed in
the framework of flux-continuous finite volume methods [20, 21, 34]. The essence of these
extensions is the use of Pollock’s method on the reference element (unit square), together
with a proper transformation of the flux from the spatial configuration to the reference con-
figuration known as the Piola transform [9].

All the developments mentioned above are restricted, however, to the lowest-order ac-
curate description of the velocity field. The aim of this paper is to give a rather general
and consistent approach for the development of high-order accurate tracing algorithms on
unstructured grids—both triangular and quadrilateral. The basic ingredient of the proposed
approach is the proper definition of the space where the velocity is sought. Thus, one of
the main objectives of this paper is to provide a unified framework for the definition of ap-
propriate velocity spaces. In doing so, we present a sound theoretical justification for the
low-order tracing algorithms currently in use, and we show how to extend the streamline
tracing to achieve higher order accuracy. The fundamental observation is that the velocity
field used as a basis for streamline tracing (or, more precisely, the divergence-free part of
it) should induce a stream function. The existence of a stream function guarantees a certain
well-posedness of the velocity field. Since the stream function is constant along a stream-
line, knowledge of the stream function can also lead to highly efficient tracing algorithms.
The main results of this paper may be summarized as follows:
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1. We recognize that a large class of velocity spaces inducing a stream function can be
identified from the theory of mixed finite element methods.

2. We obtain the precise functional form of the stream function for each velocity space. In
addition to its immediate practical implications, this result may be seen as a constructive
proof of the existence of the stream function for a large class of mixed finite element
spaces.

While the theory is general, we have limited our applications to velocity spaces that are
compatible with a piecewise-constant pressure space, therefore limiting the order of approx-
imation of the velocity field (first-order for RT0 [35] and second-order for BDM1 [10]).
The restriction to piecewise constant pressure is driven by practical considerations of flow
through porous media, in that mixed finite element methods can be linked to commonly-used
finite volume methods [12, 28, 29, 36–38].

In Sect. 2 we explain the overall strategy for streamline tracing. In Sect. 3 we pose the
model problem in mixed variational form, we identify appropriate velocity spaces from the
theory of mixed finite elements, and we revisit some of their relevant properties (in par-
ticular, the existence of a stream function). Section 4 is devoted to the derivation of the
functional form of the stream function for each of the velocity spaces introduced. A discus-
sion on the computation of the travel time, and its exact expression, is included in Sect. 5.
In Sect. 6 we present some representative numerical simulations that illustrate the perfor-
mance of the proposed tracing algorithm for different choices of velocity spaces on a variety
of grids. In Sect. 7 we make some concluding remarks, and anticipate ongoing and future
work.

2 Strategy for Streamline Tracing

The general strategy is to identify streamlines as loci of constant values of the stream func-
tion. Such procedure relies on the existence of the stream function, and the ability to compute
it. Obviously, a stream function will not exist for an arbitrary velocity field. In the next sec-
tions, we identify velocity spaces that guarantee the existence of a stream function, and we
obtain its precise functional form.

The domain is discretized into triangular or quadrilateral elements, and tracing is per-
formed on individual elements. The velocity field is mapped from the real space to a refer-
ence element by means of the Piola transform, which allows to preserve the normal com-
ponents of the flux across the element edges (and thus guarantees local mass conservation).
Once the functional form of the stream function is known, a streamline is traced on a partic-
ular element by evaluating the stream function at the entry point, and determining the loci
where the stream function is constant, and equal to its entry-point value. One is often inter-
ested only on the exit point of the streamline (for that specific element), and the travel time
required to traverse the element. The exit point can be easily identified because the refer-
ence element has a very simple geometry. The travel time or time-of-flight, which involves
the evaluation of an integral along the streamline, can then be calculated numerically or, for
simple cases, analytically (see Sect. 5).

The tracing procedure just described is applicable only where a stream function exists.
In particular, this implies that the velocity must be divergence-free and, consequently, the
source term in the mass balance equation must be identically zero. This is typically the
case in reservoir simulation and many other problems in fluid mechanics, where the source
term is concentrated along part of the boundary, or on a few source/sink points (injection
and production wells). Boundary sources do not introduce any difficulty, as the boundary
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flux is known (either a priori or as a result of a numerical simulation). In the case of point
sources, streamline tracing is not performed inside the well blocks. This limitation is of
minor concern for two reasons: (1) one should not expect high accuracy in the streamline
predictions near a point source anyway, because the discretization level is insufficient to
resolve the flow field; and (2) since it is a region of high velocity, the time-of-flight along
the well block is insignificant compared with the travel time along the entire streamline.

3 Velocity Spaces

The objective of this section is to give a concise summary and a unified view of proper ve-
locity spaces that are suitable for streamline tracing. More specifically, a number of velocity
spaces are identified from the theory of mixed finite element methods.

First, we introduce the mixed variational form of the continuum problem, and introduce
the proper space where the velocity is defined. Then, we revisit several classes of mixed
finite elements that provide a successful discrete approximation to the continuum problem.
They all share the following common features:

1. They are conforming, that is, the velocity spaces are finite-dimensional subspaces of
H(div).

2. They satisfy the discrete inf-sup condition [3, 8], required for stability and convergence
of the mixed finite element method.

3. They are locally mass conservative, that is, the numerical scheme satisfies mass conser-
vation at the element level exactly.

4. They induce a stream function.

For each class of velocity spaces, we give their fundamental properties, and recall important
results regarding the existence of a stream function.

