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Abstract In this paper we complete the description and application of a computational
framework for the numerical simulation of first-contact miscible gas injection processes.
The method is based on the front-tracking algorithm, in which numerical solutions to one-
dimensional problems are constructed in the form of traveling discontinuities. The effi-
ciency of the front-tracking method relies on the availability of the analytical Riemann solver
described in Part 1 and a strategy for simplifying the wave structure for Riemann prob-
lems of small amplitude. Several representative examples are used to illustrate the excellent
behavior of the front-tracking method. The front-tracking method is extended to simulate
higher-dimensional processes through the use of streamlines. The paper presents a valida-
tion exercise for a quarter five-spot homogeneous problem, and an application of this com-
putational framework for the simulation of miscible flooding in three-dimensional, highly
heterogeneous formations. In this case, we demonstrate that a miscible water-alternating-gas
injection scheme is more effective than waterflooding or gas injection alone.

Keywords Porous media · Miscible displacement · Water-alternating-gas · Riemann
problem · Front-tracking · Streamline simulation

1 Introduction

In this series of two papers we describe and apply a front-tracking/streamline method for
the numerical simulation of multiphase first-contact miscible flows. Such flows occur in
enhanced oil recovery processes by gas injection, and environmental remediation of polluted
aquifers.
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The proposed formulation has three main components:

1. A complete, analytical Riemann solver.
2. A front-tracking scheme to solve general one-dimensional initial and boundary value

problems.
3. A streamline simulation approach to solve three-dimensional problems in heterogeneous

media, which decouples the three dimensional transport equations into a set of 1D prob-
lems along streamlines.

The analytical solution to the Riemann problem was described in Part 1 of the series
(Juanes and Lie 2007). The Riemann problem consists in solving a system of conservation
laws in an infinite one-dimensional domain, with piecewise constant initial data separated
by a single discontinuity. Our mathematical model makes several important assumptions: (1)
it is a two-phase system, in which water is immiscible with the hydrocarbon phase, and the
two hydrocarbon components (oil and solvent) mix readily in all proportions; (2) the fluids
are incompressible and do not experience volume change upon mixing; (3) the effects of
gravity and capillary forces are negligible; (4) the multiphase flow extension of Darcy’s law
is applicable; and (5) the effects of viscous fingering are negligible. Under these assumptions,
the problem is described by a 2 × 2 hyperbolic system of conservation laws. In Part 1 we
analyzed the mathematical character of the system and gave a complete analytical solution
to the Riemann problem, using an analogy with the system of equations describing polymer
flooding (Isaacson 1980; Johansen and Winther 1988).

Here, we use the analytical Riemann solver as a building block for constructing approx-
imate (numerical) solutions using a front-tracking scheme. Front-tracking methods refer
to numerical schemes that perform tracking of shocks and other evolving discontinuities
(Holden and Risebro 2002). They were developed to construct approximate and exact solu-
tions to hyperbolic systems of conservation laws in one space dimension with general initial
data (Risebro 1993), and they have been used as an essential tool in proving uniqueness
of the solution (Bressan and LeFloch 1997). Early application areas of the method include
gas dynamics (Risebro and Tveito 1992) and reservoir simulation (Bratvedt et al. 1993). Of
particular interest is the work of Risebro and Tveito (Risebro and Tveito 1991), where the
front-tracking method is applied to the multicomponent polymer flooding system in one
dimension. In our implementation of the front-tracking method, all waves are treated as dis-
continuities. Shock waves and contact discontinuities are tracked exactly, and rarefaction
waves are approximated by small inadmissible shocks. The discontinuities are tracked until
they interact and define a new Riemann problem. The approximate solution of this new
Riemann problem leads to a new set of additional discontinuities that need to be tracked.
Repeated application of this procedure allows marching in time. The main advantages of the
front-tracking method just described are: (1) it captures discontinuities exactly without intro-
ducing any numerical diffusion; (2) it is grid-independent; (3) it is unconditionally stable;
and (4) it can be very efficient if an analytical Riemann solver is available.

