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Abstract In this series of two papers, we present a front-tracking method for the
numerical simulation of first-contact miscible gas injection processes. The method is
developed for constructing very accurate (or even exact) solutions to one-dimensional
initial-boundary-value problems in the form of a set of evolving discontinuities. The
evolution of the discontinuities is given by analytical solutions to Riemann problems.
In this paper, we present the mathematical model of the problem and the complete
Riemann solver, that is, the analytical solution to the one-dimensional problem with
piecewise constant initial data separated by a single discontinuity, for any left and
right states. The Riemann solver presented here is the building block for the front-
tracking/streamline method described and applied in the second paper.

Keywords Porous media · First-contact miscible displacement · Water-alternating-
gas · Shocks · Riemann problem · Analytical solution · Front-tracking

1 Introduction

Gas injection is one of the most widely used enhanced oil recovery processes
(Stalkup Jr. 1983; Lake 1989; Orr Jr. 2005). The fundamental principle is the devel-
opment of miscibility between the resident oil phase and the injected gas, in order to
enhance the mobility of the hydrocarbon phase and to achieve a high displacement
efficiency. In general, miscibility between the oil present in the reservoir and the

R. Juanes (B)
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology,
Building 48, 77 Mass. Ave., Cambridge, MA 02139, USA
e-mail: juanes@mit.edu

K.-A. Lie
SINTEF ICT, Department of Applied Mathematics,
P.O. Box 124 Blindern, Oslo NO-0314, Norway
e-mail: knut-andreas.Lie@sintef.no



376 Ruben Juanes and Knut-Andreas Lie

injected gas leads to a complex set of interactions described by thermodynamical
equilibrium of the system, in which components of the gas dissolve in the oil, and
components of the oil transfer to the vapor (Pope 1980; Helfferich 1981; Hirasaki
1981).

In this series of two papers, we restrict our attention to simplified thermodynam-
ical systems that can be approximated by first-contact miscible phase behavior. The
underlying assumption is that the injection gas (solvent) and the resident oil mix in all
proportions to form a single hydrocarbon phase. This scenario is optimal with respect
to local displacement efficiency, and can be achieved in practice if the gas is injected
at a pressure well above the minimum miscibility pressure (Wang and Orr Jr. 1997;
Jessen et al. 1998).

We present a computational framework for the efficient simulation of first-contact
miscible processes in three-dimensional, heterogeneous reservoir models. The key
ingredients of our approach are:

1. An analytical solution of the one-dimensional Riemann problem for a three-
component, two-phase system under the assumption of first-contact miscibility of
the hydrocarbon components, assuming that the effects of viscous fingering are
negligible.

2. A front-tracking algorithm that makes use of the analytical Riemann solver as a
building block for obtaining approximate solutions to general one-dimensional
problems.

3. A streamline simulator that decouples the three-dimensional transport equations
into a set of one-dimensional problems along streamlines.

In Part 1, we present the mathematical model of the problem and the complete set of
analytical solutions to the Riemann problem. In Part 2, we describe the front-tracking
algorithm and streamline simulation framework, along with representative numerical
examples in one-, two- and three-dimensional problems.

The proposed framework was employed by the authors for the simulation of immis-
cible three-phase flow (Lie and Juanes 2005; Juanes et al. 2004), and it is extended
here to miscible gas injection problems. The applicability of the framework presented
here is limited, however, by the assumption that the effects of viscous fingering are not
accounted for. New analytical solutions to macroscopic models of viscous fingering
for three-component, two-phase flows (Juanes et al. 2005; Juanes and Blunt 2006a, b)
may eventually lead to the development of Riemann solvers that incorporate these
effects.