3.1 Mixed Variational Formulation

In this paper, we shall use the following model pressure equation:

div u = f in Ω ∈ R
2, (1)

where f is the source term, and u is the total velocity given by Darcy’s law:

u = −k∇p. (2)

The symbol k is the permeability tensor and p is the pressure. In a more general setting
(multiphase flow problems including gravity effects) k is the total mobility tensor, and p is
the flow potential. The permeability tensor is symmetric and positive definite. The compo-
nents of k are assumed to be bounded, but they may be highly discontinuous and display
large anisotropy ratios. The pressure equation is supplemented with the following boundary
conditions:

p = p̄ on Γp, (3)

u · n = ū on Γu, (4)
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where Γp ∩ Γu = ∅, Γp ∪ Γu = ∂Ω , and n is the outward unit normal to the boundary.
Without loss of generality (see, e.g. [9, Sect. IV.1]), we may take a homogeneous Neumann
boundary condition:

ū = 0 on Γu. (5)

Let us introduce the following functional spaces:

L2(Ω) =
{
q :

∫
Ω

|q|2 dΩ = ‖q‖2
L2(Ω)

< +∞
}
, (6)

H(div,Ω) = {
v : v ∈ (L2(Ω))2,div v ∈ L2(Ω)

}
. (7)

The space L2(Ω) is the usual Sobolev space of square integrable functions in Ω . The space
H(div,Ω) is defined such that vectors belonging to this space admit a well-defined normal
trace on ∂Ω [9, Sect. III.1.1]. We will also make use of the following space:

H0,u(div,Ω) = {v : v ∈ H(div,Ω),v · n = 0 on Γu}. (8)

Remark The condition v · n = 0 on Γu appearing in (8) should be understood in a weak
sense. See [9, Sect. III.1.1] for a precise definition.

Under some regularity conditions on the source function f and the boundary condi-
tions p̄, the problem given by (1)–(5) can be expressed in mixed variational form as follows:

Find (u,p) ∈ H0,u(div,Ω) × L2(Ω) such that
∫

Ω

v · k−1u dΩ −
∫

Ω

div vp dΩ = −
∫

Γp

v · np̄ dΓ ∀v ∈ H0,u(div,Ω), (9)

∫
Ω

q div u dΩ =
∫

Ω

qf dΩ ∀q ∈ L2(Ω). (10)

Employing the usual inner-product and duality notation,

(q,p) ≡ (q,p)L2(Ω) :=
∫

Ω

qp dΩ, q,p ∈ L2(Ω), (11)

(v,u) ≡ (v,u)H(div,Ω) :=
∫

Ω

v · u dΩ, v,u ∈ H(div,Ω), (12)

〈ū, p̄〉Γ :=
∫

Γ

ūp̄ dΓ, ū ∈ H 1/2(Γ ), p̄ ∈ H−1/2(Γ ), (13)

and defining the bilinear form

a(v,u) := (v, k−1u), (14)

(9)–(10) are written as follows:

a(v,u) − (div v,p) = −〈v · n, p̄〉Γp ∀v ∈ H0,u(div,Ω), (15)

(q,div u) = (q, f ) ∀q ∈ L2(Ω). (16)

It is well known that the problem (15)–(16) has a unique solution [9]. This weak formulation
of the problem provides the basis for the mixed finite element method. Let Vh ⊂ H(div,Ω),
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and Qh ⊂ L2(Ω) be finite dimensional subspaces of the corresponding continuum spaces,
and define:

Vh,0 = {v : v ∈ Vh,v · n = 0 on Γu}. (17)

The discrete mixed finite element approximation of (15)–(16) reads:
Find (uh,ph) ∈ Vh,0 × Qh such that

a(vh,uh) − (div vh,ph) = −〈vh · n, p̄〉Γp ∀vh ∈ Vh,0, (18)

(qh,div uh) = (qh, f ) ∀qh ∈ Qh. (19)

The spaces Vh and Qh cannot be chosen independently. They must satisfy two key condi-
tions in order to obtain a convergent approximation [7, 9]: a standard coercivity condition,
and the discrete inf-sup condition [3, 8].

The numerical solution of (18)–(19) invariably involves a partition Th of the domain Ω

into nonoverlapping elements Ki (triangles or quadrilaterals), Ω = ⋃m

i=1 Ki . We denote
by Eh the set of all element edges of Th. Discrete approximations of H(div,Ω) make use of
the following functional space:

Y (Ω, Th) = {v : v ∈ (L2(Ω))2,v|Ki
∈ H(div,Ki) ∀Ki ∈ Th}. (20)

It can be shown that functions of Y (Ω, Th) belong to H(div,Ω) if their normal traces are
continuous (in a weak sense) at the element interfaces [9, Sect. III.1.2]. This fact suggests
how discrete approximations of H(div,Ω) are constructed: the functional space is chosen
to belong to H(div) inside each element, and the requirement of continuity of the normal
trace is achieved by a proper selection of the degrees of freedom.

