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1. Introduction

A flash calculation consists in determining the amount of gas and

liquid (and their composition) of a mixture with a known overall
composition. It is an integral part of computational models in both
the upstream and downstream oil industry. Flash calculations can
be responsible for a significant fraction of the computational time
in compositional reservoir simulation models [1].

At equilibrium, a two-phase mixture will satisfy

Ki = yi

xi
, (1)

for all of its chemical components i = 1, . . . , N. In Eq. (1), yi and
xi are the mass fraction of component i in the vapor and liquid
phases, respectively, and Ki is the equilibrium ratio (also known as
K-value) for that component. In general, the K-values depend on
pressure, temperature and overall composition. In this paper, we
shall assume that K-values are constant. This is often a good approx-
imation for many hydrocarbon systems at moderate pressures and
temperatures [13]. When this is not the case, the methodology
presented here must be understood as the building block for an
overall flash calculation in which an outer iteration is performed to
determine the K-values [12,13,20,21].
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of N − 2 quadratic equations, which we solve efficiently using a Newton
s very robust: unlike other negative flash procedures, the solution displays
overall composition, even in the transition to negative concentrations. We
avior of the proposed approach on three-component and four-component
ze the method to systems of N components. From the global triangular
nstant K-values, it follows that the system of N−2 quadratic equations can
portant case of three components, the flash calculation is explicit.
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The flash problem can be expressed as follows: given a set of
positive K-values, Ki, and non-negative overall concentrations Ci

satisfying
∑N

j=1Cj = 1, find the gas saturation S and the concentra-
tions in the liquid and vapor, xi and yi, respectively, such that

Ci = (1 − S)xi + Syi for all i = 1, . . . , N (2)
with the restrictions
N∑

j=1

xj = 1,

N∑
j=1

yj = 1, yi = Kixi for all i = 1, . . . , N. (3)

The standard procedure for solving the flash problem is to note
that

N∑
j=1

yj −
N∑

j=1

xj = 0. (4)

Several variants of this equation exist. The original method pro-
posed by Rachford and Rice [14] expressed it as a function of the
vapor saturation S. Whitson and Michelsen [21] showed that this
procedure will converge even if the mixture is in the single-phase
region (a calculation known as negative flash), as long as

1
1 − Kmax

< S <
1

1 − Kmin
. (5)

If the overall composition is far away from the two-phase region
– in particular, if it is outside the region of positive overall com-
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Fig. 1. Ternary diagram and tie-line field for K2 > 1.

the C2-axis. In contrast, if K2 < 1, the C2-component is a liquid and
x̂2 > ŷ2 > 1. This means that the liquid and vapor lines intersect
the diagonal edge of the triangle corresponding to C3 = 0.

For any composition state on the unit triangle there exist liquid
and vapor compositions that are in thermodynamic equilibrium.
The straight line connecting such two compositions is called a tie
line. Figs. 1 and 2 show the tie-line field for the cases K2 > 1 and
K2 < 1, respectively.

2.1. Whitson and Michelsen negative flash

Combining Eqs. (1) and (4), the Rachford–Rice equation may be
written in the following residual form as a function of gas satura-
tion:

R(S) =
N∑

j=1

(Kj − 1)Cj

1 + (Kj − 1)S
= 0. (9)
R. Juanes / Fluid Phase

positions – Wang [18], and Wang and Orr [20], proposed to solve
Eq. (4) in terms of a liquid composition xl for some component
l ∈ {1, . . . , N}—in fact, they assumed that l ≡ 1 in all cases. As we
show in the next section, this procedure may diverge or converge to
a spurious root even if the initial guess is arbitrarily close to the root.

The ability to compute a negative flash for any composition state
is important in practice. The construction of analytical solutions
for multicomponent systems relies heavily on the identification of
tie lines (for states in the two-phase region) and tie-line exten-
sions (for states in the single-phase regions) [2,4–8,13,15,17,19].
Analytical solutions to oil/gas displacements by the method of char-
acteristics are at the heart of some techniques for the calculation of
the minimum miscibility pressure [3,20], and are the key building
blocks for fast simulation of multidimensional reservoir flows by
the front-tracking/streamline method [9,10,16].