In this paper, we propose the use of streamlines to perform numerical simulation of mis-
cible flooding in higher-dimensional, heterogeneous media. Streamline methods are based
on a staggered solution of a global pressure equation and the system of transport equa-
tions (Bratvedt et al. 1993; Batycky et al. 1997; King and Datta-Gupta 1998). Solution of the
pressure equation defines the velocity field used to trace the streamlines. In this way, stream-
line methods decouple the three-dimensional equations describing the transport of individ-
ual components into a set of one-dimensional problems along streamlines. With a proper
parameterization of the streamlines, the numerical solution is then obtained using the front-
tracking method described above. This computational framework was employed by the au-
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first interaction second interaction

Fig. 1 Construction of a global solution by connecting local Riemann fans depicted in the (x, t)-plane

thors for the simulation of immiscible three-phase flow (Lie and Juanes 2005; Juanes et al.
2004), and it is extended here to miscible gas injection problems. The method is therefore fun-
damentally different from that of Holden and Risebro (Holden and Risebro 1993) and Haugse
et al. (Haugse et al. 2001), where front-tracking is applied in conjunction with operator-split-
ting, and one-dimensional problems are solved sequentially in each spatial dimension.

An outline of the paper is as follows. The front-tracking algorithm is given and discussed
in Sect. 2. In Sect. 3 we present several representative one-dimensional simulations that illus-
trate the excellent behavior of the front-tracking method. In Sect. 4 we study the convergence
behavior of the method for a two-dimensional problem in a homogeneous medium, and pres-
ent an application of the proposed computational framework to the simulation of miscible
flooding in a three-dimensional, highly heterogeneous formation. We compare recovery pre-
dictions for different injection scenarios, and conclude that a miscible water-alternating-gas
(WAG) injection scheme is more effective than waterflooding or gas injection alone. In Sect. 5
we gather the main conclusions and anticipate ongoing and future work.

2 The front-tracking algorithm

Front-tracking is an algorithm for constructing exact or approximate solutions to hyperbolic
systems of conservation laws with general initial data (Cauchy problem):

∂t u + ∂x f (u) = 0, u(x, 0) = u0(x). (1)

The algorithm starts from a piecewise constant function u0(x). Each discontinuity defines a
local Riemann problem, where each Riemann problem again is connected to its nearest neigh-
bors through common constant states. All Riemann problems produce a similarity solution,
called a Riemann fan, which consists of constant states separated by simple waves with finite
speed of propagation. Neighboring Riemann fans can therefore be connected through the
common constant state and this way define a global solution in space, which is well defined
up to the first time two simple waves interact. If the interacting waves are discontinuities,
i.e., shocks or contacts, the interaction defines a new Riemann problem. By solving the Rie-
mann problem and inserting the corresponding local Riemann fan, the global solution can
be extended in time until the next interaction and so on (see Fig. 1). If all simple waves
are discontinuities, we can hence have an algorithm for building the global solution of the
Cauchy problem.

For systems admitting continuous simple waves (rarefactions), one can similarly construct
an approximate solution to the Cauchy problem by the above algorithm. To do so, one simply
approximates each rarefaction fan by a set of constant states separated by space-time rays
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of discontinuity. This can be done by sampling states along the integral curve and assigning
each discontinuity an appropriate wave-speed; e.g., the Rankine–Hugoniot velocity, or the
eigenvalue at the left or right state. Alternatively, one can discretize the wave speeds in the
Riemann fan and then obtain the corresponding constant states.

It is also common to perform some kind of data reduction to reduce the number of tracked
discontinuities. Generally, there are two reasons for doing this: to prevent blow-up of the num-
ber of discontinuities (for general systems, each wave interaction introduces weak waves in
the passive families), and to speed up the algorithm by reducing the number of fronts needed
to be tracked. In the current implementation, we use the following data reduction:

If |ul − ur | ≤ δ1,
ignore the Riemann problem;

else if δ1 < |ul − ur | ≤ δ2,
approximate the solution of the Riemann problem by a single
wave with wave-speed equal (νs(ul) + νc(ul))/2, where νs and
νc are the two eigenvalues of ul ;

else if δ2 < |ul − ur |,
solve the full Riemann problem.

In addition, we ignore individual waves if they are sufficiently small. That is, after the wave
structure has been computed, the strength of each wave W j : u j −→ u j+1 is inspected
and the wave is ignored by setting u j := u j+1 if |u j − u j+1| ≤ δ1. In other words, in
a solution of type S-C-S, we may, e.g., ignore the last S-wave if it is sufficiently weak,
and so on. Altogether, this data reduction introduces (small) errors in the mass conservation
that can be controlled by an appropriate choice of the threshold values δ1 and δ2. Similarly,
potential mass-conservation errors due to the sampling of rarefaction waves can be reduced
by reducing the sampling distance.