Discrete subspaces of H(div,K) are usually constructed through a reference element K̂

and a change of coordinates from physical space to reference space. Following [9], we recall
here some of the elementary facts regarding this transformation. Let K̂ ⊂ R

2 be a reference
element, and ∂K̂ be its boundary. Let ϕ be a smooth, invertible mapping that maps the
reference element K̂ onto the element K in physical space:

ϕ : R
2 −→ R

2,

x̂ ∈ K̂ �→ x = ϕ(x̂) ∈ K.
(21)

We assume that the Jacobian matrix D(x̂) is invertible for any x̂ ∈ K̂ , and we define the
Jacobian of the transformation J (x̂) = det D(x̂), assumed to be bounded away from zero.
Let q̂(x̂) be a scalar function on K̂ , we define the function q(x) on K by:

q(x) = F (q̂)(x) = q̂(x̂), with x = ϕ(x̂). (22)

The mapping F is an isomorphism from L2(K̂) onto L2(K). Such transformation is in-
appropriate for building approximations of H(div,Ω), because it does not preserve nor-
mal components and does not map H(div, K̂) onto H(div,K). Instead, the vector func-
tion v̂(x̂) ∈ (L2(K̂))2 is transformed according to the Piola transform [9, 24]:

v(x) = P(v̂)(x) = 1

J (x̂)
D(x̂)v̂(x̂), with x = ϕ(x̂). (23)
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The mapping P preserves the normal trace and, moreover, is an isomorphism of H(div, K̂)

onto H(div,K). These properties of the Piola transform allow one to define subspaces of
H(div,K) through the reference element K̂ .

Let the space Mk(K) denote a finite-dimensional approximation of H(div,K). This
space must be designed such that the degrees of freedom ensure continuity of normal
traces at the element interfaces. Also, let Dk(K) denote the space of divergences of vec-
tors in Mk(K):

Dk(K) := div(Mk(K)). (24)

One can then define a finite-dimensional space that approximates H(div,Ω):

Vh ≡ Mk(Ω, Th) = {v ∈ H(div,Ω),v|Ki
∈ Mk(Ki) ∀Ki ∈ Th}. (25)

The space approximating L2(Ω) must be

Qh ≡ L0(Dk, Th) = {q ∈ L2(Ω), q|Ki
∈ Dk(Ki) ∀Ki ∈ Th}. (26)

For affine elements (triangles), one has the imbedding divVh ⊆ Qh. This is not the case,
however, for general quadrilateral elements, which makes some of the approximation results
much more difficult to obtain [9].

In what follows, we present several well-known classes of velocity spaces Mk(K) that
lead to convergent approximations of the mixed variational problem.

3.2 Velocity Spaces on Triangles

We revisit two well-known classes of mixed finite elements, which provide conforming
approximations to H(div). We will define them on the reference triangle K̂ . The mapping
from reference to physical space for triangular elements is shown in Fig. 1. The map ϕ is
given by the isoparametric mapping:

x = ϕ(x̂) =
3∑

a=1

Na(x̂)xa, (27)

where xa are the nodal coordinates (in physical space), and Na are the usual linear finite
element hat functions:

N1(x̂, ŷ) = 1 − x̂ − ŷ, N2(x̂, ŷ) = x̂, N3(x̂, ŷ) = ŷ. (28)

The Jacobian matrix D is constant and, therefore, the mapping is affine. In the remainder
of this section, we shall work on the reference configuration exclusively. We abuse notation
and drop the tilde, but still denote quantities defined on the reference element.

Fig. 1 Mapping of the reference
element onto physical space for
triangular elements
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3.2.1 Raviart-Thomas Spaces

Some of the first mixed finite element spaces for the approximation of H(div) were intro-
duce by Raviart and Thomas [35]. The extension to three dimensions was presented in [32].
Following [9, Sect. III.2.1], we introduce some notation. We denote by Pk(K) the space of
polynomials on K of degree less than or equal to k:

Pk(K) =
{

p(x, y) : p(x, y) =
k∑

j=0

j∑
i=0

aj−i,ix
j−iyi

}
. (29)

The dimension of Pk(K) is 1
2 (k + 1)(k + 2). We shall also use the space

Pk1,k2(K) =
{

p(x, y) : p(x, y) =
k1∑

i=0

k2∑
j=0

ai,j x
iyj

}
, (30)

whose dimension is (k1 + 1)(k2 + 1). We denote by Qk(K) the space:

Qk(K) = Pk,k(K). (31)

We will also make use of the following space of polynomials defined on the edges:

Rk(∂K) = {q : q ∈ L2(∂K), q|ei
∈ Pk(ei) ∀ei}. (32)

Functions in Rk(∂K) do not have to be continuous at the vertices and, for triangles, the
dimension of the space is 3(k + 1).

We now give the definition and a few relevant properties of the Raviart-Thomas class of
velocity spaces. Let K be the reference triangle in Fig. 1. We define, for k ≥ 0,

RTk(K) = (Pk(K))2 ⊕ xPk(K)

=
⎧⎨
⎩v(x, y) :

[
vx(x, y)

vy(x, y)

]
=

k∑
j=0

j∑
i=0

[
ax

j−i,i

a
y

j−i,i

]
xj−iyi +

(
k∑

i=0

bk−i,ix
k−iyi

)[
x

y

]⎫⎬
⎭ .

(33)

The dimension of RTk(K) is (k + 1)(k + 3). It can be shown that RTk(K) is fully charac-
terized by the following degrees of freedom:

– the moments of order up to k of v · n on the edges of K ;
– the moments of order up to k − 1 of v on K .