A tie line is a straight line in composition space that connects a
liquid composition to a gas composition, both states being at ther-
modynamic equilibrium. Therefore, the flash problem is solved if,
for a given overall composition state, the tie line passing through
that state is identified. Jessen et al. [3] presented an approach to the
calculation of minimum miscibility pressure in which tie-line inter-
sections were computed using a novel co-linearity condition that
avoided convergence problems of the negative flash approaches of
Refs. [21,20]. It is in this context – tie line identification in the single-
phase region through a negative flash – that the developments
presented here are relevant.

We propose a new approach for the (negative) flash problem.
In Section 2, we use the three-component system to illustrate the
shortcomings of existing negative flash procedures, and to develop
the rationale for the new method. In this important case, the flash
problem reduces to the solution of a quadratic equation. We extend
our analysis to the four-component system in Section 3, where we
show that our parameterization of the tie-line field leads to a system
of two quadratic equations. We provide a geometric interpretation
of the solution as the intersection of two conics. Newton iteration
leads to quadratic convergence to the physical solution in all cases.
In Section 4 we generalize the framework to the N-component sys-
tem. In Section 5 we give some concluding remarks.

2. Three-component system

Without loss of generality, we shall assume that the K-values
satisfy the following ordering relations:

K1 > K2 > K3, K1 > 1, K3 < 1. (6)
Two cases are possible: a high-volatility intermediate com-
ponent (K2 > 1), and a low-volatility intermediate component
(K2 < 1). Typical phase diagrams for these two cases are shown in
Figs. 1 and 2, respectively. Compositions close to the C1-vertex are
in vapor phase, and compositions close the C3-vertex (the origin)
are in liquid phase. For constant K-values, the vapor and liquid loci
(the curves separating the single-phase regions from the two-phase
region) are straight lines. We denote by x̂i and ŷi the intersections
of the liquid and gas loci, respectively, with the Ci-axis:

x̂1 =
[

x̂1
0

]
, x̂1 = 1 − K3

K1 − K3
, ŷ1 =

[
ŷ1
0

]
, ŷ1 = K1

1 − K3

K1 − K3
,

(7)

x̂2 =
[

0
x̂2

]
, x̂2 = 1 − K3

K2 − K3
, ŷ2 =

[
0
ŷ2

]
, ŷ2 = K2

1 − K3

K2 − K3
.

(8)

If K2 > 1, the C2-component is a gas and the numeric values of x̂2
and ŷ2 are less than 1. In this case, the two-phase region extends to
 Fig. 2. Ternary diagram and tie-line field for K2 < 1.
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Fig. 3. Ternary diagram showing the two tie lines passing through overall composi-
tion C = (0, 0.3). The tie line coinciding with the axis C1 = 0 would lead to analytical
solutions to gas/oil displacements that do not depend continuously on the initial
data, and must therefore be discarded.

This is the form employed by Whitson and Michelsen [21]. They
showed that a Newton iteration will converge provided that:
(1) The resulting saturation is in the range (1 − Kmax)−1 < S <
(1 − Kmin)−1; (2) The initial guess is sufficiently close to the root.
This is the case as long as the overall composition is inside the
composition triangle, that is, if all the overall concentrations are
strictly positive (see, for example, Table 1 in [21]). In this case, a
combination of the bisection method and Newton iteration is a
robust iterative technique for finding the root. As noted by Wang
and Orr [20], the procedure faces difficulties for compositions out-
side the range of positive concentrations. We illustrate this behavior
next.

In Fig. 3 we plot the tie lines passing through a reference overall
concentration C = [C1, C2]t = [0, 0.3]t , for a system with the fol-
lowing K-values: K1 = 2.5, K2 = 1.5 and K3 = 0.05. Two tie lines
pass through that state: one in the interior of the phase diagram,
and one that coincides with the axis C1 = 0. For displacements by

gas of an oil with the overall composition chosen for the exam-
ple, the tie line in the interior of the phase diagram is the correct
tie line. The reason is that this tie line is stable under perturba-
tion of the composition state. This is essential in the construction
of analytical solutions to compositional flows [13,19,20]. The exis-
tence, multiplicity, and selection of tie lines for general composition
states is discussed at length in Section 2.4. Here we simply illus-
trate the behavior that may arise for a state near the edge C1 =
0.