To sum up, the front-tracking algorithm consists of the following three key points: solu-
tion of Riemann problems, approximation of Riemann fans in terms of step functions, and
tracking of discontinuities (fronts). The algorithm is usually realized in the form of a spatially
ordered list of front objects representing each discontinuity and the associated constant states
and some priority queue for keeping track of colliding fronts. The front-tracking algorithm
is outlined in more detail in Algorithm 1. The basic data objects are the propagating fronts.

Algorithm 1 The front-tracking algorithm
Construct a piecewise constant initial function u0(x) = ui
Set F = {∅}, C = {∅}, and t = 0
For i = 0 : n

{fL , . . . , fR} = RiemannSolver(ui , ui+1, xi+1/2, t)
c = ComputeCollision(F, fL )
C = Sort({C, c})
F = InsertFronts(F, {fL , . . . , fR})

While (t ≤ T ) and C �= {∅} do
(c, xc, tc) = ExtractNextCollision(C)
{fL , . . . , fR} = ExtractCollidingFronts(F,c)
{fL , . . . , fR} = RiemannSolver(fL →uL , fR →u R , xc, tc)
{cL , cR} = ComputeCollision(F, {fL , . . . , fR})
C = Sort({C, cL , cR})
F = InsertFronts(F, {fL , . . . , fR})

endwhile
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Each front object f has an associated left and right state, a point of origin, a propagation
speed, and a termination point. To track the fronts, we use two lists, a spatial list F where
the fronts are sorted from left to right and a collision list C where front collisions are sorted
with respect to collision time in ascending order.

3 One-dimensional simulations

In this section we present several simple examples to demonstrate the behavior of the front-
tracking algorithm. We have chosen a simple model with quadratic relative permeabilities:

krw(S) =

⎧
⎪⎨

⎪⎩

0 if S < Swc = 0.2,
(

S − Swc

1 − Swc

)2

otherwise,
(2)

krh(S) =

⎧
⎪⎨

⎪⎩

0 if 1 − S < Shc = 0.2,

0.1

(
1 − S − Shc

1 − Shc

)

+ 0.9

(
1 − S − Shc

1 − Shc

)2

,
(3)

and viscosities given by the quarter-power rule:

µh(χ) =
[

1 − χ

µ
1/4
o

+ χ

µ
1/4
g

]−4

, (4)

with

µw = 1.0, µo = 4.0, µg = 0.4.

3.1 Example 1

The first example is a simple Riemann problem at x = 0.1 with left state ul = (0.8, 0)

and right state ur = (0.2, 0.7). The left state lies on the border of the region of residual
oil, where both eigenvalues are zero. In this case the R2 region covers the whole saturation

triangle. The solution is therefore of the form ul
C−→ um

S−→ ur and consists of a composite
S-rarefaction-shock followed by a C-contact. Figure 2 shows approximate solutions obtained
using two different tolerances for sampling the rarefactions, δu = 0.01 and δu = 0.001.
Whilst the accuracy of the rarefaction is different, the shock and contact are represented
exactly in both simulations.

3.2 Example 2

The second example is a simple Riemann problem at x = 0.1 with left state ul = (0.2, 0.7)

and right state ul = (0.7, 0.2). The left state lies in the L region with νs = 0 < νc = 1.25,

and the right state lies in the L3 region. The solution is therefore of the form ul
S−→ u(1)

m
C−→

u(2)
m

S−→ ur and consists of a fast composite S-rarefaction-shock followed by a C-contact and
a slow S-rarefaction. Figure 3 shows two approximate solutions obtained using δu = 0.01
and δu = 0.001.
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Fig. 2 (Example 1) Approximate solutions for δu = 0.001 (upper left) and δu = 0.01 (upper right), fronts in
(x, t)-space (lower left), and solution in saturation triangle (lower right)

3.3 Example 3

In this example we demonstrate the effects of data reduction. To this end, consider the unit
interval x ∈ [0, 1] with periodic boundary conditions and an initial Riemann problem with
ul = (0.1, 0.8) and ur = (0.8, 0.1). We compute the solution up to time t = 0.75 in two
ways (using δu = 0.005):

– Using no data reduction (δ1 = δ2 = 10−12), the simulator solved 89 full Riemann prob-
lems.

