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Abstract We present a variational multiscale mixed
finite element method for the solution of Darcy flow
in porous media, in which both the permeability field
and the source term display a multiscale character.
The formulation is based on a multiscale split of the
solution into coarse and subgrid scales. This decom-
position is invoked in a variational setting that leads
to a rigorous definition of a (global) coarse problem
and a set of (local) subgrid problems. One of the key
issues for the success of the method is the proper
definition of the boundary conditions for the local-
ization of the subgrid problems. We identify a weak
compatibility condition that allows for subgrid com-
munication across element interfaces, a feature that
turns out to be essential for obtaining high-quality
solutions. We also remove the singularities due to
concentrated sources from the coarse-scale problem
by introducing additional multiscale basis functions,
based on a decomposition of fine-scale source terms
into coarse and deviatoric components. The method
is locally conservative and employs a low-order ap-
proximation of pressure and velocity at both scales.
We illustrate the performance of the method on sev-
eral synthetic cases and conclude that the method
is able to capture the global and local flow patterns
accurately.
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1 Introduction

The equations governing the flow of fluids in the sub-
surface (oil and gas reservoirs, confined aquifers, va-
dose zone, etc.) can, in many cases, be formulated in
terms of a single “pressure” equation (of elliptic char-
acter) describing an overall mass balance and “com-
ponent” equations (of hyperbolic character) governing
the differential displacement of each component [8].

In this work, we concentrate on the numerical solu-
tion of a model pressure equation:

∇ · (−k∇ p) = f, (1)

where the coefficient tensor k is discontinuous, highly
variable, and may present short and long correlation
lengths. Moreover, the source/sink term f displays a
multiscale character also. In practical scenarios, flow is
driven by injection and production wells. Because wells
are features that are much smaller than the grid size,
they must be understood as concentrated (point or line)
sources.

A number of approaches are currently being inves-
tigated for the numerical simulation of porous media
flow with rough permeability fields. We can identify at
least two main tracks: multiscale finite element or fi-
nite volume methods, and variational multiscale (VMS)
methods.

The multiscale finite element method was originally
proposed in [20] for the solution of elliptic equations
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with rapidly oscillating coefficients. The main idea is
to construct finite element basis functions that them-
selves are solutions to the elliptic operator inside each
element and, therefore, capture small scale information
[10, 11]. The method was analyzed in a series of subse-
quent papers (see, e.g., [19, 21]). A mixed finite element
version that guarantees local mass conservation at the
element level was proposed in [16]. This work was
recently extended in a number of important ways by the
Norwegian school [1, 2]. Inspired in the multiscale finite
element method, a multiscale finite volume method
was proposed in [24]. This method also preserves mass
conservation at the coarse and fine scales (see also
[25, 28]).

The VMS method was originally proposed by
Hughes et al. [22, 23] as an overarching framework
for the solution of partial differential equations that
exhibit multiscale phenomena (either due to small-scale
heterogeneity or sharp features that cannot be captured
on a coarse grid). The essence of the method is to per-
form a multiscale split of the solution into a coarse-scale
part (that can be approximated on a coarse grid) and a
subscale component. The multiscale split is invoked in a
variational setting, which leads to a rigorous definition
of a coarse-scale problem and a subgrid-scale prob-
lem. Although an approximation (localization) of the
subgrid problem is typically necessary, the framework
offers a rigorous formulation for incorporating subgrid
effects in the coarse scale equations. A mixed variant of
the method, coined “numerical subgrid upscaling,” was
developed independently by Arbogast et al. [3–5, 7].

Links between the mixed version of the VMS ap-
proach and the mixed multiscale finite element method
have been pointed out recently [6]. A thorough com-
parison of the different multiscale methods (as well
as interesting extensions) has recently been presented
in [27].

In the present paper, we adopt the VMS framework
to develop a locally conservative multiscale method.
We extend the formulation presented in [26] to account
for the presence of source terms with a multiscale
character (wells). The main contributions are:

1. We propose an enhanced localization assumption
needed to define the local subgrid problems, which
allows for subgrid communication across element
interfaces and boundaries.

