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Abstract

We present a stabilized finite element method for the numerical solution of multiphase flow in porous media,
based on a multiscale decomposition of pressures and fluid saturations into resolved (or grid) scales and unresolved
(or subgrid) scales. The multiscale split is invoked in a variational setting, which leads to a rigorous definition of
a grid scale problem and a subgrid scale problem. The subgrid problem is modeled using an algebraic approxi-
mation. This model requires the definition of a matrix of intrinsic time scales, which we design based on stability
considerations.

We illustrate the performance of the method with simulations of a waterflood in a heterogeneous oil reservoir.
The proposed method yields stable, highly accurate solutions on very coarse grids, which we compare with those
obtained by the classical Galerkin method or the upstream finite difference method.

Although this paper is restricted to multiphase flow in porous media, the formulation is quite general and can be
applied to other nonlinear systems of conservation laws, like the shallow water equations.
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1. Introduction

Numerical simulation of multiphase flow in the subsurface is an essential step in the evaluation of the
performance of hydrocarbon reservoirs, and the migration of nonaqueous-phase liquids in the ground-
water.

In reservoir engineering, the mathematical problem of multiphase flow has traditionally been posed in
terms of a pressure equation, and a saturation equation (or a system of saturation equations if there are
more than two flowing phases)[1,2]. These two equations are of very different character. The pressure
equation is essentially elliptic (when the fluids and the medium are nearly incompressible), and the
saturation equation is almost hyperbolic (when capillarity effects are small). Numerical models typically
reflect the different characters of these equations, and employ a centered discretization of the global flux
in the pressure equation, and an upstream discretization of the phase flux in the saturation equation. While
this treatment of the phase flux leads to robust numerical schemes, it is well known that it introduces
excessive numerical diffusion, which may distort the physical behavior inadmissibly. This is particularly
true for systems in which capillarity is small.

In this paper, we present a numerical formulation for the solution of multiphase flow problems that
yields stable and high-order accurate solutions in the limit of negligible capillarity. The method, which
is based on an idea originally introduced in[3], entails a decomposition of the unknowns (the pressure
and the fluid saturations) into resolved and unresolved scales. The multiscale decomposition recognizes
that the solution contains features, such as shocks and boundary layers, which cannot be captured with a
grid of practical size. The major benefit of the multiscale split is that, by incorporating the effect of the
subgrid scales into the coarse-scale problem, the formulation leads naturally to a stabilized method[4–6].

The formulation presented here has the following distinctive features: (1) the multiscale split is invoked
prior to any linearization of the equations; (2) the procedure does not involve reconstruction of coarse-
scale and subscale solutions; and (3) we extend our previous work on one-dimensional problems to several
space dimensions[7–9]. Even though we study multiphase flow problems only, the formulation is rather
general, and it is applicable to other nonlinear systems of conservation laws.

An outline of the paper is as follows. In Section 2 we give the mathematical model of two-phase flow
in porous media, including a derivation of the governing equations, and the weak form of the problem.
In Section 3 we describe the variational multiscale method for general nonlinear systems of conservation
laws of advection–diffusion type, and design the matrix of intrinsic time scales for the two-phase flow
problem of interest. In Section 4 we illustrate the performance of the method with a two-dimensional
problem of water injection in a simplistic heterogeneous oil reservoir. In Section 5 we make some final
remarks.

2. Mathematical formulation

2.1. Governing equations of two-phase flow

In this section we outline the derivation of the equations governing immiscible flow of two species (or
components) through porous media. The basic ingredients are mass conservation of each species and a
constitutive relation defining the flux of each component. A detailed derivation can be found elsewhere
[1,2,10].
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The system involves simultaneous flow of two separate phases: the wetting phase (water) and the
nonwetting phase (oil). The mass conservation equations for each component are

Oil: �tmo + ∇ · Fo =Qo, (1)

Water: �tmw + ∇ · Fw =Qw, (2)

wheremo (resp.mw) is the mass of oil (resp. water) per unit volume of porous medium,Fo (resp.Fw) is
the oil (resp. water) mass flux, andQo (resp.Qw) is the oil (resp. water) source term.