– Using data reduction with δ2 = 0.01, 56 full Riemann problems were solved and 19
Riemann problems were approximated by a single wave.

Figure 4 shows the two approximate solutions along with plots of the fronts in the (x, t)-
plane. We see that the data reduction has been applied to two different sorts of interactions:
interaction of a S-rarefaction and the C-contact emanating from (0, 0.3); and interaction
of these data-reduced waves and the secondary C-waves produced by the interaction of the
S-rarefaction emanating from (0, 0) with the fast S-shock emanating from (0, 0.3). The data
reduction had little qualitative effect on the approximate solution; the two solutions in Fig. 4
are virtually indistinguishable. However, by introducing the data reduction, the error in mass
conservation increases from 6.4 × 10−11 to 0.0028.

One should in general be careful to use (too much) data reduction for cases with periodic
boundary conditions, as errors are then fed back into the system at the boundaries. For mis-
cible flow problems, one usually considers cases with inflow conditions at one boundary and
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Fig. 3 (Example 2) Approximate solutions for δu = 0.001 (upper left) and δu = 0.01 (upper right), fronts in
(x, t)-space (lower left), and solution in saturation triangle (lower right)

outflow conditions at the other. In this case, data reduction will have a much weaker effect, as
the (small) perturbations introduced by the data reduction are transported out of the system.

3.4 Example 4

Consider now a linear reservoir of length L = 2 initially filled with a fluid of composition
(0.3, 0). To produce the reservoir four different strategies were proposed:

1. Continuous water injection.
2. Continuous solvent (gas) injection.
3. Alternating solvent and water, with periods �t = 0.2.
4. Alternating water and solvent, with periods �t = 0.2.

Simulations of the four strategies are shown in Figs. 5–8. The second strategy (continuous
injection of solvent) is best since it uses the least time to produce the oil initially present. In
this strategy, the primary production mechanism is a strong front (C-contact) between the
initial oil and the injected solvent. The injection of water produces a front (S-shock) that
moves faster through the system, but only displaces a fraction of the initial oil. For the two
WAG strategies, the presence of water effectively slows down the “perfect” displacement
caused by the leading solvent front (C-contact). While pure solvent injection is the preferred
strategy in this one-dimensional problem, WAG injection may be more effective in realistic
three-dimensional problems (see Sect. 4.2).
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Fig. 4 (Example 3) Approximate solutions for δu = 0.005 using no data reduction (left column) and approx-
imating Riemann problems for which |ul − ur | < 0.01 by a single wave (right column)

The simulation of each of the first two strategies involved one Riemann solution and
wave interactions only at the outflow boundary, whereas the simulation of each of the WAG
strategies involved about 1700 wave interactions and 450 Riemann solutions.

3.5 Example 5

From a theoretical point of view, the piecewise constant approximation used in front-track-
ing may be inadequate for nonstrictly hyperbolic systems. Tveito and Winther (Tveito and
Winther 1995) showed that numerical methods based on a Riemann solver (such as the
random choice method and front-tracking) may encounter difficulties for Cauchy problems
with initial data on the transition curve due to an initial blowup of the total variation. In this
example we show that the miscible flow model has the same property: if initial data on the
transition curve T is approximated by a piecewise constant function, the total variation of
the numerical solution at time t = 0+ approaches infinity as the number of constant states
in the approximation of the initial data increases.

Figure 9 shows the front tracking approximations at time t = 10−6 for two piecewise
approximations with �x = 1/25 and �x = 1/100, respectively. As can be seen in the
figure, a piecewise constant initial approximation changes the qualitative behavior of the
solution. Each local Riemann problem has a triangular path in phase space that deviates from
the transition curve, resulting in nonphysical spikes. Even though these spikes decrease as
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Fig. 5 (Example 4) Simulation of water injection. Left column: plot of fluid composition in reservoir at times
t = 0 : 0.25 : 2.0 from bottom to top. Right column: fronts in (x, t)-plane and cumulative production curves
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Fig. 6 (Example 4) Simulation of solvent injection. Left column: plot of fluid composition in reservoir at
times t = 0 : 0.25 : 2.0 from bottom to top. Right column: fronts in (x, t)-plane and cumulative production
curves