2. We introduce multiscale “well” basis functions,
based on a decomposition of fine-scale source terms
into coarse and deviatoric components.

One of the main features of the proposed method
is the relaxed localization assumption with respect to
the numerical subgrid upscaling method [4]. We do

not provide direct numerical comparisons between the
two methods, for two reasons. First, results in [4] use
a higher-order velocity space (BDM1) on the coarse
scale, whereas we use the lowest-order space (RT0)—
therefore, a fair direct comparison is difficult. We point
out, however, that the choice of RT0 in the numerical
subgrid upscaling method would imply that the sub-
scales are identically equal to zero—clearly a limitation.
Second, in the paper, we show that, in the absence
of multiscale source terms, our method is equivalent
to a multiscale mixed finite element method [2]. A
thorough comparison of different multiscale techniques
(including the numerical subgrid upscaling method) is
provided by [27].

The proposed approach to handle concentrated
sources is fundamentally different from the one pro-
posed in [34]. Both approaches superpose two solu-
tions: a well solution and a background solution. The
split in [34] is succinctly expressed in a paragraph from
their paper: “. . . the source term is removed from the
coarse cell that contains the well; the well effects, which
are captured by the well basis function, are represented
on the coarse scale as integral contributions to adja-
cent coarse cells.” In contrast, our background solution
contains the entire strength of the source term, albeit
averaged (constant over the well gridblock). The well
contribution (more generally, the contribution from
any multiscale source term) is the solution to a local
problem with zero integral divergence—purely a de-
viatoric (or zero-mean) source term. Our treatment
effectively removes the well singularity from the
coarse-scale problem, is naturally mass conservative,
and allows well regions to overlap.

In Section 2, we introduce the governing equations
and the mixed finite element approximation of the
global fine-scale problem. The VMS mixed finite ele-
ment method is developed in Section 3, with special
emphasis on the enhanced localization assumption we
propose. In Section 4, we extend the method to in-
corporate multiscale source terms. In Section 5, we
illustrate the performance of the proposed method on a
number of challenging simulations. Finally, in Section 6,
we draw the main conclusions of this investigation.

2 Mathematical formulation

2.1 Governing equations

We shall use the following model pressure equation:

∇ · u = f in �, (2)
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where f is the source term, which may be highly vari-
able and display a multiscale character, and u is the
total velocity given by Darcy’s law:

u = −k∇ p. (3)

The symbol k is the permeability tensor, and p is the
pressure. In a more general setting (multiphase flow
problems including gravity effects), k is the total mobil-
ity tensor, and p is the flow potential. The permeability
tensor is symmetric and positive definite. The compo-
nents of k are assumed to be bounded, but they may
be highly discontinuous and display large anisotropy
ratios. In this work, we shall assume that k is a diagonal
tensor. The pressure equation is supplemented with the
following boundary conditions:

p = p̄ on �p, (4)

u · n = ū on �u, (5)

where �p ∩ �u = ∅, �p ∪ �u = ∂�, and n is the outward
unit normal to the boundary. For expositional simplic-
ity and without loss of generality (see, e.g., Section IV.1
of [13]), we may take a homogeneous Neumann bound-
ary condition:

ū = 0 on �u. (6)

2.2 Mixed variational formulation

We write Eqs. 2 and 3 in the following form:

k−1u + ∇ p = 0, (7)

∇ · u = f. (8)

We introduce the following functional spaces:

W ≡ L2(�) =
{

q :
∫

�

|q|2 d� = ‖q‖2
L2(�) < +∞

}
, (9)

with inner product

(q, p) :=
∫

�

q p d�, q, p ∈ L2(�), (10)

and

H(div, �) = {
v : v ∈ (L2(�))2, ∇ · v ∈ L2(�)

}
, (11)

with inner product

(v, u) :=
∫

�

v · u d�, v, u ∈ H(div, �). (12)

The space L2(�) is the usual Sobolev space of square
integrable functions in �. The space H(div, �) is

defined such that a vector v belonging to this
space admits a well-defined normal trace on ∂� [13,
Section III.1.1]:

v̄ ≡ v · n ∈ H−1/2(∂�). (13)

We will also make use of the following space:

V ≡ H0,u(div, �) = {v : v ∈ H(div, �), v · n = 0 on �u} .