Obviously, one has that

dim RTk(K) = dimRk(∂K) + dim(Pk−1(K))2. (34)

The subspace of divergence-free functions belonging to RTk(K) will play an essential role:

RT0
k(K) = {v ∈ RTk(K) : div v = 0}. (35)
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It is clear that if v ∈ RTk(K), then div u ∈ Pk(K), so the divergence-free condition reduces
the number of degrees of freedom by 1

2 (k + 1)(k + 2). Therefore,

dim RT0
k = 1

2
(k + 1)(k + 4) = dimPk+1(K) − 1. (36)

This fact is used in [9] to state the following fundamental result:
Any v0 ∈ RT0

k(K) is the curl of a stream function ψ ∈ Pk+1(K), that is,

vx
0 = ∂ψ

∂y
, v

y

0 = −∂ψ

∂x
. (37)

3.2.2 Brezzi-Douglas-Marini Spaces

Another class of velocity spaces approximating H(div,K) was presented in [10], and ex-
tended to three dimensions in [11]. Let K be the reference triangle in Fig. 1. We define, for
k ≥ 1,

BDMk(K) = (Pk(K))2

=
⎧⎨
⎩v(x, y) :

[
vx(x, y)

vy(x, y)

]
=

k∑
j=0

j∑
i=0

[
ax

j−i,i

a
y

j−i,i

]
xj−iyi

⎫⎬
⎭ . (38)

The dimension of BDMk(K) is (k + 1)(k + 2). The degrees of freedom can be chosen from
a basis of Rk(∂K), Pk−1(K) and the space

Φk(K) = {φk ∈ (Pk(K))2 : divφk = 0,φk · n|∂K = 0}. (39)

Indeed, one has that

dim BDMk(K) = dimRk(∂K) + (dimPk−1(K) − 1) + dimΦk(K). (40)

In the same way as for Raviart-Thomas spaces, we can define the subspace of divergence-
free functions:

BDM0
k(K) = {v ∈ BDMk(K) : div v = 0}. (41)

It is easy to show that BDMk(K) and RTk(K) contain the same divergence-free functions
and, therefore, BDM0

k(K) ≡ RT0
k(K). It then follows that any v0 ∈ BDM0

k(K) is the curl of
a stream function.

3.3 Velocity Spaces on Rectangles

We now discuss two classes of velocity spaces approximating H(div, K̂) on the reference
element (unit square). The mapping from reference to physical space for quadrilateral ele-
ments is depicted in Fig. 2. The map ϕ is again given by the isoparametric mapping:

x = ϕ(x̂) =
4∑

a=1

Na(x̂)xa, (42)
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Fig. 2 Mapping of the reference
element onto physical space for
quadrilateral elements

where xa are the nodal coordinates (in physical space), and Na are the usual bilinear finite
element hat functions:

N1(x̂, ŷ) = 1

4
(1 − x̂)(1 − ŷ), N2(x̂, ŷ) = 1

4
(1 + x̂)(1 − ŷ),

N3(x̂, ŷ) = 1

4
(1 + x̂)(1 + ŷ), N4(x̂, ŷ) = 1

4
(1 − x̂)(1 + ŷ).

(43)

As opposed to the case of triangular elements, the Jacobian matrix D(x̂) is not constant and,
therefore, the mapping is not affine. Once again, we shall drop the tilde but understand that
the spaces are defined on the reference element.

3.3.1 Raviart-Thomas Spaces

This class of velocity spaces on rectangles was introduced in [35] and extended to the three-
dimensional case in [32]. Let K be the reference square [−1,1] × [−1,1] in Fig. 2. We
define, for k ≥ 0,

RT [k](K) = (Qk(K))2 ⊕ xQk(K) = Pk+1,k(K) × Pk,k+1(K)

=
{

v(x, y) :
[

vx(x, y)

vy(x, y)

]
=

[∑k+1
i=0

∑k

j=0 ax
i,j x

iyj

∑k

i=0

∑k+1
j=0 a

y

i,j x
iyj

]}
. (44)

The dimension of RT [k](K) is 2(k + 1)(k + 2). The degrees of freedom can be chosen from
a basis of the spaces Rk(∂K) and

Ψk(K) = Pk−1,k(K) × Pk,k−1(K). (45)

Indeed, one has

dim RT [k](K) = dimRk(∂K) + dimΨk(K). (46)

We can define, as for the case of triangles, the subspace of divergence-free functions:

RT0
[k](K) = {v ∈ RT [k](K) : div v = 0}. (47)

If v ∈ RT [k](K), then div v ∈ Qk(K). Therefore,

dim RT0
[k](K) = dim RT [k](K) − dimQk(K) = (k + 1)(k + 3) = dimQk+1 − 1. (48)

This fact in used in [9] to state the following fundamental result:

If v0 ∈ RT0
[k](K), there exists a stream function ψ ∈ Qk+1(K) such that v0 = curlψ .
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3.3.2 Brezzi-Douglas-Marini Spaces

Here we review the class of velocity spaces for the approximation of H(div,K) on rectan-
gles introduced in [10], later extended to the three-dimensional case in [11]. Again, let K be
the reference square element. For k ≥ 1 we define

BDM[k](K) = (Pk(K))2 ⊕ curl(xk+1y) ⊕ curl(xyk+1). (49)

The dimension of BDM[k](K) is (k + 1)(k + 2) + 2. The degrees of freedom can be taken
from a basis of Rk(∂K) and (Pk−2(K))2. Indeed,

dim BDM[k](K) = dimRk(∂K) + dim(Pk−2(K))2. (50)

We define the subspace of divergence-free functions:

BDM0
[k](K) = {v ∈ BDM[k](K) : div v = 0}. (51)

Since the curl-terms in the definition of BDM[k](K) have zero divergence, one has that
div(BDM[k](K)) = Pk−1(K). It follows that

dim BDM0
[k](K) = dim BDM[k](K) − dimPk−1(K)

= 1

2
(k + 1)(k + 4) + 2 = (dimPk+1(K) − 1) + 2. (52)

Based on the results presented in the previous sections, one concludes that

For any v0 ∈ BDM0
[k](K), there exists a stream function ψ ∈ Pk+1(K)⊕xk+1y⊕xyk+1

such that v0 = curlψ .