Denoting bySw the water saturation (volume fraction of the pore space occupied by water), we express

mo = �o�(1 − Sw), (3)

mw = �w�Sw, (4)

where�o (resp.�w) is the density of the oil (resp. water), and� is the porosity of the medium. The source
term of each phase can be written as

Qo = �o�qT(1 − f ∗
w), (5)

Qw = �w�qTf
∗
w, (6)

whereqT is the total volumetric source of fluid, andf ∗
w is the water fractional flow of the injected fluid.

In the case of negative source (qT<0), the water fractional flow of the produced fluid is dictated by the
water saturation in the reservoir (f ∗

w = fw(Sw)).
Mass fluxes of each component are expressed in terms of the phase velocitiesvo andvw:

Fo = �o�vo, (7)

Fw = �w�vw. (8)

The phase velocities are usually modeled through the multiphase extension of Darcy’s law[11]:

vo = − k

�

kro

�o
∇po, (9)

vw = − k

�

krw

�o
∇pw, (10)

wherekro, krw are the relative permeabilities,�o, �w are the dynamic viscosities, andpo, pw are the
pressures of oil and water, respectively. It is assumed that the fluid pressures incorporate the hydrostatic
(gravity) term. We introduce, for convenience, the phase relative mobilities:

�o := kro

�o
, �w := krw

�w
, (11)

and the total mobility:

�T := �o + �w. (12)
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We express the phase pressures as

po ≡ p, (13)

pw ≡ p − Pc, (14)

where we choose the pressure variablep to be the oil-phase pressure, andPc is the capillary pressure,
assumed here to be a function of saturation. Defining the total velocityvT := vw +vo, the phase velocities
take the form

vo = �o

�w + �o
vT − �w�o

�w + �o

k

�
∇Pc, (15)

vw = �w

�w + �o
vT + �w�o

�w + �o

k

�
∇Pc. (16)

We also define the oil and water fractional flow functions

fo = �o

�T
, fw = �w

�T
. (17)

Assuming that the fluids and the medium are incompressible, summing Eqs. (1) and (2) yields the conti-
nuity (or “pressure”) equation

∇ · vT = qT, (18)

where the total velocity is obtained by adding the phase velocities (9)–(10), and using the phase pressures
(13)–(14):

vT = −�T
k

�
∇p − �w

k

�

(
− dPc

dSw

)
∇Sw. (19)

Substituting Eqs. (4), (8) and (16) into (2), we get the “saturation” equation

�t Sw + ∇ ·
[

vTfw − �wfo
k

�

(
− dPc

dSw

)
∇Sw

]
= qTf

∗
w. (20)

We make the following observations:

(1) The “pressure” equation is elliptic, and has to be solved for the pressurep and the total velocityvT.
(2) The “saturation” equation is a conservation law of the advection–diffusion type, where the “diffusion”

in the saturation equation is caused by capillarity, not by physical diffusion.
(3) Both equations are nonlinear due to the nonlinearity of relative permeabilities and capillary pressure.
(4) The pressure and saturation equations are coupled through the mobility terms and the capillary

pressure terms.

Eqs. (18) and (20) can be formulated as a system of equations inparabolic form:[
0

�t Sw

]
+ ∇ ·

(
− k

�

[
�T �w(−P ′

c)

�w �w(−P ′
c)

] [ ∇p
∇Sw

])
=
[
qT
qTf

∗
w

]
, (21)
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and inhyperbolic form:[
0

�t Sw

]
+ ∇ ·

([
0

vTfw

]
− k

�

[
�T �w(−P ′

c)

0 �w(1 − fw)(−P ′
c)

] [ ∇p
∇Sw

])
=
[
qT
qTf

∗
w

]
. (22)

In either case, the system of equations may be expressed in the generic form of a nonlinear system of
conservation laws of advection–diffusion type:

�̂tu + ∇ · ( f(u)− D(u)∇u)= q, (23)

whereu = (p, Sw)
T is the vector of unknowns,f is the hyperbolic flux,D is the diffusion tensor,q is the

source term, and̂�t implies that the first component of the accumulation term is identically equal to zero.
In what follows, we shall abuse notation and drop the hat from the time derivative, and still understand
that the first component of this vector is zero.