(14)

of functions in H(div, �) with null normal trace on
the Neumann boundary �u. Denoting by H1/2(�) the
dual space of H−1/2(�) for � ⊂ ∂�, we also define the
duality product:

〈ū, p̄〉� :=
∫

�

ū p̄ d�, ū ∈ H−1/2(�), p̄ ∈ H1/2(�).

(15)

Making use of the functional spaces defined above, we
can express the problem given by Eqs. 7 and 8 with
boundary conditions (4)–(6) in mixed variational form:
Find (u, p) ∈ V × W such that

(v, k−1u) − (∇ · v, p) = −〈v · n, p̄〉�p ∀v ∈ V, (16)

(w, ∇ · u) = (w, f ) ∀w ∈ W. (17)

It is well known that this problem has a unique solu-
tion [13].

2.3 The mixed finite element method

The mixed variational formulation provides the basis
for the mixed finite element method. Let Vh ⊂ V and
Wh ⊂ W be finite dimensional subspaces of the corre-
sponding continuum spaces, the mixed finite element
approximation of Eqs. 16 and 17 reads: Find (uh, ph) ∈
Vh × Wh such that

(vh, k
−1uh) − (∇ · vh, ph) = −〈vh · n, p̄〉�p ∀vh ∈ Vh,

(18)

(wh, ∇ · uh) = (wh, f ) ∀wh ∈ Wh. (19)

The spaces Vh and Wh cannot be chosen independently;
they must satisfy a standard coercivity condition and
the discrete inf-sup condition [9, 12]. The numerical
solution of Eqs. 18 and 19 invariably involves a par-
tition Th of the domain � into nonoverlapping ele-
ments ei, Th = ⋃Nh

i=1 ei, where Nh is the number of
elements of the grid. We also define the skeleton of
the partition, Sh = ⋃Mh

a=1 γa, where Mh is the number
of element faces denoted by γa. We shall understand the
partition Th as the fine grid, on which the permeability k
is defined. For definiteness, we shall use a partition
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into rectangular elements and associate the fine-scale
velocity space with the lowest-order Raviart–Thomas
space, RT0(Th) [31]:

Vh =
{

vh : vh =
Mh∑
a=1

Nh
ava, vb = 0 ∀γb ∈ �u

}
, (20)

where Nh
a is the RT0 basis function associated with

face γa and va is the corresponding degree of freedom
(the integrated flux through face γa). The correspond-
ing pressure approximation is piecewise constant on the
fine mesh, P0(Th):

Wh =
{

wh : wh =
Nh∑
i=1

χh
i wi

}
, (21)

where χh
i is the characteristic function for element i

(equal to one at element ei, zero at all other elements)
and wi is the corresponding degree of freedom (the
average pressure at element ei).

Other choices of velocity and pressure spaces are of
course possible [13]. The RT0 space is, however, the
simplest. Moreover, it can be shown that, for diagonal
permeability tensor and under appropriate numerical
quadrature, this method reduces to the traditional finite
difference method [32, 33].

3 The variational multiscale method

3.1 Principle

The essence of the VMS method [22, 23] is to perform
a multiscale split of the solution into a coarse-scale
part (that can be approximated on a coarse grid) and a
subscale component. The multiscale split is invoked in a
variational setting, which leads to a rigorous definition
of a coarse-scale problem and a subgrid-scale problem.
By virtue of this decomposition, we acknowledge that
the fine-scale details of the solution cannot be captured
on a coarse grid. As it turns out, inaccuracies at the
subgrid level may resonate and produce a numerical
solution that is globally polluted with errors if one does
not model subgrid effects correctly. We show that high-
fidelity fine-scale solutions can be obtained by properly
accounting for subgrid-scale heterogeneity.