In Fig. 4 we plot the residual R(S) of Eq. (9) as a function of
the gas saturation for three different (but very close) composi-
tions: one inside, one at the edge, and one outside the composition
triangle. The function R(S) displays a vertical asymptote at S =
(1/1 − K1) = −2/3. It is the solution near the asymptote that cor-
responds to the physical tie line. We make two observations: (1)
Convergence to this solution is not favored in any tangent-based
iteration. (2) More importantly, the transition between the com-
positions inside and outside the ternary diagram is such that the
vertical asymptote disappears, and the physical solution is missing
altogether. Any iteration will necessarily converge to the spurious
solution.
Fig. 4. Residual of the Whitson–Michelsen negative flash equation (as a function
of gas saturation S) for overall compositions C = [0.001, 0.3]t (top), C = [0, 0.3]t

(middle), and C = [−0.001, 0.3]t (bottom).

2.2. Wang and Orr negative flash

Wang and Orr [20] observed that “for an arbitrary overall com-
position, the vapor saturation S can vary in an unrestricted way” and
they suggested to use the phase compositions instead of the phase
saturations as the primary variables. Let l be an index between 1
and the number of components N. Then, for any l, the gas saturation
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satisfies:

S = Cl − xl

(Kl − 1)xl
. (10)

Substituting this expression in the Rachford–Rice equation, one
obtains the following residual equation [13,18]:

R(xl) =
N∑

j=1

(Kj − 1)Cj(Kl − 1)xl

(Kj − 1)Cl + (Kl − Kj)xl
. (11)

Wang and Orr [13,20] suggested a negative flash based on solving
Eq. (11) using a Newton method. This procedure, however, suffers
from the same type of problem as the Whitson–Michelsen nega-
tive flash. In Fig. 5 we plot the residual in Eq. (11) as a function of
the liquid composition x2 (left column) for the same three overall
saturations as in the previous section. The convergence behavior
degrades when the composition state is near the edge—unless a
priori knowledge of the solution is provided, Newton iteration will
likely converge to the spurious root. Moreover, the physical root
is, again, missing from the non-linear equation when the composi-
tion is on the edge of the composition triangle. The behavior of the
residual as a function of x3 (Fig. 5, right column) is analogous. For
the choice x1, the residual for a composition on the axis C1 = 0 is
singular, and no iteration can be defined.

2.3. Proposed flash

The proposed approach to solving the flash problem relies heav-
ily on geometrical properties of the phase diagram. The flash
problem is solved if the tie line passing through the overall com-
position state is identified. The following observation is the key
element of our approach:

Proposition. Tie lines intersect the liquid and vapor loci, and divide
them into segments. The ratio of the length of these segments is con-
stant.

Proof. Let ˛ be a parameterization of the tie-line field, based on
the liquid composition x = [x1, x2]t:

x = ˛x̂1 + (1 − ˛)x̂2, (12)

that is, ˛ is a weighting parameter that interpolates (linearly) the
two bounding tie lines that coincide with the C1- and C2-axis. Let ˇ
be an analogous parameterization based on the vapor composition
y = [y1, y2]t:

y = ˇŷ + (1 − ˇ)ŷ . (13)
1 2

To prove the proposition, it is sufficient to show that ˛ = ˇ. Indeed,
since the liquid and vapor loci intersection satisfy that ŷi = Kix̂i, Eq.
(13) reads:[

y1
y2

]
= ˇ

[
K1x̂1

0

]
+ (1 − ˇ)

[
0

K2x̂2

]
. (14)

Since the equilibrium liquid and gas compositions must satisfy yi =
Kixi, direct comparison of Eqs. (12) and (14) yield that ˛ and ˇ must
be identically equal. �

Remark 1. The proposition is a statement that the liquid locus is a
straight line, and the vapor locus is another straight line for which
the fraction of each component can be obtained by multiplying the
component fraction on the liquid locus by the respective K-value.