123



106 R. Juanes, K.-A. Lie

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S−shock
S−rarefaction
C−contact

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 oil
water
gas

Fig. 7 (Example 4) Simulation of alternating solvent and water injection. Left column: plot of fluid compo-
sition in reservoir at times t = 0 : 0.25 : 2.0 from bottom to top. Right column: fronts in (x, t)-plane and
cumulative production curves
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Fig. 8 (Example 4) Simulation of alternating water and solvent injection. Left column: plot of fluid compo-
sition in reservoir at times t = 0 : 0.25 : 2.0 from bottom to top. Right column: fronts in (x, t)-plane and
cumulative production curves
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Fig. 9 Front tracking approximation of the saturation and concentration at time t = 10−6 for the Cauchy
problem with initial data on the transition curve. The initial function is piecewise constant on a regular grid
with �x = 1/25 (left) and �x = 1/100 (right)

Table 1 Total variation of the front-tracking solution as a function of time and discretization parameter
�x = 1/N for the initial approximation

t \ N 25 50 100 200 400

10−6 1.8561 2.3501 3.2175 4.4518 6.2497
0.10 1.8561 1.3441 1.3951 1.4236 1.4055
0.20 1.1245 1.1178 1.1237 1.1203 1.1204
0.30 1.0473 1.0403 1.0424 1.0428 1.0428
0.40 1.0164 1.0159 1.0153 1.0151 1.0150
0.50 1.0073 1.0062 1.0061 1.0061 1.0061
0.60 1.0058 1.0054 1.0054 1.0054 1.0054

the magnitude of the jumps is reduced, the total variation blows up as �x → 0 (Tveito and
Winther 1995).

From a computational point of view, this deficiency is not necessarily important, unless
the spikes prevail and pollute the solution at later times. In Fig. 10 we plot the evolution
of the front-tracking solution in phase space for �x = 1/25. The spikes are still present in
the solution at time t = 0.2, but have almost disappeared at time t = 0.5. As time evolves,
waves from neighboring Riemann problems interact and create secondary waves, which also
interact, and so on. For each interaction, the total variation in the solution decreases, see
Table 1. The oscillations decay faster with smaller �x .
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Fig. 10 The evolution of the approximate solutions in phase space for times t = 0.2 (left) and t = 0.5 (right)
computed with front tracking using a piecewise constant initial function with �x = 1/25

In summary, initial data on the transition curve may introduce small-scale oscillations and
an increased number of wave interactions, but does not prevent the front-tracking algorithm
from converging to the true solution at later times. Moreover, if the front-tracking algorithm
is combined with repeated projections onto an underlying grid, as will be the case for the
streamline simulations discussed in the next section, the numerical solution will leave the
transition curve as a combined effect of projections and local wave interactions.

4 Streamline simulations

The front-tracking method can be used as part of a streamline solver to simulate multidi-
mensional miscible gas displacements. In a multidimensional setting, one needs to solve the
pressure equation,

∇ · vT = 0, vT = − k
φ

λT ∇ p, (5)

together with the multidimensional system of transport equations,

∂S

∂t
+ vT · ∇ f = 0, (6)

∂C

∂t
+ vT · ∇

(
1 − f

1 − S
C

)

= 0. (7)
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The pressure equation (5) and the system of transport equations (6)–(7) are coupled due to
the dependence of the total mobility λT on the water saturation S and the overall solvent
concentration C . The streamline solver is based on an operator splitting strategy consisting
of the following two steps:

1. Pressure step. Water saturation and solvent concentration are frozen and their values
are assigned to each gridblock of a fixed (background) grid where the permeability
and porosity are defined. The (elliptic) pressure equation is solved using, for example,
a finite difference method. The total velocity vT is computed, and streamlines are then
traced covering the domain of interest—usually emanating from injection wells and arriv-
ing at production wells. Individual streamlines are parameterized by the time-of-flight
τ = τ(x) that measures the travel time for a passive particle released at the boundary (i.e.,
an injection well) to reach a point x in the domain. In the simulator, streamline tracing
and time-of-flight computations are carried out using an analytic method developed by
Pollock (Pollock 1988).