4 Stream Functions

In Sect. 3 we have identified several classes of velocity spaces with the following important
property: the functions belonging to their corresponding zero-divergence subspaces induce
a stream function. In this section, we determine the functional form of the stream function
for each of the velocity spaces presented. This constitutes the main result of the paper, and
is an essential ingredient of the streamline tracing procedure outlined in Sect. 2.

The derivation of the stream function follows the same steps in all cases. Let Mk(K) be
any of the approximations to H(div,K) introduced in Sect. 3, and M0

k (K) be its correspond-
ing subspace of divergence-free functions. One starts with the general functional form of a
function v = (vx, vy) ∈ Mk(K). A set of algebraic equations is identified from the condition
that div v = 0, so that v ∈ M0

k (K). The stream function ψ can then be obtained by direct
integration of the following two equations:

∂ψ

∂x
= −vy −→ ψ(x, y) = ψx(x, y) + g(y), (53)

∂ψ

∂y
= vx −→ ψ(x, y) = ψy(x, y) + f (x). (54)

A stream function indeed exists if one can express:

ψx(x, y) − ψy(x, y) = f (x) − g(y). (55)
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Identification of terms allows one to determine the functions f (x) and g(y) and, ultimately,
the form of the stream function ψ(x, y).

4.1 Stream Functions on Triangles

4.1.1 Raviart-Thomas Spaces

We start with the Raviart-Thomas velocity spaces on triangles. Recall that

RTk(K) = (Pk(K))2 ⊕ xPk(K). (56)

For convenience, we express this space as the direct sum of spaces of homogeneous polyno-
mials:

RTk(K) =
k⊕

j=0

(P̃j (K))2 ⊕ xP̃k(K), (57)

where

(P̃j (K))2 =
{

ṽj (x, y) :
[

ṽx
j (x, y)

ṽ
y

j (x, y)

]
=

j∑
l=0

[
ax

j−l,l

a
y

j−l,l

]
xj−lyl

}
, (58)

and

xP̃k(K) =
{

ṽk+1(x, y) :
[

ṽx
k+1(x, y)

ṽ
y

k+1(x, y)

]
=

( k∑
l=0

bk−l,lx
k−lyl

)[
x

y

]}
. (59)

The condition div v = 0 implies div ṽj = 0 for j = 0, . . . , k and div ṽk+1 = 0. This last con-
dition implies, in turn,

div ṽk+1 =
k∑

l=0

[
(k − l + 1)bk−l,lx

k−lyl + (l + 1)bk−l,lx
k−lyl

] = 0. (60)

Since k ≥ 0, the equation above can only be satisfied if all bk−l,l = 0 for l = 0, . . . , k. Now,
the condition div ṽj = 0 for j ≥ 1 reads

div ṽj =
j∑

l=0

[
(j − l)ax

j−l,lx
j−l−1yl + la

y

j−l,lx
j−lyl−1

] = 0. (61)

Rearranging the indices, the equation above can be written as follows:

j∑
l=0

(j − l)ax
j−l,lx

j−l−1yl = −
j−1∑
l=−1

(l + 1)a
y

j−l−1,l+1x
j−l−1yl. (62)

For this relation to hold for any (x, y), the following conditions must be satisfied:

(j − l)ax
j−l,l = −(l + 1)a

y

j−l−1,l+1 for l = 0, . . . , j − 1. (63)

We now use the equations defining the stream function of ṽj ∈ (P̃j (K))2:

∂ψ̃j

∂x
= −ṽ

y

j (x, y),
∂ψ̃j

∂y
= ṽx

j (x, y). (64)
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Integrating the first equation in (64), we obtain

ψ̃j = −
∫

ṽ
y

j (x, y)dx + g̃j (y) =
j∑

l=0

− 1

j − l + 1
a

y

j−l,lx
j−l+1yl + g̃j (y). (65)

Integrating the second equation in (64),

ψ̃j =
∫

ṽx
j (x, y)dy + f̃j (x) =

j∑
l=0

1

l + 1
ax

j−l,lx
j−lyl+1 + f̃j (x). (66)

Subtracting (65) and (66), rearranging the summation indices, and incorporating the
divergence-free conditions (63), we arrive at

f̃j (x) − g̃j (y) = − 1

j + 1
a

y

j,0x
j+1 − 1

j + 1
ax

0,j y
j+1. (67)

Therefore, we conclude that a stream function ψ̃j ∈ P̃j+1(K) exists for any divergence-free
vector ṽj ∈ (P̃j (K))2, its functional form given by:

ψ̃j (x, y) =
j∑

l=0

1

l + 1
ax

j−l,lx
j−lyl+1 − 1

j + 1
a

y

j,0x
j+1. (68)

The stream function for the velocity field v ∈ RT0
k(K) is simply the sum of the stream func-

tions given by (68):

ψRT0
k
(x, y) =

k∑
j=0

ψ̃j (x, y), (69)

which indeed belongs to Pk+1(K).

4.1.2 Brezzi-Douglas-Marini Spaces

We recall that the spaces BDMk(K) and RTk(K) contain the same divergence-free functions,
that is, BDM0

k(K) ≡ RT0
k(K). Therefore, the form of the stream function is identical:

ψBDM0
k
(x, y) = ψRT0

k
(x, y), (70)

defined by (68) and (69).