Remark 2. The parameter ˛ uniquely defines a tie line. For an
overall composition inside the ternary diagram, it may take values
in the range [0, 1] if K2 > 1 (Fig. 6) or in the range [˛min, 1] if K2 < 1
(Fig. 7). The flash problem then reduces to: given an overall com-
position state C = [C1, C2]t , find ˛ corresponding to the tie line that
passes through it.
bria 267 (2008) 6–17 9

In the remainder of this section we solve the flash problem. We
start by noting that any state on the liquid locus may be expressed
as:

x =
[

x1
x2

]
=

[
˛x̂1

(1 − ˛)x̂2

]
(15)

and, analogously, any state on the vapor locus:

y =
[

y1
y2

]
=

[
˛ŷ1

(1 − ˛)ŷ2

]
. (16)

The overall composition C = [C1, C2]t is a mixture (linear com-
bination) of the liquid and vapor compositions:[

C1
C2

]
=

[
x1
x2

]
+ S

[
y1 − x1
y2 − x2

]
. (17)

Solving the second equation above for the vapor saturation S,

S = C2 − x2

y2 − x2
, (18)

and substituting into the first equation:

(C1 − x1)(y2 − x2) = (C2 − x2)(y1 − x1). (19)

Substitution of Eqs. (15) and (16) and straightforward rearrange-
ment leads to the following equation:

R(˛) ≡
[
x̂2(ŷ1 − x̂1) − x̂1(ŷ2 − x̂2)

]
˛2

+
[
(C2 − x̂2)(ŷ1 − x̂1) + (C1 + x̂1)(ŷ2 − x̂2)

]
˛

− C1(ŷ2 − x̂2) = 0.

(20)

Eq. (20) is a quadratic equation in ˛. The fact that tie-line identifica-
tion for a three-component system reduces to a quadratic equation
has been pointed out previously in Refs. [21,13 (Chapter 5, Ex. 2)].

It is easy to show that the coefficient of the second-order term is
always positive. Let a ≡ x̂2(ŷ1 − x̂1) − x̂1(ŷ2 − x̂2) be the coefficient
of the second-degree term. Recalling that ŷi = Kix̂i, we have that

a = x̂2(K1 − 1)x̂1 − x̂1(K2 − 1)x̂2 = (K1 − K2)x̂1x̂2.

Since K1 > K2 > K3, all three factors are strictly positive and, there-
fore, a > 0. As a result, the residual R is always a convex function.
In Fig. 8 we show the behavior of the residual for K2 > 1 (left) and
K2 < 1 (right), for three different overall compositions: one inside,
one on the edge, and one outside of the ternary diagram. In con-
trast with the behavior for the Whitson–Michelsen negative flash
(Fig. 4) and the Wang–Orr negative flash (Fig. 5), note the continu-

ous dependence of the residual on the overall composition, and the
smooth behavior at the root.

Once ˛ is known, the liquid and vapor compositions are given
by Eqs. (15) and (16), and the vapor saturation is given by Eq.
(18).

2.4. Existence of solutions

The residual function has at least one root when the overall con-
centration state is inside the ternary diagram. More importantly, it
has at least one root on the subset of the (C1, C2)-plane covered
by tie-line extensions, that is, the region bounded by the tie-line
envelope curve. This is the region of interest in the development of
analytical solutions by the method of characteristics.

The envelope curves for low-volatility and high-volatility
intermediate components are shown in Fig. 9. Three overall con-
centration states are indicated for the case of a high-volatility
intermediate component. State A is inside the unit triangle, and all
the components have positive concentrations. State B is outside the
unit triangle but inside the envelope curve, that is, in the region of
composition space covered by tie-line extensions. State C is outside
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Fig. 5. Residual of the Wang–Orr negative flash equation as a function of the liquid composi
(top), C = [0, 0.3]t (middle), and C = [−0.001, 0.3]t (bottom).

the tie-line envelope curve. The residual R(˛) for these composi-
tion states is shown in Fig. 10. It illustrates that two solutions to the
quadratic equation exist inside the tie-line envelope curve (states
A and B), and no solutions outside (state C). For states exactly on
the envelope curve, the quadratic equation has a double root (in
fact, imposing this condition is an efficient way of determining the
envelope curve).
tion x2 (left column) and x3 (right column) for overall compositions C = [0.001, 0.3]t

The question arises: for states inside the envelope curve, which
solution is physical, and which one should be discarded? For both
high-volatility and low-volatility intermediate components, the
physical root is the one that is closer to ˛ = 1. The reason for dis-
carding the other root is that it corresponds to a tie-line that does
not play a role in the construction of solutions to oil/gas displace-
ments. This is clear for overall composition states inside the ternary



R. Juanes / Fluid Phase Equili

The term in parenthesis is always strictly positive, and so is
x̂1. For both high-volatility and low-volatility intermediate com-
ponents, the region bounded by the envelope curve satisfies that
C2 ≥ 0 (see Fig. 9). Therefore, R(˛ = 1) ≥ 0.