For clarity, Eq. (23) can be written in indicial notation

�ui

�t
+

d∑
k=1

�

�xk


f ik −

2∑
j=1

d∑
l=1

D
ij
kl

�uj

�xl


= qi, i = 1,2, (24)

where superscriptsi, j refer to components (pressure and water saturation), and subscriptsk, l refer to
space dimensions (d = 2 or 3).

2.2. Initial and boundary value problem

The mathematical problem is defined by the system of conservation laws:

�tu + ∇ · ( f(u)− D(u)∇u)= 0, x ∈ �, t ∈ (0, T ]. (25)

Let �� be the boundary of the domain. We consider, for expositional simplicity, the following boundary
conditions:

u = ū on �u, (26)

( f − D∇u) · n = F̄ on �n ≡ ��\�u, (27)

wheren is the outward unit normal to the boundary. The method can accommodate much more complex
boundary conditions and, in particular, conditions of different types for each individual component of the
solution. The initial conditions are

u(x, t = 0)= u0(x), x ∈ �̄. (28)

2.3. Weak form of the problem

The weak form of problem (25)–(28) is obtained in the standard way, by multiplying both sides of the
partial differential equation by a suitable test functionv, integrating over the domain�, and integrating
the flux term by parts.
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We introduce the following functional spaces:

V := {v ∈ W : v = ū on �u},
V0 := {v ∈ W : v = 0 on �u},

where the appropriate Sobolev spaceW depends on the particular form of the diffusion tensor. The weak
form of problem (25)–(28) consists in findingu ∈ V for each fixedt ∈ (0, T ], such that

(�tu, v)+ a(u, v; u)= l(v) ∀v ∈ V0,

u(x, t = 0)= u0(x), (29)

where

(�tu, v)=
∫

�
�tu · vd�, (30)

a(u, v; w)= −
∫

�
f(w) · ∇vd� +

∫
�

D(w)∇u · ∇vd�, (31)

l(v)=
∫

�
q · vd� −

∫
�n

F̄ · vd�. (32)

When expressed in indices, Eqs. (30)–(32) above take the form

(�tu, v)=
∫

�

2∑
i=1

�tu
ivi d�, (33)

a(u, v; w)= −
∫

�

2∑
i=1

d∑
k=1

f ik (w)
�vi

�xk
d� +

∫
�

2∑
i=1

d∑
k=1


 2∑
j=1

d∑
l=1

D
ij
kl(w)

�uj

�xl


 �vi

�xk
d�, (34)

l(v)=
∫

�

2∑
i=1

qivi d� −
∫

�n

2∑
i=1

F̄ ivi d�. (35)

3. The variational multiscale method

In order to solve the problem numerically, we must restrict the infinite-dimensional functional spaces
of trial and test functions to finite sets. In particular, we consider spaces whose functions are linear
combinations of the usual finite element basis functions, defined on a partition of the domain into elements
� ≈ ⋃

�e. In theclassical Galerkinmethod, the same basis functions are used to define the trial functions
uh and test functionsvh. The subscripth refers to the resolution provided by the underlying grid, that is,
the characteristic element size.