4.2 Stream Functions on Rectangles

4.2.1 Raviart-Thomas Spaces

We recall the Raviart-Thomas space on the reference square:

RT [k](K) = (Qk(K))2 ⊕ xQk(K) = Pk+1,k(K) × Pk,k+1(K)

=
{

v(x, y) :
[

vx(x, y)

vy(x, y)

]
=

[∑k+1
i=0

∑k

j=0 ax
i,j x

iyj

∑k

i=0

∑k+1
j=0 a

y

i,j x
iyj

]}
. (71)
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We impose the necessary condition of zero divergence, so that v ∈ RT0
[k](K):

div v =
k+1∑
i=1

k∑
j=0

iax
i,j x

i−1yj +
k∑

i=0

k+1∑
j=1

ja
y

i,j x
iyj−1 = 0. (72)

Rearranging the indices, we have

k∑
i=0

k∑
j=0

(i + 1)ax
i+1,j x

iyj = −
k∑

i=0

k∑
j=0

(j + 1)a
y

i,j+1x
iyj . (73)

The following conditions must be satisfied for this relation to hold for any (x, y):

(i + 1)ax
i+1,j = −(j + 1)a

y

i,j+1 for i = 0, . . . , k, j = 0, . . . , k. (74)

Integrating the equations defining the stream function: ṽj ∈ (P̃j (K))2:

∂ψ

∂x
= −vy(x, y),

∂ψ

∂y
= vx(x, y), (75)

we obtain

ψ = −
∫

vy(x, y)dx + g(y) =
k∑

i=0

k+1∑
j=0

− 1

i + 1
a

y

i,j x
i+1yj + g(y), (76)

ψ =
∫

vx(x, y)dy + f (x) =
k+1∑
i=0

k∑
j=0

1

j + 1
ax

i,j x
iyj+1 + f (x). (77)

Subtracting (76) and (77) and incorporating the divergence-free conditions (74):

f (x) − g(y) = −
k∑

i=0

1

i + 1
a

y

i,0x
i+1 −

k∑
j=0

1

j + 1
ax

0,j y
j+1. (78)

Therefore, we conclude that a stream function ψ ∈ Qk+1(K) exists for any vector v ∈
RT0

[k](K), and its functional form is given by:

ψ(x, y) =
k+1∑
i=0

k∑
j=0

1

j + 1
ax

i,j x
iyj+1 −

k∑
i=0

1

i + 1
a

y

i,0x
i+1. (79)

4.2.2 Brezzi-Douglas-Marini Spaces

Recall the space BDM[k](K) defined on the reference square as:

BDM[k](K) = (Pk(K))2 ⊕ curl(xk+1y) ⊕ curl(xyk+1). (80)

Since the curl-terms are automatically divergence-free, they do not introduce any additional
constraints. Therefore, the stream function of any function belonging to BDM0

[k](K) can be
constructed immediately:

ψBDM0[k]
(x, y) = ψRT0

k
(x, y) + b1x

k+1y + b2xyk+1, (81)

where ψRT0
k

is defined by (68) and (69).
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5 Time-of-Flight

Mapping elements from physical space to a reference element and the use of the stream
function allows one to efficiently compute the streamline and, in particular, the exit point.
However, one crucial ingredient of streamline simulation is the accurate calculation of the
travel time (or time-of-flight) along a streamline. Let L be a streamline traversing an element
from an entry point x0 to an exit point xf . The time-of-flight is defined as

τ :=
∫

L

1

|u(s)| ds, (82)

where s is the arclength, or distance along the streamline.
One must be able to evaluate the integral in (82) in reference space (see Fig. 3). Simply

substituting the velocity u by its inverse Piola transform û and evaluating the integral on the
reference element yields an incorrect time-of-flight. To find the expression of the travel time
as an integral evaluated on the reference space we need an appropriate time mapping be-
tween physical and reference configurations. A streamline satisfies the following equations
in physical and reference space, respectively:

dx
dt

= u(x),
dx̂

dt̂
= û(x̂). (83)

We recall the following relations:

dx = D(x̂)dx̂, (84)

u(x) = 1

J (x̂)
D(x̂)û(x̂). (85)

Using these expressions in (83), one immediately obtains the relation between t and t̂ :

dt = J (x̂)dt̂ . (86)

Therefore, the exact expression of the time-of-flight as an integral on reference space is:

τ =
∫

L̂

1

|û(ŝ)|J (ŝ)dŝ, (87)

where ŝ is the arclength coordinate along the map of the streamline L̂ on the reference
element.

Fig. 3 Transformation of the
time-of-flight from the reference
element to physical space
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Remark For affine elements, the Jacobian of the transformation is constant and can be taken
out of the integral. For distorted quadrilateral elements, however, the Jacobian varies inside
the element and must be explicitly included in the integrand. Taking an approximate con-
stant value of the Jacobian (for example, evaluated at the element center [34]) can lead to
erroneous travel time predictions [20, 21].

6 Representative Simulations

In this section we illustrate the performance of the proposed tracing strategy and assess the
potential benefit of tracing streamlines based on high-order accurate velocity spaces. We
restrict our attention to velocity spaces for which the associated pressure space is constant
within each element. This design condition—driven by practical considerations in the area of
groundwater flow and petroleum reservoir simulation—limits the choice of velocity spaces
to the lowest-order Raviart-Thomas space (RT0) and the Brezzi-Douglas-Marini space of
order 1 (BDM1). It is important to emphasize that, given a pressure–velocity solution to
the flow problem (18)–(19) based on a particular discretization scheme (RT0 or BDM1),
the streamlines and time-of-flight are exact (to be precise, they are computed with arbitrary
accuracy). The specific functional forms of the velocity field, the stream function and the
shape functions for RT0 and BDM1 elements on triangular and quadrilateral elements, along
with algorithmic details, are given in a separate publication [26].