Since the residual is a convex function and its value at ˛ = 1 is
Fig. 6. Ternary diagram for K2 > 1. For positive overall concentrations, the param-
eter ˛ that uniquely defines the tie-line field may take values in the range [0, 1].

diagram (state A). The root farthest away from one is actually neg-
ative, and corresponds to a tie-line that is outside the ternary
diagram (both the liquid and vapor compositions have negative
C1-concentrations).

The generalization of this argument is as follows. Consider a
composition state inside the envelope curve (it may be inside
or outside the unit triangle—state B). Then, two tie lines extend
through that composition state, connecting the overall composition
to two different pairs of liquid and vapor compositions. One of the
tie lines remains strictly inside the envelope curve, while the other
has a tangency point to the envelope curve. In other words, the first
tie line connects the overall composition with the vapor and liquid
compositions without intersecting any other tie line. In contrast,
the second tie line intersects an infinite number of tie-line exten-
sions. The latter does not lead to physically admissible solutions of

Fig. 7. Ternary diagram for K2 < 1. For positive overall concentrations, the parameter
bria 267 (2008) 6–17 11

gas/oil displacements (the entropy condition is violated) and must,
therefore, be discarded. With reference to the example in Fig. 10, the
physically correct solution is always the root of the quadratic equa-
tion closest to ˛ = 1, regardless of whether the other root is negative
(for states inside the ternary triangle) or positive (for states inside
the envelope curve but outside the unit triangle). Therefore, we con-
clude that the flash calculation for the three-component problem
is explicit.

In anticipation of the more general case with N ≥ 4 components,
the solution may be achieved using Newton’s method. Let us first
show that the value of the residual R(˛) at ˛ = 1 is always non-
negative. After simple algebraic manipulation

R(˛ = 1) = C2(K1 − 1)x̂1.
always greater or equal than zero, Newton’s method will always
converge to the physically correct root if one chooses ˛(0) = 1 as
initial guess.

3. Four-component system

In this section, we extend the methodology to four-component
systems, which are still amenable to graphical representation. Pure
components are ordered according to their K-values:

K1 > K2 > K3 > K4, K1 > 1, K4 < 1. (21)

In Fig. 11 we show the phase diagram for a four-component sys-
tem with K2 > 1 > K3. In this case, the pure components C1 and C2
are gases, and the pure components C3 and C4 are liquids. The vapor
and liquid loci, separating single-phase from two-phase regions,
are planes. The intersection of the liquid and vapor planes with the
Ci-axis, x̂iand ŷi, respectively, are:

˛ that uniquely defines the tie-line field may take values in the range [˛min, 1].



12 R. Juanes / Fluid Phase Equilibria 267 (2008) 6–17
Fig. 8. Plot of the residual, R(˛), for K2 > 1 (left) and K2 < 1 (right), for three different ov
composition, and the smooth behavior at the root.

x̂1 =
[

x̂1
0
0

]
, x̂1 = 1 − K4

K1 − K4
, ŷ1 =

[
ŷ1
0
0

]
, ŷ1 = K1

1 − K4

K1 − K4
,

(22)

x̂2 =
[

0
x̂2
0

]
, x̂2 = 1 − K4

K2 − K4
, ŷ2 =

[
0
ŷ2
0

]
, ŷ2 = K2

1 − K4

K2 − K4
,

(23)

x̂3 =
[

0
0
x̂3

]
, x̂3 = 1 − K4

K3 − K4
, ŷ3 =

[
0
0
ŷ3

]
, ŷ3 = K3

1 − K4

K3 − K4
.

(24)

Fig. 9. Tie-line envelope curves for K2 > 1 (left) and K2 < 1 (right). Three overall concent
State A is inside the unit triangle, and all the components have positive concentrations. St
of composition space covered by tie-line extensions. State C is outside the tie-line envelo
erall compositions. Note the continuous dependence of the residual on the overall

In Fig. 11 we also show the tie line passing through an over-
all composition state C , defined by the equilibrium liquid and gas
compositions, x and y, respectively.