Obviously, the numerical solution cannot capture features at a scale smaller than the gridblock size.
Such features may be due to subgrid heterogeneity or to the presence of sharp fronts. As it turns out,
inaccuracies at the subgrid level may resonate, and produce a numerical solution that is globally polluted
with errors. This is the case in nearly hyperbolic problems, even if the medium is homogeneous. The key
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idea of thevariational multiscale method[3] is to recognize the limited resolution of the grid, and invoke
amultiscale splitof the solutionu and the test functionv:

u = uh + ũ, v = vh + ṽ, (36)

whereuh is the resolved (grid) scale andũ is the unresolved (subgrid) scale. This decomposition is unique
if the original functional spaceV can be obtained as the direct sum of two spaces:

V = Vh ⊕ Ṽ, (37)

whereVh is the space ofresolved scalesandṼ is the space ofsubgrid scales. From a practical point of
view, the spacẽV is generally unknown, and needs to be approximated.

In the context of nonlinear problems, we express the solution at a given iteration step (k) as

u(k) = u(k−1) + �u(k−1), (38)

where the first term on the right-hand side is an approximate solution at the previous iteration level, and
the second term is a correction. In principle, both terms are subject to the multiscale decomposition (36).
However, doing so requires that the approximate solutionu(k−1) is reconstructed after every iteration. To
avoid this reconstruction step, we make the additional approximation:

u(k−1) ≈ u(k−1)
h , (39)

so that the multiscale split takes the form

u(k) ≈ u(k)h + �ũ(k−1). (40)

In what follows we shall drop superscripts referring to the iteration level, and simply write

u ≈ uh + �ũ. (41)

The termuh should be understood as an approximate solution about which the equations are linearized,
and the term�ũ plays the role of a subgrid scale perturbation. The working assumption (39) makes
our formulation different from that in[12–14], where the subgrid scales are tracked, and the multiscale
variable is reconstructed after every step of the iterative process. It is likely, however, that the proposed
linearization may impose limits in the applicability of the formulation to highly nonlinear problems with
a very strong multiscale character.

We substitute the multiscale decomposition (41) in the weak form of problem (29). Since the weak
form is linear with respect to the test functionv, we can split the original problem into two, a grid scale
problem:

(�t (uh + �ũ), vh)+ a(uh + �ũ, vh; uh + �ũ)= l(vh) ∀vh ∈ Vh,0, (42)

and a subscale problem:

(�t (uh + �ũ), ṽ)+ a(uh + �ũ, ṽ; uh + �ũ)= l(ṽ) ∀ṽ ∈ Ṽ. (43)

The grid scale problem is finite-dimensional (the dimensionality given, roughly, by the number of nodes
in the grid), whereas the subscale problem is infinite-dimensional.
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3.1. Subgrid scale problem

The subscale problem cannot, in general, be solved exactly. We make the following manipulations to
the subscale equation (43) (see[15,9] for details): (1) write the flux term as a sum of element integrals,
and integrate by parts on each element; (2) assume continuity of the flux across interelement boundaries;
(3) approximate the total fluxf(u) − D(u)∇u by its first-order Taylor expansion about the coarse-scale
solutionuh; and (4) assume quasi-static subscales,�t (�ũ) ≈ 0. After these approximations, the subscale
problem can be written as the following projection problem:∑

e

∫
�e

Luh�ũ · ṽd� =
∑
e

∫
�e

R(uh) · ṽd�. (44)

In Eq. (44), we have introduced the grid scale residual:

R(uh) := q − �tuh − ∇ · ( f(uh)− D(uh)∇uh), (45)

and the following linearized advection–diffusion operator in conservation form:

Luhv := ∇ · (A(uh)v − D(uh)∇v), (46)

whereA(uh) is an “advection” operator, defined as

A(uh) := f′(uh)− D′(uh)∇uh. (47)

For definiteness, it is useful to write down the equations above using indicial notation. Thei-component
of the grid scale residual is

Ri(uh)= qi − �tu
i
h −

d∑
k=1

�

�xk


f ik (uh)−

2∑
j=1

d∑
l=1

D
ij
kl(uh)

�ujh
�xl


 , (48)