The Riemann problem consists in solving a system of conservation laws in an
infinite one-dimensional domain, with piecewise constant initial data separated by a
single discontinuity. The development of analytical solutions to the Riemann problem
of multiphase, multicomponent flow has received considerable attention over the past
two decades (see, e.g. Orr Jr. (2005) and the references therein). Riemann solutions
have been constructed for two-phase and three-phase systems with complex phase
behavior for particular initial and injection conditions. However, the development
of complete Riemann solvers is a much more challenging task. A Riemann solver
is a mathematical algorithm that provides the solution to the Riemann problem for
any initial and injection states. A Riemann solver for polymer flooding was originally
presented by Isaacson (1980), and then extended to account for adsorption in two-
component (Johansen and Winther 1988) and multicomponent systems (Johansen
and Winther 1989; Johansen et al. 1989). The principle behind polymer flooding is the
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addition of a water-soluble polymer to the injected water to increase its viscosity and,
consequently, the efficiency of a waterflood. We are interested in miscible flooding,
where the injected solvent readily mixes with the oil in place, and reduces the viscosity
of the hydrocarbon phase. However, under a proper change of variables, the math-
ematical structure of the equations is virtually identical to that of polymer flooding.
Therefore, we rely heavily on the developments of Isaacson (1980) and Johansen and
Winther (1988) when formulating the complete Riemann solver for first-contact mis-
cible flooding. We extend the formulation (slightly) by accounting for the presence of
connate water and residual oil. We also pay special attention to the efficient imple-
mentation of the analytical solver, because typical applications require the evaluation
of hundreds of millions of Riemann problems (Lie and Juanes 2005).

An outline of the paper is as follows. In Sect. 2, we present the mathematical model
describing the first-contact miscible system, and introduce the conservation variables
employed in characterizing the solution. We comment on the mathematical character
of the system of equations, highlighting the fact that it is not strictly hyperbolic. In
Sect. 3, we describe the different waves that may be present, and the complete solution
to the Riemann problem. In Sect. 4, we gather the main conclusions and anticipate
the use of the analytical Riemann solver in the front-tracking/streamline framework
described in detail in Part 2 (Juanes and Lie 2006).

2 Mathematical model

2.1 Governing equations

We derive briefly the governing equations for one-dimensional, two-phase, three-
component flow in porous media. The three components are referred to as water (w),
oil (o) and solvent or gas (g). In what follows, we shall assume that water is immisci-
ble, and forms an aqueous phase (w). We shall also assume that the two hydrocarbon
components (oil and solvent) are fully miscible, and form a nonaqueous hydrocarbon
phase (h).

The one-dimensional conservation equation for each of the components can be
written as:

∂mi

∂t
+ ∂Fi

∂x
= 0, i = w, o, g, (1)

where mi is the mass of component i per unit volume of porous medium, and Fi is the
mass flux of that component. The mass densities are expressed in the following form:

mw = ρwφSw, (2)

mo = ρhφShχo, (3)

mg = ρhφShχg, (4)

where ρα (α = w, h) are the densities of each phase, φ is the porosity, Sα are the
saturations (volume fractions of each phase), and χj (j = o, g) are the mass fractions
of oil and solvent in the hydrocarbon phase. Eqs. (2)–(4) are subject to the following
constraints:

Sw + Sh ≡ 1, (5)

χo + χg ≡ 1. (6)
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The mass flux of each component, assuming that the macroscopic effects of viscous
fingering are negligible, is given by

Fw = ρwφvw, (7)

Fo = χoρhφvh, (8)

Fg = χgρhφvh, (9)

where vα are the average velocities of each phase. A constitutive model for the phase
velocities is given by the multiphase extension of Darcy’s law. Neglecting the effect of
gravity and capillary forces, they take the form:

vw = − k
φ

krw
µw

∇p, (10)

vh = − k
φ

krh
µh

∇p, (11)

where k is the absolute permeability of the medium, p is the pressure, and krα and µα

are the relative permeability and dynamic viscosity of the α-phase, respectively. For
the purpose of this paper, we shall assume that relative permeabilities are functions
of the phase saturation only.

Using Eqs. (2)–(9) in Eq. (1), and assuming incompressible fluids that do not expe-
rience volume change in mixing (ρα = const) and rigid medium (φ = const), the mass
conservation equations for all three components are written as

∂Sw

∂t
+ ∂vw

∂x
= 0, (12)

∂((1 − Sw)(1 − χg))

∂t
+ ∂((1 − χg)vh)

∂x
= 0, (13)

∂((1 − Sw)χg)

∂t
+ ∂(χgvh)

∂x
= 0. (14)

Summing Eqs. (12)–(14), we obtain the pressure equation:

∂vT

∂x
= 0, (15)

where vT := vw +vh is the total velocity. The pressure equation is an elliptic equation,
which dictates that the total velocity is at most a function of time. We introduce the
fractional flow functions:

fw := λw
λT

, (16)

fh := λh
λT

, (17)

where λα = krα/µα is the relative mobility of the α-phase, and λT := λw + λh is the
total mobility. With these definitions, a set of two independent conservation equations
is:

∂Sw

∂t
+ vT

∂fw

∂x
= 0, (18)

∂((1 − Sw)χg)

∂t
+ vT

∂((1 − fw)χg)

∂x
= 0. (19)
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It proves useful to express the governing equations above in terms of the following
conservation variables:

S ≡ Sw : water saturation, (20)

C ≡ (1 − Sw)χg : solvent concentration. (21)

In what follows, we drop the subscript from the solvent mass fraction, χ ≡ χg. We
introduce the dimensionless space and time coordinates:

xD := x
L

, tD := 1
L

t∫

0

vT(τ ) dτ .

Using these definitions in Eqs. (18)–(19), one arrives at the final form of the conser-
vation equations:

∂S
∂t

+ ∂f
∂x

= 0, (22)

∂C
∂t

+ ∂

∂x

(
1 − f
1 − S

C
)

= 0 , (23)

where f denotes the water fractional flow function, and x and t should be understood
as their dimensionless counterparts.

To close the mathematical model, we must provide constitutive relations for the
hydrocarbon viscosity and the relative permeabilities. The viscosity of the hydrocar-
bon phase depends on the viscosities of the oil and gas components µo and µg (taken
as constants) and the gas mass fraction χ in the hydrocarbon phase. Since the gas vis-
cosity is lower (usually much lower) than the oil viscosity, the hydrocarbon viscosity
is a decreasing function of the gas mass fraction (see Fig. 1).

We assume that the hydrocarbon relative permeability does not depend on the
amount of solvent. In particular, this means that the residual hydrocarbon saturation
is invariant. Thus, relative permeabilities of the aqueous and hydrocarbon phases are

Fig. 1 Typical dependence of
the hydrocarbon viscosity on
the solvent mass fraction
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functions of the water saturation only. Typical behavior of these functions is shown in
Fig. 2, where we account for the presence of connate water and residual oil. As a result,
the fractional flow is a function of both water saturation and solvent concentration:

f =
krw(S)

µw

krw(S)
µw

+ krh(S)
µh(χ)

= f (S, C). (24)

Since the hydrocarbon viscosity decreases with the solvent fraction, the overall mobil-
ity of the hydrocarbon phase is enhanced, resulting in lower values of the water
fractional flow. The dependence of the fractional flow function on the solvent mass
fraction is illustrated in Fig. 2.

2.2 Mathematical character of the equations

We express the system of conservation laws (22)–(23) in vector form:

∂t

[
S
C

]
+ ∂x

[
f

1−f
1−S C

]
=

[
0
0

]
. (25)

The solution vector (S, C) is restricted to lie on the unit triangle:

U ≡ {(S, C) : S ≥ 0, C ≥ 0, S + C ≤ 1} . (26)

Fig. 2 Top: relative
permeabilities of the water and
hydrocarbon phases. Bottom:
dependence of the fractional
flow function on the solvent
mass fraction
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For smooth solutions, the system (25) can be written as

∂t

[
S
C

]
+ A(S, C)∂x

[
S
C

]
=

[
0
0

]
, (27)

where A is the Jacobian matrix of the system:

A(S, C) :=
⎡
⎣

∂f
∂S

∂f
∂C(

1−f
1−S − ∂f

∂S

)
C

1−S
1−f
1−S − ∂f

∂C
C

1−S

⎤
⎦ . (28)

The local character of the system is determined by the eigenvalues and eigenvectors
of the Jacobian matrix (Zauderer 1983). The eigenvalues are given by

νs = νs(S, C) = ∂f
∂S − ∂f

∂C
C

1−S ,

νc = νc(S, C) = 1−f
1−S ,

(29)

and the corresponding eigenvectors are:

rs =
[

1
− C

1−S

]
,

rc =
[

∂f
∂C

1−f
1−S − ∂f

∂S

]
.