2. Transport step. The three-dimensional transport equations are solved as a set of decou-
pled one-dimensional equations along streamlines. Values of water saturation and solvent
concentration are mapped from the background grid to the streamline grid, defining a
Cauchy problem on each streamline. Saturations and concentrations are evolved in time
by means of the front-tracking algorithm for a user-specified time step. Once this target
time is reached, the streamline saturations and compositions are projected back onto the
background grid.

Even if one assumes that the fluids are incompressible and there is no volume change upon
mixing of solvent and oil, the total velocity will change due to changes in total mobility λT .
As a result, one introduces an approximation by freezing the streamlines between pressure
updates, and the time-of-flight coordinate really corresponds to the parameterization at the
beginning of the time step. The time step between pressure updates is therefore limited by
this consideration. An improved treatment of the mobility coupling is possible and, recently,
a predictor–corrector streamline formulation was proposed (Osako et al. 2004; King et al.
2005) that accounts for the continuously-changing velocity field during pressure updates.

In any case, each transport step typically involves several thousand streamlines, resulting
in a very large number of calls to the Riemann solver. A key point in obtaining an efficient
solver is therefore to use the data-reduction algorithm illustrated in Example 3 to reduce the
number of calls to the Riemann solver. Details about the implementation of a front-track-
ing algorithm within a streamline simulation framework are described elsewhere (see, e.g.
(Bratvedt et al. 1993; Aarnes et al. 2005; Lie and Juanes 2005)), and will be omitted here.

4.1 Quarter five-spot simulations in a homogeneous reservoir

We present results using the numerical method described above for the simulation of pure
solvent injection in a two-dimensional homogeneous reservoir initially filled with 70% oil
and 30% water. The injection and production wells follow a repeated five-spot pattern, and
the simulations are carried out with grids representing one quarter of a pattern, in which
injector and producer are located in diagonally opposite vertices of the grid (Fig. 11).

The mathematical model does not contain diffusive terms and, therefore, the problem is
physically unstable and mathematically ill-posed. Unique numerical solutions are obtained
because of the stabilizing diffusive effects introduced by any numerical method. As a result,
the numerical solution is to a large extent determined by the artificial diffusion introduced by
the computational scheme. This issue of grid refinement and grid orientation effects has been
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Fig. 11 Schematic of a 10 × 10
grid for the homogeneous quarter
five-spot problem

Inj

Prod

studied at length in the context of finite difference methods (Russell and Wheeler 1983; Shu-
bin and Bell 1984) and has motivated the application of high-order finite difference schemes
to the simulation of miscible displacements (Chen et al. 1993).

In streamline simulation, there are several sources of numerical diffusion:

1. Mapping from the finite difference grid to the streamlines to initialize a new transport
step. The mapping error is proportional to the gridblock size �x .

2. Mapping from the streamline grid to the background grid at the end of the transport step.
The mapping error is in fact a sampling error, and decreases as the number of streamlines
is increased.

3. Numerical diffusion along streamlines, which we avoid completely by the use of a front-
tracking algorithm.

Since the level of numerical diffusion depends on the grid resolution (gridblock size, time
step between pressure updates, and number of streamlines), the numerical solution is nec-
essarily grid dependent. The expectation, however, is that front-tracking/streamline methods
exhibit less grid dependence than traditional, first-order finite difference methods (Glimm
et al. 1983; Ewing et al. 1984). The issue of spatial error and convergence in streamline
simulation has been the subject of recent investigations (Jimenez et al. 2005).

In Figs. 12 and 13 we show maps of water saturation and solvent concentration after
2000 days of injection, respectively, computed on increasingly refined grids. The time step
between pressure updates was kept constant and equal to 50 days. The number of streamlines
employed increases with the grid resolution, in order to guarantee that the sampling error
from the streamline grid to the background grid is much smaller than the numerical diffusion
due to the mapping error from the background grid to the streamline grid. It is apparent that
the solution is grid dependent, because the stabilizing mechanism is the diffusion due to
mapping from background grid to streamline grid, which is proportional to �x .

The evolution of the water, oil, and solvent cuts (fractional flows at the production well)
are shown in Fig. 14 for the different grids used. As expected—and in accordance with
the saturation and concentration maps shown in Figs. 12 and 13—the recovered fractional
flows do not display true convergence. These curves, however, are far less sensitive to grid
refinement than those obtained with first-order finite difference methods (Chen et al. 1993).