Thei-component of the linearized advection–diffusion operator reads

Li
uh

v =
d∑
k=1

�

�xk


 2∑
j=1

A
ij
k (uh)v

j −
2∑
j=1

d∑
l=1

D
ij
kl(uh)

�vj

�xl


 , (49)

where the components of the advection operator are

A
ij
k (uh)= �f ik (uh)

�ujh
−

2∑
n=1

d∑
l=1

�Din
kl (uh)

�ujh

�unh
�xl

. (50)

The projection problem (44) ismodeled, rather than solved, by an algebraic subgrid scale (ASGS) ap-
proximation[3,16]

�ũ ≈ �uhR(uh), (51)

where�uh is the matrix of stabilizing coefficients, or matrix of intrinsic time scales. Its design is one of
the most difficult issues in the development of a stabilized method. In this paper, we devise a�-model
tailored to the problem of multiphase flow.
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3.2. Grid scale problem

After several manipulations and approximations, similar to those of the subscale problem (see[15,9]
for details), the grid scale equation reads

(�tuh, vh)+ a(uh, vh; uh)+
∑
e

∫
�e

L∗
uh

vh · �ũ d� +
∑
e

∫
�e

b∗
uh

vh · �ũ d� = l(vh)

∀vh ∈ Vh,0. (52)

whereL∗
uh

is the adjoint of a linearized advection–diffusion operator:

L∗
uh

v := −AT(uh) · ∇v − ∇ · (DT(uh)∇v), (53)

andb∗
uh

is the associated boundary operator:

b∗
uh

v := (DT(uh)∇v) · n. (54)

The last two terms in Eq. (52) are the contributions of the subgrid scale to the coarse-scale equation.
These additional terms, which arise naturally in the variational multiscale method, stabilize the numerical
approximation of nearly hyperbolic systems. They consist in a volume integral and a boundary integral,
which are evaluated element by element. The boundary contribution is neglected in the calculations of
Section 4.

The grid scale equation (52) and the subgrid scale equation (43) are coupled through the value of
the subscales. For the algebraic subgrid scale model employed here, Eq. (51) is directly substituted in
Eq. (52). If the presence of the subscales is neglected (�ũ ≡ 0), the formulation reduces to the classical
Galerkin method. Our formulation is different from other multiscale approximations[12,14] in that:
(1) the nonlinearity of the equations is retained at the time of invoking the multiscale split; and (2)
the approximate solution is never reconstructed from pointwise values of the coarse- and subgrid-scale
components.

3.3. Matrix of intrinsic time scales

The description of the variational multiscale method proposed is complete up to the definition of the ma-
trix �uh of intrinsic time scales.This matrix needs to be defined for each individual problem, and its design is
the crux of any stabilized method. Here, we concentrate on the problem of two-phase flow in porous media.
In principle, the matrix of stabilizing parameters is a full 2× 2 matrix,

�uh =
[

�pp �pw
�wp �ww

]
, (55)

where the coefficients depend on the system parameters, the element size, and the grid scale solution.
A simple stability analysis for the system of equations (21) or (22) in the limit of negligible capillarity,
shows that the classical Galerkin method provides control over the pressure, but that the water saturation
is out of control. Therefore, we take the�-matrix as

�uh =
[

0 0
0 �ww

]
. (56)



772 R. Juanes /Finite Elements in Analysis and Design41 (2005) 763–777

From a physical standpoint, the�-matrix above implies that we neglect the subgrid scale component of
the pressure field, that is,̃p ≡ 0. This simplification is sensible because the pressure is governed by an
elliptic equation, for which the classical Galerkin method is stable. The scalar stabilizing coefficient�ww
corresponding to the water saturation field can be devised using different methods, originally developed
for linear advection–diffusion systems[16–18]. Extension to the nonlinear system of saturation equations
is straightforward once the linearized advection–diffusion operator (46) has been defined.