3.1. Proposed approach

The essential observation leading to our computational scheme
is that the same parameterization of the liquid and vapor planes
defines the tie-line field uniquely:

x = ˛1x̂1 + ˛2x̂2 + (1 − ˛1 − ˛2)x̂3, (25)

y = ˛1ŷ1 + ˛2ŷ2 + (1 − ˛1 − ˛2)ŷ3. (26)

Of course, two parameters (˛1 and ˛2) are needed to parameterize a
plane. The overall composition is a linear combination of the liquid

ration states are indicated for the case of a high-volatility intermediate component.
ate B is outside the unit triangle but inside the envelope curve, that is, in the region
pe curve.
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Fig. 11. Quaternary diagram for K2 > 1 > K3.
Fig. 10. Residual R(˛) for all three composition states, A–C, depicted in Fig. 9(left). (A)
Two solutions exist: one positive and one negative. The negative root corresponds
to a tie-line extension outside the unit triangle and is therefore unphysical. (B) Two

solutions exist, both of them positive. The root closest to ˛1 is always the physically
admissible solution (see discussion in the text). (C) This state is outside the region
covered by tie-line extensions and, as a result, no solutions exist.

and gas compositions:[
C1
C2
C3

]
=

[
x1
x2
x3

]
+ S

[
y1 − x1
y2 − x2
y3 − x3

]
. (27)

Solving for S in the last equation,

S = C3 − x3

y3 − x3
, (28)

and substituting into the first two equations:

(C1 − x1)(y3 − x3) = (C3 − x3)(y1 − x1), (29)

(C2 − x2)(y3 − x3) = (C3 − x3)(y2 − x2). (30)

After substitution of (25) and (26), the equations above can be
expressed as the following system:

R1(˛1, ˛2) ≡ a1(˛2
1 + ˛1˛2) + (b1 + c1)˛1 + c1˛2 − c1 = 0, (31)

Fig. 12. Surface plot of the residuals R1 and R2 as functions of the tie-line paramet
(2.5, 1.5, 0.5, 0.05) and the overall composition (C1, C2, C3, C4) = (0.25, 0.25, 0.25, 0.25)
R2(˛1, ˛2) ≡ a2(˛1˛2 + ˛2
2) + c2˛1 + (b2 + c2)˛2 − c2 = 0. (32)

where the coefficients are:

ai = x̂3(ŷi − x̂i) − x̂i(ŷ3 − x̂3), i = 1, 2, (33)

bi = (C3 − x̂3)ŷi − (C3 − ŷ3)x̂i, i = 1, 2, (34)

ci = Ci(ŷ3 − x̂3), i = 1, 2. (35)

This is a system of quadratic equations in [˛1, ˛2]. In Fig. 12 we plot
the residual surfaces, R1 and R2, for a particular choice of K-values
and overall composition.

ers ˛1 and ˛2. The case shown corresponds to the K-values (K1, K2, K3, K4) =
.
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Fig. 13. Plots of the liquid locus on the ternary diagram (left column) and the correspon
space (right column). From top to bottom: (a) K2 > K3 > 1, (b) K2 > 1 > K3, and (c) 1 > K

3.2. Existence of solutions

The solution to the flash problem consists in finding the inter-
section of the two quadratic curves (conic sections) (31) and (32).
The range of admissible values of the solution (˛1, ˛2) depends on
the K-values. In Fig. 13 we show the liquid plane, and the associ-
ated region of admissible solutions to the negative flash problem
on the (˛1, ˛2) space for all three possible cases: (a) K2 > K3 > 1,
(b) K2 > 1 > K3, and (c) 1 > K2 > K3.

The two conic sections are in fact hyperbolas, because ai > 0 for
all i = 1, 2. Elementary analysis shows that the asymptotes of each
hyperbola Ri = 0 are ˛i = const and ˛1 + ˛2 = const. The existence
ding region of admissible solutions to the negative flash problem on the (˛1, ˛2)
2 > K3.

of solutions to the negative flash can then be translated into the
following questions: when do the two hyperbolas intersect? if so,
how many times? if they intersect more than once, which one is the
physical solution? While the results are general, we elaborate the
argument for the case K2 > 1 > K3 only. We plot the tie-line field
and observe that tie-line extensions cover part of the C1/C2/C3-
space (see Fig. 14). The surface that bounds this region is called
envelope surface [13].