Although the VMS formalism is general and can be
applied to the continuum problem [5, 22, 26], here, we
restrict our attention to the discrete fine-scale prob-
lem. Consider a coarse partition of the domain TH =⋃NH

i=1 Ei and the associated skeleton SH = ⋃MH
a=1 �a on

which a coarse-scale discretization is defined, and the
decomposition of the fine-scale solution:

uh = uH + ũ, (22)

ph = pH + p̃. (23)

This decomposition is unique if we can express the
original fine-scale solution space Vh × Wh as the direct
sum of two spaces, with:

Vh = VH ⊕ Ṽ, (24)

Wh = WH ⊕ W̃, (25)

where VH × WH is the space of coarse scales and Ṽ ×
W̃ is the space of subgrid scales. This decomposition
allows one to split the fine-scale problem (18) and (19)
into a coarse-scale problem and a subscale problem.
Testing against coarse-scale test functions, we obtain
the coarse-scale problem: Find (uH, pH) ∈ VH × WH

such that

(vH, k−1uH) + (vH, k−1ũ) − (∇ · vH, pH) − (∇ · vH, p̃)

= −〈vH · n, p̄〉�p, (26)

(wH, ∇ · uH) + (wH, ∇ · ũ) = (wH, f ), (27)

for all vH ∈ VH and wH ∈ WH . Testing against the sub-
scale test functions and expressing the inner product as
sums over coarse elements Ei, i = 1, . . . , NH , we arrive
at the subscale problem: Find (ũ, p̃) ∈ Ṽ × W̃ such that

NH∑
i=1

[
(ṽ, k−1uH)Ei + (ṽ, k−1ũ)Ei − (∇ · ṽ, pH)Ei

− (∇ · ṽ, p̃)Ei

]
=−

NH∑
i=1

〈ṽ · n, p̄〉�p∩∂ Ei , (28)

NH∑
i=1

[
(w̃, ∇ · uH)Ei

]
+

NH∑
i=1

[
(w̃, ∇ · ũ)Ei

]
=

NH∑
i=1

(w̃, f )Ei .

(29)

for all ṽ ∈ Ṽ and w̃ ∈ W̃. We make the following
remarks:

1. The solution obtained from the additive decom-
positions (22) and (23) above is exact; that is, the
solution to Eqs. 26 and 27 and Eqs. 28 and 29
is the solution to the original fine-scale problems
(18) and (19). This requires, however, the direct
sum decompositions (24) and (25). In practice, the
subscale spaces Ṽ and W̃ are very difficult—if not
impossible—to characterize.
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2. The subgrid-scale problem (28)–(29) is an infi-
nite dimensional, global problem. Therefore, in the
form presented above, the complexity of the prob-
lem is the same as the original one.

3. The formulation is residual based in the sense that,
if the coarse solution is the exact solution, the
subscales vanish identically.

4. For the formulation to be advantageous from
a computational viewpoint, we need a judicious
choice of the coarse and subgrid approximation
spaces, as well as a good localization assumption
that will decouple the global subgrid problem into
a set of local problems. These two key issues are
addressed in the remainder of this section and in
Section 4.

3.2 Choice of finite element spaces

Although this is by no means necessary, we assume
for simplicity that the partitions Th (fine grid) and
TH (coarse grid) are nested, conforming, and consist
of rectangular elements. In other words, the coarse
grid TH results from a Cartesian upgridding of the fine
grid Th. The target fine-scale approximation spaces are
the lowest-order Raviart–Thomas space for the veloc-
ity, Vh = RT0(Th), and the space of piecewise constants
for the pressure, Wh = P0(Th). We restrict our atten-
tion to coarse-scale velocity spaces that are compat-
ible with a piecewise constant approximation of the
pressure, WH = P0(TH). The two obvious choices are
VH = RT0(TH) and the Brezzi–Douglas–Marini space
of order 1, VH = BDM1(TH) [14]. Both spaces satisfy
the property div VH = WH , and the inf-sup compatibil-
ity condition. In contrast with the choice made in [4],
here, we use the low-order RT0(TH) space. Therefore,
we define:

VH =
{

vH : vH =
MH∑
a=1

NH
a Va, Vb = 0 ∀�b ∈ �u

}
,

(30)

WH =
{

wH : wH =
NH∑
i=1

χ H
i Wi

}
, (31)

where NH
a is the RT0 basis function associated with

the coarse-element face �a, Va is the integrated coarse-
scale flux through �a, χ H

i is the characteristic function
for coarse element Ei, and Wi is the average pressure
on coarse element Ei.