(30)

The eigenvalues νs and νc are the characteristic speeds of propagation of waves of the
S- and C-family, respectively. The system is hyperbolic if the eigenvalues are real, and
strictly hyperbolic if the eigenvalues are real and distinct. In the latter case, the matrix
is diagonalizable and there exist two real and linearly independent eigenvectors. If
the two eigenvalues are complex conjugates, the system is said to be elliptic.

It is easy to show that the system (25) is hyperbolic, but not everywhere strictly
hyperbolic. Loss of strict hyperbolicity occurs in two regions of the composition trian-
gle. First, in the region of residual oil, both eigenvalues are identically equal to zero.
The Jacobian matrix is the zero matrix, and every direction is characteristic. Second,
there is a curve in phase space at which the eigenvalues coincide, νs = νc. This curve
divides the unit triangle U into two regions:

L ≡ {(S, C) : νs < νc} ,
R ≡ {(S, C) : νs > νc} .

(31)

We denote this curve as the transition curve T because the two families of eigenvalues
change order as T is crossed. The regions L and R and the transition curve T are
shown on the ternary diagram in Fig. 3. Since the fractional flow function is monotonic
with respect to the solvent mass fraction χ , the transition curve intersects each line
χ = const at exactly one point.

For the first-contact miscible model considered in this paper, the Jacobian matrix
is not diagonalizable on T , that is, A has only one independent eigenvector:

rs
∣∣
T = rc

∣∣
T =

[
1

− C
1−S

]
. (32)

The system is said to have a parabolic degeneracy on T . This behavior is qualitatively
very different from that of a model that assumes constant hydrocarbon viscosity. In
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Fig. 3 Transition curve
T (νs = νc) and the regions
L (νs < νc) and R (νs > νc) on
the ternary diagram

such model, because the fractional flow f is a function of S only, the system is a multiple
of the identity along the transition curve, and every direction is characteristic.

3 The Riemann problem

The Riemann problem consists in finding the weak solution to the system of hyperbolic
conservation laws:

∂tu + ∂xF = 0, −∞ < x < ∞, t > 0, (33)

with the following initial conditions:

u(x, 0) =
{

ul if x < 0,
ur if x ≥ 0.

(34)

The state ul = (Sl, Cl) is the ‘left’ or ‘injected’ state, and ur = (Sr, Cr) is the ‘right’ or
‘initial’ state. The system of equations (33) and the initial condition (34) are invariant
under uniform stretching of coordinates (x, t) �→ (cx, ct). The solution must consist
of centered waves emanating from the origin (x, t) = (0, 0). Therefore, we seek a
self-similar solution

u(x, t) = U(ζ ), (35)

where the similarity variable is ζ = x/t.

3.1 Wave types

In this section, we describe the types of centered waves that arise in the solution of
the Riemann problem of miscible three-component flow.
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3.1.1 Integral curves and Hugoniot locus

If the solution U(ζ ) is smooth, it must satisfy

A(U)U′ = ζU′, (36)

that is, ζ is an eigenvalue and U′ is the corresponding eigenvector. Therefore, smooth
waves (rarefactions) must lie on an integral curve of the right eigenvectors. States U
along an integral curve are defined by the differential equation

dU
dτ

= ri(U(τ )), i = s, c. (37)

Performing the integration analytically, the two families of integral curves are given
by the equations:

S-family : C
1−S = const,

C-family : νc = const.
(38)

The derivation of the equation for the S-family curves is obvious from the expression
of the corresponding eigenvector rs in Eq. (30). The equation for the C-family can be
obtained by noting that ∇νc · rc ≡ 0, that is, the vector ∇νc in phase space is every-
where perpendicular to the eigenvector rc. Therefore, curves of the form νc = const
must be integral curves of rc. In the context of compositional displacements, integral
curves of the S-family are known as tie-line paths, and curves of the C-family are
termed nontie-line paths (Orr Jr. 2005). The integral curves of the system of interest
are shown in Fig. 4.