Similar observations apply if we investigate the effect of the time step between pressure
updates. In this case, numerical diffusion is actually increased as the time step is refined due
to the increased number of mappings between the streamline and finite difference grids. The
water, oil and solvent cuts computed on a 100 × 100 grid for time steps of 200, 100, and
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Fig. 12 Water saturation maps at t = 2000 days for the quarter five-spot problem using increasingly refined
grids

25×25 50×50 100×100

200×200 400×400

Fig. 13 Solvent concentration maps at t = 2000 days for the quarter five-spot problem using increasingly
refined grids

50 days are shown in Fig. 15. Although the solutions cannot be regarded as truly converged
numerical solutions, they are not very sensitive to the choice of the time step.

Finally, we demonstrate that the front-tracking/streamline method does converge with
respect to the number of streamlines. In Fig. 16 we show the produced fractional flow curves
computed on a 100 × 100 grid and a time step of 50 days between pressure updates, with
different number of streamlines. Clearly, the solutions converge as the number of streamlines
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Fig. 14 Water, oil and solvent
cuts for the quarter five-spot
problem with increasingly refined
grids
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Fig. 15 Water, oil and solvent
cuts for the quarter five-spot
problem with increasingly refined
time step between pressure
updates
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is increased. The reason is that the sampling error from the streamline grid to the background
grid is minimized, and the numerical diffusion comes entirely from the forward mapping
from the background grid onto the streamlines.

4.2 Three-dimensional simulations in a heterogeneous reservoir

We consider a three-dimensional rectangular reservoir model consisting of a subsample
(30 × 110 × 15 gridblocks) of the highly heterogeneous shallow-marine Tarbert formation
from the 10th SPE comparative solution project (Christie and Blunt 2001). The permeability
varies six orders of magnitude in the horizontal and ten orders of magnitude in the vertical
direction, see Fig. 17. The porosity is strongly correlated to the permeability. The reservoir is
initially filled with 70% oil and 30% water, (S, C) = (0.3, 0), and for simplicity we neglect
gravity and assume incompressible flow.

To produce the reservoir, we introduce a five-spot well configuration with one vertical
injection well in the center and four vertical producers at the corners, and consider three
different production scenarios: (i) injection of pure water, i.e., (S, C) = (1, 0); (ii) injection
of pure solvent, i.e., (S, C) = (0, 1); and (iii) a WAG cycle where the injected fluid compo-
sition is changed between pure water and pure solvent every 200 days, starting at day 400.
In Fig. 18 we show three-dimensional maps of the solvent concentration C after 800 days of
injection for the pure solvent injection case (top) and the WAG injection case (bottom). The
solutions were obtained using 10,000 streamlines and a time step between pressure updates
of 200 days for the water injection and solvent injection cases, and 25 days for the WAG case.

We compare the predictions of the streamline/front-tracking simulations with an indus-
try-standard finite difference simulator, Eclipse 100 (Schlumberger 2003). The first-contact
miscible (FCM) option was used with a value of the Todd and Longstaff parameter ω = 1 to
suppress the effects of viscous fingering. Eclipse was run in fully implicit mode with adaptive
time-step control, and using a nine-point stencil (in the areal dimension) to reduce grid orien-
tation effects characteristic of high mobility ratio miscible displacements. In Fig. 19 we show
a comparison of the oil, water, and solvent production curves for 2000 days of production for
all three scenarios. Eclipse results are plotted with solid lines, and streamline/front-tracking
results with dashed lines. The agreement between the two codes is excellent for the water
injection case, and this is consistent with previous findings for immiscible three-phase flows
(Lie and Juanes 2005). Although in fair agreement, the finite difference and the stream-
line/front-tracking solutions show noticeable differences for the WAG injection and solvent
injection cases. The finite difference solution predicts slightly earlier breakthrough of the
injected solvent to the production well, and slightly higher recovery overall. A plausible
explanation for this behavior is that the finite difference scheme introduces numerical diffu-
sion (not present in the physical model), which causes the injected solvent to contact more
of the initial oil, thereby predicting a shorter travel time between injector and producer as
well as an enhanced sweep efficiency. Artificial diffusion is also introduced in the stream-
line simulations every time the pressure field is updated, due to the necessary remapping
of saturations and concentrations from the streamlines back to the finite difference grid. On
the other hand, the front-tracking method does not introduce any numerical diffusion during
the evolution of saturations and concentration along streamlines. For the time step between
pressure updates chosen, it seems apparent that the artificial diffusive effects of the streamline
simulations are smaller than those of the finite difference simulations.