We define the “advective velocity” of the water saturationa(uh), with components

ak = A22
k , k = 1, . . . , d (57)

and the associated “diffusion tensor”d(uh), with components

dkl =D22
kl , k, l = 1, . . . , d. (58)

We also introduce the following quantities:

	 =
(

d∑
k=1

akak

)1/2

, (59)


 =
(

d∑
k=1

d∑
l=1

dkldkl

)1/2

. (60)

A model for the stabilizing coefficient, based on the original formulation in[19,17] is given by

�ww = 1

2
h

�(�)

	
, (61)

where� is a measure of the element Peclet number:

� = 1

2

	h



, (62)

and� is the diffusion corrector factor:

�(�)= coth(�)− 1

�
. (63)

In the equations above,h is a characteristic element size, typically along the direction of the advective
velocity. Eq. (61) is motivated by being consistent with the optimal definition of the stabilizing coef-
ficient in the one-dimensional case, which leads to a nodally exact solution for the steady-state, linear
advection–diffusion problem.

Different formulations of the intrinsic time scale coefficient exist. For example, based on an analysis
of the discrete maximum principle in the stationary, one-dimensional case, the following formula was
proposed in[16]:

�ww =
(

4

h2 
 + 2

h
	

)−1

. (64)

Currently, we tend to favor the original formulation presented in[17]. In any case, since the advection–
diffusion operator depends on the coarse-scale solution, the matrix of stabilizing coefficients needs to be
evaluated at each integration point, at every iteration.
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4. Representative numerical simulations

In this section, we present an application of the variational multiscale method to multiphase flow
in porous media. Numerical solutions are obtained using three different methods: the classical Galerkin
finite element method, an upstream finite difference method, and the variational multiscale method with an
algebraic subgrid approximation of the subscales. The objective of this section is twofold: (1) demonstrate
the enhanced stability of the multiscale method, compared with the classical Galerkin method; and (2)
show that the proposed method is much less diffusive than the traditional finite difference upstream
discretization.

We confine our attention to a two-dimensional, two-phase waterflood problem, where water is injected
in an oil reservoir. The geometry of the domain is shown inFig. 1. It is a quarter of a five-spot pattern,
with the injector located at the lower-left corner, and the producer at the upper-right corner. The medium
has a high-conductivity patch, where the permeability is two orders of magnitude greater than in the rest
of the domain.

We express the physical problem indimensionlessquantities by taking the following values of the
parameters:

L= 1,
k

�
=
[

1 0
0 1

]
, �w = 1, �o = 2. (65)

We use the following relative permeability functions:

krw =
(
Sw − Swc

1 − Swc

)2

, Swc = 0.15, (66)

kro = o
So − Som

1 − Som
+ (1 − o)

(
So − Som

1 − Som

)2

, o = 0.1, Som = 0.20. (67)

L

L

Inje  ctor

Pr oducer

100                                                                                                                                                                                                                      xk

Fig. 1. Geometry of the waterflood problem.
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Fig. 2. Water saturation att = 2 and 5, obtained with the Galerkin method.

The problem is intended to be solved in the limit of zero capillarity, and we do so when we use the
upstream finite difference method. The Galerkin method, however, is not capable of dealing with the
purely hyperbolic problem. Therefore, we introduce a very crude capillary pressure model, by assuming
that�wP

′
cw = 
w = const.Although this model is not based on physical considerations, it is valid from a

practical viewpoint because the level of capillary diffusion is sufficiently small.
The boundaries of the domain are taken as no-flow boundaries. We consider that both wells op-

erate under pressure control. The dimensionless pressures at the wells are:pinje = 1 at the injector,
andpprod = 0 at the producer. Only water is injected at the injection well. Therefore, the water sat-
uration quickly reaches a constant valueSw,inje = 1 − Som = 0.8. The natural boundary condition
for the production well is to impose that the reservoir fluids (oil and water) are produced according
to their mobility. This boundary condition was used in the finite difference calculations (performed
with the commercial simulator Eclipse 100[20]). In the Galerkin and the multiscale simulations, how-
ever, we used a Dirichlet boundary condition at the production well:Sw,prod = Sw,init . Such condi-
tion makes the problem more challenging numerically because a sharp boundary layer forms after
breakthrough of the injected water (see below). The water saturation is initialized to a constant value,
Sw,init = 0.25. The pressure variable does not require initial conditions because it is governed by an
elliptic equation.