As was the case for the three-component problem, the location
of the overall composition state with respect to the envelope surface
is essential. Shown in Fig. 14 are three overall composition states: a
state inside the unit tetrahedron (A), a state outside the unit tetra-
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Fig. 14. Plots of the tie-line field for the case K2 > 1 > K3, and its associated envelope
surface. Also shown are three composition states. A, a state inside the unit tetrahe-
dron; B, a state outside the unit tetrahedron, but inside the envelope surface; and C,
a state outside the envelope surface.

hedron but inside the envelope surface (B), and a state outside the
envelope surface (C). In Fig. 15 we plot the curves R1(˛1, ˛2) = 0
and R2(˛1, ˛2) = 0 for each of these three composition states.

The hyperbolas corresponding to state A have two intersections,
one admissible and one not admissible. In this case, it is clear which
one is the physical solution. For state B, there are two intersections,
both in the region of admissible values of (˛1, ˛2). Here, the argu-
ment for root selection is analogous to that of the three-component
case. Of the two tie-lines that pass through B, one of them connects
that state to the equilibrium liquid composition without intersect-
ing any other tie line. The other tie line intersects an infinite number
of tie-lines extensions along the way. This latter solution is invalid
in the context of analytical solutions to gas/oil displacements, and
should be discarded. For state C, the hyperbolas do not intersect,

and the negative flash does not have a solution.

We conclude that the system of quadratic equations has exactly
two solutions – one of which can be discarded – when the overall
state is inside the region bounded by the envelope surface, and no
solutions if it is outside (the system has a double root if the state is
on the envelope surface).

These results are general. The reason is the global triangular
structure of the gas/oil multicomponent system with constant K-
values [5]: tie lines lie in planes. Solving the system of quadratic
equations is equivalent to identifying a plane, then finding the
tie-line extension within that plane. This reduces the problem (con-
ceptually) to a three-component problem on the plane, which has
at most two roots.

From a practical standpoint, the correct solution is always the
one determined by the branches of the hyperbolas close to the edge
˛1 + ˛2 = 1, in the same way that the correct root in the three-
component case was the root closer to ˛ = 1.

While general methods exist for the intersection of conics, here
we propose to employ Newton’s method to find the intersection,
and exploit knowledge of the behavior of these conics. The inter-
section of each conic with the axes may be found directly by solving
Fig. 15. Plots of the curves R1(˛1, ˛2) = 0 and R2(˛1, ˛2) = 0 on the (˛1, ˛2)-plane,
corresponding the K-values and composition states depicted in Fig. 14. From top to
bottom: A–C.

a single quadratic equation. Similarly, the extremum of each hyper-
bola (the point at which ∂Ri/∂˛i = 0) may also be found analytically.
This information allows one to approximate (circumscribe) each
hyperbola by linear segments, as shown in Fig. 16. The intersection
of these segmented approximations is explicit, and provides the ini-
tial guess for the Newton iteration. We have found that it is always
a good approximation to the physically correct solution, leading to
quadratic convergence of the Newton iteration for all K-values and
overall concentrations.
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Fig. 16. Intersection of the conics R1 = 0 and R2 = 0 defining the solution in (˛1, ˛2)-
space. The initial guess for Newton iteration (marked with a circle) is obtained as
the intersection of a piecewise linear approximation that circumscribes the conic
sections.

4. Generalization to an N-component system

The proposed methodology for flash calculation can be general-
ized immediately to the N-component case. Consider an ordering
of the K-values: K1 > K2 > . . . > KN−1 > KN , with K1 > 1 and 1 >
KN > 0. Let the overall composition C = [C1, . . . , CN−1]t be given on
the (N − 1)-dimensional unit simplex, and CN = 1 −

∑N−1
j=1 Cj . Now

the liquid and vapor loci are (N − 2)-dimensional hyperplanes. The
intersection of the liquid and vapor hyperplanes with the Ci-axis,
x̂i and ŷi, respectively, are:

x̂i =

⎡
⎢⎢⎢⎢⎢⎣

0
...
x̂i
...
0

⎤
⎥⎥⎥⎥⎥⎦ , x̂i = 1 − KN

Ki − KN
, ŷi =

⎡
⎢⎢⎢⎢⎢⎣

0
...