Another important aspect of the streamline/front-tracking approach is the potential for
computational efficiency. In Table 2 we record the run times for the streamline/front-tracking
and Eclipse simulations, for each of the cases considered (water, gas, and WAG injection).

123



Front-tracking/streamline simulation 115

Fig. 16 Water, oil and solvent
cuts for the quarter five-spot
problem computed on a
100 × 100 grid with a time step
of 50 days and increasing number
of streamlines
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Fig. 17 Horizontal permeability and well configuration for the Tarbert formation

Table 2 CPU times for the streamline/front-tracking and Eclipse simulations

Streamline/front-tracking Eclipse
(Pentium M, 1.6 GHz, 512 Mb) (Pentium V, 3 GHz, 4096 Mb)

Water injection 27 min 3 h 33 min
Gas injection 3 h 33 min 6 h 31 min
WAG injection 8 h 15 min 14 h 47 min

Although the streamline front-tracking simulator should be regarded as a prototype far from
being a commercial implementation, if we account for the difference in clock speeds, the
streamline simulator is about 5–10 times faster for the cases studied.

An interesting practical observation from the simulations shown above is that the recovery
efficiency of the WAG scheme is higher than that of either water injection and gas injection
alone, even though no attempt was made to optimize the WAG ratio or slug size.

5 Conclusions

In this series of two papers we have presented an efficient computational framework for
the simulation of first-contact miscible gas injection processes. The framework is based on
three key technologies: (1) a streamline method that decouples the three-dimensional trans-
port equations into a set of one-dimensional problems along streamlines; (2) a front-tracking
algorithm for the accurate (or even exact) solution of general one-dimensional initial and
boundary-value problems; and (3) an analytical Riemann solver for the first-contact miscible
system, used as a building block in the front-tracking method.

The mathematical model and the analytical Riemann solver were described in Part 1, and
used here within a front-tracking/streamline framework that exploits the markedly different
character of the governing equations: an elliptic pressure equation, and a hyperbolic sys-
tem of transport equations. The integration of analytical Riemann solvers, the front-tracking
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Fig. 18 Map of the solvent concentration in the Tarbert formation after 800 days for continuous solvent
injection (top) and water-alternating-gas injection (bottom)

method, and streamline tracing, offers the potential for fast and accurate prediction of misci-
ble gas and WAG injection in real reservoirs. In this paper, several representative examples
are used to illustrate the excellent behavior of the front-tracking method. In particular, we
present an application of this computational framework for the simulation of miscible flood-
ing in a three-dimensional, highly heterogeneous formation, and demonstrate that a miscible
water-alternating-gas injection scheme is more efficient than waterflooding or gas injection
alone. Although this was not pursued here, this fast computational tool could have been used
in an optimization loop for designing optimal WAG schemes (e.g., WAG ratio and slug size).

The application of the proposed computational approach to real reservoir simulation
studies requires several extensions. One important aspect that was left out of the model
here is the effect of viscous fingering. This is relevant because solvent injection often leads
to an unstable displacement process, in which the solvent fingers through, leading to a lower
displacement efficiency. A rather extensive mathematical analysis of the effects of viscous
fingering has recently presented in (Juanes and Blunt 2006) using the empirical viscous
fingering model proposed by Blunt and Christie (Blunt and Christie 1993; Blunt and
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Fig. 19 Rates and cumulative production curves for water, solvent and WAG injection for the
Tarbert formation. Eclipse results are shown with solid lines; streamline/front-tracking results are shown
with dashed lines

Christie 1994). The new analytical solutions presented in (Juanes and Blunt 2006) con-
stitute the first step towards a complete Riemann solver for first-contact miscible flow in the
presence of viscous fingering.

Other physical processes, such as gravity, capillarity, compressibility, volume change
on mixing, and the ability to handle regions with different relative permeability functions
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(Gimse and Risebro 1993; Gimse and Risebro 1992) should also be incorporated into the
streamline simulator.
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