The domain is discretized into a fairly coarse grid of 25× 25 elements. We use a Crank–Nicolson
time-stepping technique, with a constant time step�t=0.04. The capillary diffusion level is set to a small
value
w = 0.001.
Water saturation field. The numerical solution of water saturation obtained with each of the three

methods is presented below. InFig. 2we show the water saturation computed by the classical Galerkin
method at simulation timest = 2 (before breakthrough) andt = 5 (after breakthrough). The solution is
polluted with global spurious oscillations, which become especially severe after breakthrough. This
behavior was expected, in view of the lack of stability of the classical Galerkin method for nearly
hyperbolic problems.

The results from the upstream finite difference method (obtained using the reservoir simulator Eclipse
100) are shown inFig. 3. Even though the problem has zero capillarity and should display sharp moving
fronts, the numerical solution is extremely diffusive.

In Fig. 4we plot the water saturation obtained with the variational multiscale formulation proposed in
this paper. By incorporating the effect of the subscales in the coarse-scale equation, the method removes
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Fig. 3. Water saturation att = 2 and 5, obtained with the upstream FD method.
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Fig. 4. Water saturation att = 2 and 5, obtained with the multiscale method.

the oscillatory behavior of the classical Galerkin method, and produces a stable solution. The accuracy
of the solution is also remarkable. Despite the fact that a very coarse mesh was used, the method is
able to reproduce all the sharp features of the solution: the shock of invading water, the boundary layer
that forms at the interface between the high- and low-permeability regions, and the boundary layer near
the production well after breakthrough. It is important to emphasize at this point that the computational
cost of the multiscale method is only marginally higher than that of the classical Galerkin method. The
difference reduces to the computation of few additional integrals, evaluated element by element. In fact,
this additional computational cost is sometimes offset by the improved convergence behavior of the
nonlinear iteration at every time step.
Pressure field. By using the�-matrix proposed in Eq. (56), we are effectively neglecting the pressure

subscales. However, the pressure solution of the Galerkin method and the multiscale method are not
the same. By virtue of the strong coupling between the pressure and saturation equations, the saturation
subscales impact the pressure solution. This effect is illustrated inFigs. 5and6, where we plot the pressure
solution obtained with the Galerkin method and the multiscale method, respectively, at timest = 2 and 5.
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Fig. 5. Pressure att = 2 and 5, obtained with the classical Galerkin method.
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Fig. 6. Pressure att = 2 and 5, obtained with the multiscale method.

The Galerkin solution and the multiscale solution are very different, especially after breakthrough.
Refinement studies confirm that the multiscale solution is highly accurate.

5. Conclusions

We have presented a variational multiscale method for the numerical simulation of multiphase flow in
porous media. The multiscale formulation, which is based on the original framework of[3], leads naturally
to a stabilized finite element method. The formulation was derived for general nonlinear systems of
conservation laws of advection–diffusion type, extending our previous work on one-dimensional systems
[7,8]. The design of the matrix of intrinsic time scales, however, is case-dependent. The proposed structure
of this matrix (for the two-phase flow problem of interest) stems from an examination of the lack of stability
of the Galerkin method.

We demonstrate the excellent performance of the method with an illustrative example involving a
waterflood of a heterogeneous oil reservoir. The variational multiscale method yields a stable and highly
accurate numerical solution of both the pressure and the water saturation on a very coarse grid. The
multiscale solution does not present spurious oscillations, and captures the sharp features of the physical
solution. Although not reported here, the proposed multiscale method yields equally successful results
when applied to other problems of practical interest, such as the shallow water equations.
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