Discontinuous solutions must satisfy an integral version of the mass conservation
equations, known as the Rankine–Hugoniot conditions. The set of states u that can
be joined to a reference state û by a discontinuity satisfy:

F(u) − F(û) = σ(u − û), (39)

Fig. 4 Integral curves of the
S-family (solid line) and
C-family (dashed line) on the
ternary diagram. Also shown
are the inflection locus of the
S-family and the transition
curve



384 Ruben Juanes and Knut-Andreas Lie

where σ is the speed of propagation of the discontinuity. For the flux vector F of the
first-contact miscible problem, Eq. (39) admits two families of solutions, which define
the Hugoniot locus of the S- and C-family. In general, integral curves and Hugoniot
loci do not coincide, but they have second order tangency (same slope and curvature)
at any given state, so they are locally very similar.

The integral curves of the miscible system have the following special features: (1)
integral curves of the S-family are straight lines, which means that they have zero
curvature; (2) the eigenvalue νc is constant along integral curves of the C-family,
which means that these curves correspond to contact discontinuities. The immediate
consequence of these properties is that, for the solvent system, Hugoniot loci and
integral curves coincide.

Not all states in the Hugoniot locus can be joined to the reference state through
a physically admissible discontinuity. A shock must satisfy additional entropy condi-
tions to be physically valid. In this work, we find unique solutions to the Riemann
problem that satisfy the e-Lax entropy criterion (Lax 1957; Liu 1974). Therefore, a
valid discontinuity that joins states u and û may be a 1-Lax shock if it satisfies:

ν1(u) ≥ σ ≥ ν1(û),
σ < ν2(û),

(40)

or a 2-Lax shock if it satisfies:

ν2(u) ≥ σ ≥ ν2(û),
ν1(u) < σ .

(41)

In Eqs. (40)–(41), ν1 = min(νs, νc) is the smallest eigenvalue and ν2 = max(νs, νc)

is the largest eigenvalue. The ordering depends on the location with respect to the
transition curve.

3.1.2 Waves of the S-family (Tie-line waves)

Waves of the S-family are solutions of the classical Buckley–Leverett equation. The
wave curves are straight lines on composition space, corresponding to lines of constant
solvent mass fraction

χ = const. (42)

The characteristic velocity νs is not constant along integral curves of the S-family. Let
us define

Vs(u) := ∇νs(u) · rs(u). (43)

Since the convexity function Vs changes sign, the S-field is a nongenuinely nonlinear
field in the sense of Lax (1957). The inflection locus is the set of states where Vs = 0,
which separates regions of different convexity (see Fig. 4). In our model, the fractional
flow function is S-shaped, so the inflection locus intersects each tie-line at exactly one
point, which corresponds to a maximum of the eigenvalue νs. It can be shown that,
under these conditions, a S-wave can only be of three types: rarefaction, shock, and
rarefaction-shock (Ancona and Marson 2001). The admissibility of a S-wave is based
on the e-Lax entropy condition (convex-hull construction) (Oleinik 1957; Liu 1974).
A robust and efficient algorithm for the determination of the wave structure in the
Buckley–Leverett problem is presented elsewhere (Juanes 2005).
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3.1.3 Waves of the C-family (Nontie-line waves)

The characteristic speed νc is constant along wave curves of the C-family. The
C-field is a linearly degenerate field in the sense of Lax (1957), and the waves of
this family are contact discontinuities. The immediate computational benefit of this
property is that evaluation of nontie-line paths does not require numerical integration
of an ordinary differential equation: the C-waves are completely determined by the
algebraic relation

νc = const. (44)

Application of the e-Lax entropy condition (Liu 1974) precludes the possibility that a
C-wave joins constant states on opposite sides of the transition curve (Isaacson 1980).

3.2 Admissible wave sequences

In general, the solution to the Riemann problem consists of a sequence of the centered
waves described in the previous section. Before describing the complete solution, we
give the admissible sequences of waves that may be present.

3.2.1 The case ul
C−→ um

S−→ ur

Adapting the analysis of Isaacson (1980) to our model problem, it can be shown that

the sequence of waves ul
C−→ um

S−→ ur, that is, the combination of a slower C-wave
with a faster S-wave, is admissible only in the following three cases:

(a) If um ∈ T and ur ∈ R.
(b) If um ∈ R and ur ∈ R.
(c) If um ∈ R and ur ∈ L such that νc(ur) ≥ νc(um).