ŷi
...
0

⎤
⎥⎥⎥⎥⎥⎦ ,
ŷi = Kix̂i, i = 1, . . . , N − 1. (36)

The fundamental observation is that the same parameterization
of each of these hyperplanes defines the tie-line field:

x =
N−2∑
j=1

˛jx̂j +

⎛
⎝1 −

N−2∑
j=1

˛j

⎞
⎠ x̂N−1, (37)

y =
N−2∑
j=1

˛jŷj +

⎛
⎝1 −

N−2∑
j=1

˛j

⎞
⎠ ŷN−1. (38)

The tie-line field is parameterized by the vector ˛ =
[˛1, . . . , ˛N−2]t . The overall composition may be expressed as
a linear combination of the liquid and gas compositions:

Ci = xi + S(yi − xi), i = 1, . . . , N − 1. (39)

Solving for S in the last equation,

S = CN−1 − xN−1

yN−1 − xN−1
, (40)
bria 267 (2008) 6–17

and substituting into the first N − 2 equations:

(Ci − xi)(yN−1 − xN−1) = (CN−1 − xN−1)(yi − xi),

i = 1, . . . , N − 2. (41)

After substitution of (37) and (38), the equations above can be
expressed as the following system of N − 2 quadratic equations:

Ri ≡ ai˛i(˛1 + . . . + ˛N−2) + bi˛i

+ci(˛1 + . . . + ˛N−2) − ci = 0, i = 1, . . . , N − 2,
(42)

where the coefficients are:

ai = x̂N−1(ŷi − x̂i) − x̂i(ŷN−1 − x̂N−1), (43)

bi = (CN−1 − x̂N−1)ŷi − (CN−1 − ŷN−1)x̂i, (44)

ci = Ci(ŷN−1 − x̂N−1). (45)

The flash problem reduces to finding the vector ˛ = [˛1, . . . , ˛N−2],
solution to the N − 2 quadratic equation (42). Once this is known,
the liquid and gas compositions are immediately obtained from Eqs.
(37) and (38).

The case of a five-component system still admits a graphical
interpretation. The solution defining the tie line is a point in the
unit tetrahedron, [˛1, ˛2, ˛3], resulting from the intersection of
three quadrics (in our case, two-sheeted hyperboloids). General
methods have been devised in the computer visualization commu-
nity to solve this kind of problem (see, e.g. [11]). Alternatively, the
equations can be solved efficiently by using Newton iteration.

Traditional negative flash procedures based on the Rachford–
Rice equation result in a rational residual with N asymptotes and,
often, bad behavior near the roots. In contrast, the proposed method
based on tie-line identification only has at most two roots, even for
an N-component system. This is due to the global triangular struc-
ture of the system with constant K-values [5], by which tie lines lie
in N − 2-dimensional hyperplanes. The correct solution is the one
associated with the tie line that does not intersect any other tie line
as it connects the overall composition state with its vapor/liquid
equilibrium concentrations.

5. Conclusions

We have presented a new method for flash calculation, based
on a parameterization of the tie-line field. For the general N-
component case, the problem reduces to the solution of N − 2
quadratic equations. The main application of the method is the
calculation of negative flash, possibly with negative overall com-

positions. The proposed method is very robust in the sense that the
solution displays continuous dependence on the overall composi-
tion even in the region of negative concentrations, and no primary
variable switching is required. This is to be contrasted with classi-
cal methods based on the solution of the Rachford–Rice equation
[14,20,21], in which the iteration may converge to a spurious root,
either due to convergence difficulties or because the non-linear
residual does not contain the physical root.

For the important case of three components (N = 3), our method
leads to an explicit, non-iterative flash calculation. For N = 4, the
solution is the intersection of two hyperbolas. For N = 5, it is the
intersection of three two-sheeted hyperboloids. Even in the general
N-component case, the global triangular structure of the system
with constant K-values guarantees that the system of quadratic
equations has at most two roots.

While the method presented in this paper is restricted to con-
stant K-values, its relevance stems from the fact that this is often
a good approximation for many hydrocarbon systems at moder-
ate pressures and temperatures [13]. When this is not the case, the
methodology presented here must be understood as the building
block for an overall flash calculation in which an outer iteration
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is performed to determine the K-values [12,13,20,21]. We are cur-
rently working on a direct extension of the method—based on a
parameterization of the tie-line field—for non-constant K-values.
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