6.1 Robustness to Grid Distorsion

We study the behavior of low-order RT0 and high-order BDM1 streamline tracing in terms of
accuracy and robustness to grid distortion. For this purpose, we consider a unit square flow
domain [0,1] × [0,1], with isotropic, homogeneous permeability equal to one (see Fig. 4).
The bottom-left corner of the domain is set at constant unit pressure, and the top-right corner
at constant zero pressure. The rest of the boundary acts as a no-flow boundary. Therefore,
the flow is from the bottom-left corner to the top-right corner. We solve the flow problem and
trace streamlines using RT0 and BDM1 elements on a variety of quadrilateral and triangular
grids:

1. A 10 × 10 Cartesian grid.
2. A Chevron grid, formed by keeping the vertical lines of the Cartesian grid and reorienting

the horizontal edges to obtain a Chevron-like pattern.

Fig. 4 Sketch of the flow
domain and boundary conditions
for the diagonal flow problem
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3. A random grid, created by a random relocation of the Cartesian grid nodes; the magnitude
of node shifts is restricted to ensure that all elements are convex.

4. A skewed grid, obtained from a diagonal distortion of the Cartesian grid.

All four grids have 100 elements. Four triangular grids are created from these quadrilateral
grids by splitting each quadrilateral element into two triangles. By construction, the trian-
gular grids have twice as many elements as the quadrilateral grids: they are all composed of
200 elements.

Seven streamlines are traced on every grid and for each type of discretization. These
streamlines are launched from equally spaced points along the diagonal of the square do-
main. In Fig. 5 we show the streamlines traced using the RT0 and BDM1 discretizations
for all four quadrilateral grids. In Fig. 6 we plot the streamlines traced on the respective
triangular grids.

The overall observation from these numerical examples is that the streamlines computed
with an RT0 approximation of the velocity are strongly influenced by grid distortion, while
the BDM1 approximation displays much less sensitivity to the choice of the grid. Specifi-
cally, we note the following:

1. RT0 streamlines are particularly deficient for the quadrilateral Chevron grid (Fig. 5, sec-
ond row). For example, the center streamline should be a straight line from the bottom-
left corner to the top-right corner. The RT0 approximation produces a highly skewed
streamline, whereas the BDM1 discretization results in a streamline trace that is almost
straight and ends at the vertex of the corner blocks.

2. In the case of the quadrilateral skewed grid (Fig. 5, fourth row), RT0 streamlines are
missing their natural curvature, while BDM1 streamlines show proper convexity.

3. An notorious deficiency is present in the streamlines computed with RT0 on triangu-
lar grids. For this element type, the velocity field is constant over each element. Since
boundaries are impervious (no-flow), elements in contact with the boundary necessar-
ily have RT0 streamlines that are parallel to the boundary. This built-in constraint re-
sults in jagged, nonphysical streamlines. The phenomenon is obvious in the traces of
the longest streamlines, especially near the corner blocks. The results on a skewed grid
(Fig. 6, fourth row) illustrate this undesirable effect particularly well. On the other hand,
the BDM1 approximation allows for the velocity field to vary within each element and,
as a consequence, streamlines can bend even along boundary blocks. This added flexibil-
ity is reflected in the vastly improved behavior of the streamline traces, which are much
more physical and much less grid-dependent.

To quantify the apparent increased accuracy and robustness of the streamlines based on
the higher-order velocity approximation, we compute the error in the time-of-flight for each
of the seven streamlines. Reference values are obtained using a 100 × 100 Cartesian grid
with a BDM1 discretization.

In Table 1 we report, for each grid and type of discretization, the time-of-flight error for
the streamline passing through the point of coordinates (x, y) = ( 3

14 , 11
14 ). This streamline

was chosen arbitrarily and was found to be representative of the results observed with the
six other streamlines. We note the following observations:

1. We observe a consistent and significant reduction of the time-of-flight errors when using
the higher-order BDM1 approximation rather than the low-order RT0 approximation.

2. The variability of the BDM1 time-of-flight error is much smaller than that of RT0, con-
firming the robustness of the BDM1-based streamline tracing with respect to grid distor-
tion.
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Fig. 5 RT0 (left) and BDM1 (right) streamlines on quadrilateral grids. From top to bottom: Cartesian,
Chevron, random, and skewed grids
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Fig. 6 RT0 (left) and BDM1 (right) streamlines on triangular grids. From top to bottom: Cartesian, Chevron,
random, and skewed grids
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Table 1 Time-of-flight error for the streamline passing through the point (x, y) = ( 3
14 , 11

14 )

Element type Discretization Cartesian Chevron Random Skewed

Triangle RT0
0 16.89% 35.53% 18.01% 17.83%

BDM0
1 6.13% 7.50% 6.11% 7.58%

Quadrilateral RT0
0 16.69% 35.77% 17.79% 47.69%

BDM0
1 3.49% 4.95% 3.45% 2.72%

Fig. 7 Sketch of the flow
domain and boundary conditions
for the source-sink pair flow
problem

On a given grid, the solution of the flow problem is more computationally expensive
using BDM1 elements than RT0 elements, since the BDM1 approximation involves roughly
twice as many velocity unknowns. An interesting and legitimate question is whether the
accuracy of BDM1-based streamline tracing is still higher than that of RT0-based tracing for
the same computational cost. This and other related questions are addressed at length in a
separate publication [26].