Examples of each of these wave sequences are given in Fig. 5. The top row of figures
show admissible sequences of wave curves in composition space. The bottom row of
figures show the fractional flow curve corresponding to the tie-line passing through
the intermediate state um. In all three cases, the characteristic speed of the C-wave
(slope of the dashed line) is less than the characteristic speed of the S-wave (slope of
the solid line), indicating admissibility of the wave sequence. In Case (a), um is not a
true intermediate constant state, as the speed of both waves are equal at that point.
Therefore, the sequence CS is in fact a single, coherent wave group.

3.2.2 The case ul
S−→ um

C−→ ur

Similarly, it can be shown that the sequence of waves ul
S−→ um

C−→ ur, that is,
the combination of a slower S-wave with a faster C-wave, is admissible only in the
following three cases:

(a) If um ∈ T and ul ∈ L.
(b) If um ∈ L and ul ∈ L.
(c) If um ∈ L and ul ∈ R such that νc(ul) ≥ νc(um).

In Fig. 6, we show examples of each of these wave pairs, illustrating the sequence of
wave curves on the composition diagram and the fractional flow curve of the tie-line
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(a) (b) (c)

um ∈ T , ur ∈ R um , ur ∈ R um ∈ T , ur∈ R ∈ L

Fig. 5 All three types of compatible wave sequences of type ul
C−→ um

S−→ ur

passing through um. Once again, Case (a) corresponds to a single, coherent wave
group, in which the C-wave and the S-wave join with equal speeds, and the state um
in not an intermediate constant state.

3.3 Solution of the Riemann problem

The global solution of the Riemann problem is obtained by joining waves that form
a compatible sequence. Motivated by the admissible wave structure of Cases 1 and
2 above, and following Isaacson (1980), we define several regions in the composition
diagram that will allow a straightforward characterization of the wave structure of the
solution.

– The case ul ∈ L (Fig. 7a): One must first identify the tie-line χ = χ(ul) associated
with the left state, and the intersection ut of this tie-line and the transition curve T .
Then, we define the following three nonoverlapping regions that cover the entire
ternary diagram U :
1. Region L1: It contains the set of states u satisfying νs(u) < νc(u) and νc(u) <

νc(ut). Therefore, it is bounded from the right by the transition curve T and
the left branch of the nontie-line passing through the intersection point ut.

2. Region L2: It contains the set of states u satisfying that νs(u) > νc(ut) and
χ(u) > χ(ut). It is bounded from the left by the left branch of the nontie-line
passing through ut and from below by the tie-line passing through ut.
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Fig. 6 All three types of compatible wave sequences of type ul
S−→ um

C−→ ur

0
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1

1
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ulul

utut

L1

L2

L3

R1

R2

R3

(a) (b)

ul ∈ L ul ∈ R

Fig. 7 Regions on the ternary diagram defining the global wave structure of the Riemann solution

3. Region L3: It contains the set of states u satisfying that νs(u) > νc(u) and
χ(u) < χ(ut). It is bounded from the left by the transition curve T and from
above by the tie-line passing through ut.

– The case ul ∈ R (Fig. 7b): We first find the nontie-line νc = νc(ul) associated with
the left state, and the intersection ut of this nontie-line and the transition curve
T . It is important to note that this intersection point may be outside the ternary
diagram. In that case, some of the regions defined below will be empty:
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1. Region R1: It contains the set of states u satisfying that νs(u) < νc(u) and
νc(u) < νc(ut). If the intersection point ut is inside the ternary diagram, this
region is bounded from the right by the transition curve T and the left branch
of the nontie-line passing through the intersection point ut. Otherwise, it is
bounded from the right entirely by the left branch of the nontie-line, and it is
empty if νc(ul) < 1.

2. Region R2: It contains the set of states u satisfying that νs(u) > νc(ut) and
χ(u) > χ(ut). If the intersection point ut is inside the ternary diagram, this
region is bounded from the left by the left branch of the nontie-line passing
through ut and from below by the tie-line passing through ut. If ut is outside
the composition triangle, this region is only bounded from the left by the left
branch of the nontie-line νc = νc(ul). If νc(ul) < 1, this region covers the entire
triangle.

3. Region R3: It contains the set of states u satisfying that νs(u) > νc(u) and
χ(u) < χ(ut). If the intersection point ut is inside the ternary diagram, this
region is bounded from the left by the transition curve T and from above by
the tie-line passing through ut; otherwise it is empty.