To mimic the fine-scale solution, the subgrid ve-
locities are restricted to belong to the lowest-order
Raviart–Thomas space on the fine grid within each
coarse element. Let Ei,h = Th(Ei) denote the fine grid

defined over coarse element Ei. The subgrid-scale ve-
locity field will be defined on each element satisfying
the condition:

ṼEi ⊂ RT0(Ei,h). (32)

The elements of ṼEi can be extended to all of � by zero,
to define the subgrid velocity space as the direct sum of
the subgrid spaces over coarse elements:

Ṽ =
NH⊕
i=1

ṼEi . (33)

Clearly, to have a continuous fine-scale velocity field,
the subgrid velocity spaces must satisfy compatibility
conditions on the skeleton of the coarse grid. This issue
will be discussed in detail in the next subsection.

For consistency, the subgrid pressure space is re-
stricted to belong to the space of discontinuous constant
functions on each coarse element:

W̃Ei ⊂ P0(Ei,h). (34)

An additional condition will be imposed to guaran-
tee uniqueness of the solution. The elements of these
spaces are extended by zero functions to the entire do-
main �, and the subgrid pressure space is then defined
as:

W̃ =
NH⊕
i=1

W̃Ei . (35)

3.3 Localization of the subgrid problem

The essential requirement in the construction of our
multiscale method is that the approximation be locally
conservative at both scales; that is, it must satisfy the
discrete version of the mass conservation statement
on each element of the coarse and fine grids. This
requirement leads to the condition:

(wH, ∇ · uH)Ei = (wH, f )Ei ∀Ei ∈ TH, (36)

or, equivalently, ∇ · uH = �H f —the projection of the
source term onto the space WH of piecewise constants
on the coarse grid. Substituting Eq. 36 in the coarse-
scale equation (27) leads to

(wH, ∇ · ũ)Ei = 0 ∀Ei ∈ TH. (37)

As wH is constant on each element, we can use the di-
vergence theorem to translate Eq. 37 into the following
compatibility condition on the subgrid velocities:
∫

∂ Ei

ũ · n d� = 0 ∀Ei ∈ TH. (38)
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Equation 38 is the essential condition that guarantees
mass conservation at both scales and allows localizing
the subgrid-scale problem. Of course, this condition can
be immediately satisfied if one imposes ũ · n = 0 on ∂ Ei

pointwise, as was done in [4] and [5], to define the
subgrid velocity space on each element as follows:

ṼEi,0 = {
ṽ : ṽ ∈ RT0(Ei,h), ṽ · n = 0 on ∂ Ei

}
. (39)

However, this pointwise condition does not account for
subgrid velocity variability across element interfaces.
The important observation [26] is that such localization
assumption is too stringent and, in fact, unnecessary:
All that is required is that the subgrid velocities satisfy
the weaker compatibility condition (38).

As a result, we approximate the global subgrid prob-
lems (28) and (29) as a set of Neumann problems
on individual coarse elements. We make the following
observations:

1. As we solve a Neumann problem on each coarse
element Ei, the subgrid velocity test function ṽ
must satisfy ṽ · n = 0 on ∂ Ei, which leads to the
following orthogonality condition:

(∇ · ṽ, pH)Ei = 0. (40)

2. To guarantee uniqueness of the local subgrid prob-
lems, we define the space of subgrid pressure W̃ as
the orthogonal complement of WH in Wh:

W̃ = W⊥
H = {w̃ ∈ Wh : (w̃, wH) = 0 ∀wH ∈ WH}.