6.2 Unstructured Grids

We now investigate the applicability of the method on truly unstructured grids. We use a
problem for which an analytical solution exists. The analytical problem consists of a source–
sink pair in an infinite, homogeneous medium of unit permeability. The source—of unit
strength—is located at (− 1

2 ,0) and the sink at (+ 1
2 ,0). For an arbitrary point on the (x, y)-

plane, we define the following variables: r1, r2 are the distances to the source and sink,
respectively, and θ1, θ2 are the corresponding angles with the x-axis (see Fig. 7):

r1 =
((

x + 1

2

)2

+ y2

)1/2

, θ1 = tan−1

(
y

x + 1
2

)
,

r2 =
((

x − 1

2

)2

+ y2

)1/2

, θ1 = tan−1

(
y

x − 1
2

)
.

(88)

The analytical solution can then be expressed in terms of the flow potential (in this case,
equal to the pressure),

p = ln r1 − ln r2, (89)



70 J Sci Comput (2009) 38: 50–73

Table 2 Pressure and velocity errors and convergence rates (L2 norm) for the refinement study on unstruc-
tured grids

Method h ‖p − ph‖
L2 ‖u − uh‖

L2

RT0 0.5 1.70E−01 2.13E+00

0.25 8.62E−02 1.25E+00

0.125 4.32E−02 6.56E−01

Rate 0.995 0.935

BDM1 0.5 1.66E−01 6.31E−01

0.25 8.55E−02 1.91E−01

0.125 4.32E−02 5.26E−02

Rate 0.987 1.860

or the stream function,

ψ = θ1 − θ2. (90)

We set up our numerical simulations by imposing prescribed-pressure boundary condi-
tions at the outer boundary of the domain Ω0 = [−1,1] × [−1,1], as well as at the inner
boundaries, which are squares around the source and sink:

ω1 =
[
−1

2
− ε,−1

2
+ ε

]
× [−ε, ε],

ω2 =
[

1

2
− ε,

1

2
+ ε

]
× [−ε, ε],

(91)

with ε = 0.1. The domain in which the flow problem is solved is Ω = Ω0 \ {ω1 ∪ ω2}.
In Fig. 8 we compare the numerical streamlines obtained by the RT0 and BDM1 dis-

cretizations on a sequence of increasingly refined fully unstructured grids. The analytical
streamlines are also shown for reference. Clearly, the visual comparison is very favorable
for the higher-order streamlines, as they coincide almost exactly with the analytical stream-
lines, even on coarse grids.

Table 2 reports the errors and convergence rates of the pressure and velocity fields (in
the L2 norm). These numerical results simply confirm the theoretical estimates [10, 35] that
predict a first-order convergence of the RT0 velocity field, a second-order convergence for
the BDM1 velocity field and a first-order convergence of the pressure field for both spaces.

Quantification of the behavior of the time-of-flight as the grid is refined is more sub-
tle. The time-of-flight error does not display a consistent convergence rate, common to all
streamlines. We observed that the convergence properties in terms of time-of-flight were
strongly dependent on the streamline chosen and did not necessarily reach an asymptotic
value. This dependency of the tracing accuracy to the location of the streamline was already
observed in [25].

Although the convergence rates in terms of time-of-flight are rather unpredictable, it
was found that the BDM1 streamlines are always significantly more accurate than the ones
obtained with an RT0 approximation, both in terms of location and time-of-flight.
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Fig. 8 (Color online) Comparison of the numerical (black) and analytical (green) streamlines on a sequence
of increasingly refined unstructured grids. Left column: RT0

0 space. Right column: BDM0
1 space

7 Conclusions

We have presented a unified formulation for streamline tracing on unstructured grids. The
formulation has three key ingredients: (1) the use of the Piola transform to map the veloc-
ity between physical space and a reference configuration; (2) the choice of an appropriate
approximation of the velocity field; and (3) the use of the stream function to define the
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streamline location. One of the main contributions of this paper is the identification of ve-
locity spaces that induce a stream function. Such velocity spaces are taken from the theory
of mixed finite element methods. In this way, not only do we justify theoretically the low-
order tracing algorithms currently in use (Pollock’s method [33]), but we also show how to
choose velocity approximations for higher-order tracing on general triangular and quadrilat-
eral grids. Moreover, we derive the precise functional form of the stream function for each
class of velocity spaces, which can be seen as a constructive proof of the existence of the
stream function for the velocity spaces of choice.

We have illustrated the performance of the proposed streamline tracing framework for
velocity spaces that are compatible with a piecewise constant—discontinuous—pressure so-
lution: the lowest-order Raviart-Thomas space (RT0) and the Brezzi-Douglas-Marini space
of order one (BDM1). We conclude that BDM1-based tracing is much more accurate (smaller
error in the time-of-flight) and robust (less sensitive to grid distortion) than RT0-based trac-
ing. The algorithmic details of the formulation and a more thorough investigation of the
numerical performance is presented in another paper [26].

The developments presented here are restricted to two-dimensional problems. Although
conceptually possible, the extension to three dimensions requires the use of dual stream
functions [5] and it is not straightforward. A different approach, based on corner-velocity
interpolation, has been proposed recently [20]. The present paper, however, serves as a moti-
vation to evaluate the accuracy and robustness of streamline tracing based on a higher-order
velocity approximation in three dimensions [28, 29].
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