We are now in position to give the global structure of the solution to the Riemann
problem (Isaacson 1980).

– The case ul ∈ L (Fig. 8): If the left state ul belongs to the region L, that is,
if νs(ul) < νc(ul), the global solution to the Riemann problem is of one of the
following types:

1. ur ∈ L1 (Fig. 8(a)): ul
S−→ um

C−→ ur.

2. ur ∈ L2 (Fig. 8(b)): ul
S−→ ut

C−→ um
S−→ ur.

3. ur ∈ L3 (Fig. 8(c)): ul
S−→ um

C−→ ut
S−→ ur.

– The case ul ∈ R (Fig. 9): If the left state ul belongs to the region R, that is,
if νs(ul) > νc(ul), the global solution to the Riemann problem is of one of the
following types:

1. ur ∈ R1 (Fig. 9(a)): ul
S−→ um

C−→ ur.

2. ur ∈ R2 (Fig. 9(b)): ul
C−→ um

S−→ ur.
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Fig. 8 Wave structure of the solution when ul ∈ L
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Fig. 9 Wave structure of the solution when ul ∈ R

3. ur ∈ R3 (Fig. 9(c)): ul
S−→ um

C−→ ut
S−→ ur.

The solution to the Riemann problem presented above always exists (by construc-
tion) and is the unique solution satisfying the e-Lax entropy criteria (Isaacson 1980).
It is important to note that all six solution types are of the form

ul
W1−→ um

W2−→ ur, (45)

that is, two wave groups separated by an intermediate constant state. The slow wave
W1 can be of type S, C or S–C. The fast wave W2 can be of type S, C or C–S. Of
course, the solution may involve a single wave if the left and right states are on the

same tie-line (ul
S−→ ur) or on the same nontie-line path (ul

C−→ ur).

3.4 Convergence of finite difference solutions

The purpose of this section is to illustrate the difficulty of standard numerical methods
in producing accurate solutions to the Riemann problem. The slow convergence of
finite difference solutions to the analytical solution of nonstrictly hyperbolic conser-
vation laws has been noted by many authors (Johansen and Winther 1988; Risebro
and Tveito 1991; Jessen et al. 2004). The main reason is the presence of contact dis-
continuities in the solution. Contact discontinuities are indifferent waves and, unlike
genuine shocks, are not self-sharpening. As a result, some essential features of the
solution may be overwhelmed by numerical diffusion introduced by standard finite
difference schemes. High-order finite difference methods—such as total variation
diminishing (TVD) schemes (Harten 1983) and Essentially Nonoscillatory (ENO)
schemes (Harten et al. 1987)—will generally reproduce contact discontinuities much
more accurately, but these methods are more computationally expensive and are less
commonly used in reservoir simulation.

Here, we test the performance of two finite volume methods: the standard first-
order upwind scheme and a semi-discrete, second-order, central-upwind scheme
(Kurganov et al. 2001). In the following, we assume that un

i denotes the cell-average
function (taken in the componentwise sense):
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un
i := 1

�xi

xi+ 1
2 �xi∫

xi− 1
2 �xi

u(x, tn) dx. (46)

The upwind scheme has a very simple structure (here ri = �t/�xi):

un+1
i = un

i − ri
(
F(um

i ) − F(um
i−1)

)
. (47)

Among all conservative first-order, three-point schemes, the upwind scheme is the
one with the lowest numerical dissipation and can be used componentwise for the
first-contact miscible flow equations, since all eigenvalues of this system are nonneg-
ative. Choosing m = n, we obtain an explicit scheme, for which we have the stability
requirement that maxi ν2(ui)ri ≤ 1. A fully implicit scheme is obtained for m = n + 1.

The central-upwind scheme is a so-called high-resolution scheme. It generally has
five points in the stencil and uses a nonlinear reconstruction to guarantee both sec-
ond-order accuracy and nonoscillatory behavior. In semi-discrete form, the scheme
reads

d
dt

ui(t) = H(ui, t) = − 1
�xi

(
Fi+1/2(t) − Fi−1/2(t)

)
. (48)

Since all eigenvalues are positive, the numerical flux-functions Fi±1/2(t) take a partic-
ularly simple form:

Fi+1/2(t) = F
(
ui(t) + 1

2 u′
i(t)

)
, (49)

where u′
i(t) is the reconstructed discrete slope,

u′
i(t) = L

(
ui(t) − ui−1(t), ui+1(t) − ui(t)

)
. (50)

For the nonlinear limiter function L, we will use the minmod function with θ = 1.3,

L(a, b) = minmod
(
θa, 1

2 (a + b), θb), (51)

where

minmod(a, b, c) =

⎧⎪⎨
⎪⎩

min(a, b, c), a, b, c > 0,
max(a, b, c), a, b, c < 0,
0, otherwise.

(52)

To integrate the semi-discrete equation, we employ a second-order Runge–Kutta
scheme based upon combinations of forward-Euler steps:

u(1) = un + �tnH(un, tn)

un+1 = 1
2 un + 1

2

(
u(1) + �tnH(u(1), tn)

)
The stability condition for the central-upwind scheme is maxi ν2(ui)ri ≤ 1/2.

In Fig. 10, we compare the analytical solution for a Riemann problem of type R3
with the finite volume solutions at time t = 0.4, using two different grids. One of the
distinctive features of the solution is the presence of a contact discontinuity of large
amplitude, related to the formation of a solvent bank.

The left figures show the comparison with the first-order upwind explicit scheme
(Godunov method) using two different grids of 100 and 500 gridblocks. The top figure
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Fig. 10 Comparison between analytical and finite volume solutions for a Riemann problem of type
R3. Left: Numerical solution with the standard upwind explicit method (Godunov method). Right:
Numerical solution with the second-order central-upwind method

shows the composition path, and the bottom figures show the profiles of water satu-
ration S and solvent concentration C. It is apparent from the figure that the Godunov
method with 100 and 500 gridblocks is unable to resolve solvent bank. The numerical
solutions using the second-order TVD scheme are shown on the right. In this case, a
grid of 500 elements is sufficient to capture the solvent bank with reasonable accuracy.
However, this kind of resolution—500 gridblocks between injection and production
wells—is unaffordable in three-dimensional reservoir simulation models.

4 Conclusions

In this paper, we have described a mathematical model and the associated Riemann
solver for the simulation of first-contact miscible gas injection processes. Under cer-
tain simplifying assumptions, the system describing two-phase, three-component, first-
contact miscible flow is a 2×2 hyperbolic system. It is not, however, strictly hyperbolic.
Using an analogy with the system of equations governing polymer flooding (Isaacson
1980; Johansen and Winther 1988), we give the complete solution to the Riemann
problem.
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The efficiency of the front-tracking algorithm to be presented in Part 2 relies heav-
ily on the availability of an analytical Riemann solver. The solvent system studied
here has two features that make the front-tracking scheme particularly attractive: (1)
rarefaction curves and shock curves coincide in composition space, so there is no need
to perform (an expensive) numerical integration to characterize rarefaction waves;
(2) some waves are contact discontinuities, which are not self-sharpening. As shown in
Sect. 3.4, such waves are very sensitive to numerical diffusion introduced by classical
finite difference schemes, but they are resolved exactly in a front-tracking solution.

From the point of view of the physical model, the work presented here can be
extended in a number of ways. An important extension is to account for viscous
fingering. Two of the most commonly used macroscopic models for single-phase mis-
cible displacements are those proposed by Koval (1963) and Todd and Longstaff
(1972). Blunt and coworkers proposed an extension of these models to two-phase,
three-component, first-contact miscible flows (Blunt and Christie 1993, 1994). Ana-
lytical solutions to this model have been developed by Blunt and Christie (1993) and,
recently, by Juanes and Blunt (2005, 2006a, b). These new solutions may eventually
lead to the development of a full Riemann solver for multiphase first-contact misci-
ble flow models that account for the macroscopic effect of viscous fingering. Another
interesting but challenging extension would be to consider multicontact miscible prob-
lems, in which the hydrocarbon components do not mix in all proportions. Analytical
solutions for particular initial and injection states have been presented recently by
LaForce and Johns (2005a, b).

The use of the analytical Riemann solver in the context of front-tracking/streamline
simulation is the subject of the second paper in this series (Juanes and Lie 2006).
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