(41)

As WH = div VH , we have the additional orthogo-
nality relation:

(∇ · vH, p̃)Ei = 0 or, equivalently
∫

Ei

p̃ d� = 0.

(42)

In the light of the observations above, we define the
following functional spaces on the fine grid Ei,h of each
coarse element:

ṼEi,ũ :=
{

ṽ ∈ RT0(Ei,h), ṽ · n = ũ on ∂ Ei with
∫

∂ Ei

ũ d� = 0

}
, (43)

W̃Ei :=
{
w̃ ∈ P0(Ei,h),

∫
Ei

w̃ d� = 0

}
. (44)

The global subgrid spaces are defined through an ex-
tension to � by zero functions and a direct sum like in
Eqs. 33 and 35.

3.4 Boundary conditions for the local
subgrid problems

Using the compatibility condition (38) and the orthogo-
nality conditions (40)–(42), the subgrid problem reads:
For each coarse element Ei = 1, . . . , NH , find (ũ, p̃) ∈
ṼEi,ũ × W̃Ei such that

(ṽ, k−1ũ)Ei − (∇ · ṽ, p̃)Ei = −(ṽ, k−1uH)Ei , (45)

(w̃, ∇ · ũ)Ei = (w̃, f − ∇ · uH)Ei . (46)

for all ṽ ∈ ṼEi,0 and w̃ ∈ W̃Ei . Given uH and the local
boundary conditions ũEi (to be discussed next), the
problem above has a unique solution. The global sub-
grid scale solution (ũ, p̃) is then obtained by patching
together the solutions on each coarse element.

In the remaining of this section, we shall restrict our
attention to the case when the source function does
not display a multiscale character. Mathematically, this
means that the source function is equal to its projection
on the space of coarse-scale pressures:

(wH, f ) = (wH, 1) f for all wH ∈ WH, (47)

or, equivalently,

f = �H f = fH = ∇ · uH. (48)

Under these conditions, the right-hand side of Eq. 46 is
equal to zero. Clearly, the case in which Eq. 48 is not
satisfied is important in the presence of wells, and it is
discussed at length in Section 4.

3.4.1 No subgrid communication

Consider first the choice of zero subgrid flux across
coarse elements, ũ = 0 on ∂ E for all E ∈ TH [4, 5].
Recalling Eq. 30, the subgrid solution inside element E
takes the form:

ũ =
∑

a

Ñ0
aUa, (49)

p̃ =
∑

a

φ̃0
aUa. (50)

where
(

Ñ0
a, φ̃

0
a

)
∈ ṼE,0 × W̃E is the solution to:

(
ṽ, k−1Ñ0

a

)
E − (∇ · ṽ, φ̃0

a

)
E =−(

ṽ, k−1NH
a

)
E ∀ṽ ∈ ṼE,0,

(51)
(
w̃, ∇ · Ñ0

a

)
E = 0 ∀w̃ ∈ W̃E. (52)

This solution is referred to as a subgrid numerical
Green function [4]. Equations 49 and 50 show that the
subgrid solution scales linearly with the coarse-scale
fluxes Ua.
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3.4.2 Proposed subgrid communication

If subgrid communication between coarse elements is
disallowed, the subgrid velocity is restricted to recir-
culation functions within each coarse element. This
localization assumption clearly limits the ability of the
method to capture thin but long-range permeability
structures that span more than one coarse element. In
general, if ũ �= 0 on ∂ E, the subgrid solution takes the
form:

ũ = ũskel +
∑

a

Ñ0
aUa, (53)

p̃ = p̃skel +
∑

a

φ̃0
aUa, (54)

where (ũskel, p̃skel) reflects the influence of the local
subgrid boundary conditions. We design these to satisfy
the following conditions:

1. Lead to a flux-continuous (conforming) velocity
field.

2. Result in a discretization that is locally mass-
conservative at both scales.

3. Reflect the fine-scale heterogeneity.
4. Be computable without knowledge of the global

velocity field.

Condition 1 will be satisfied if the subgrid flux is
uniquely defined on the skeleton SH of the coarse
grid TH . An easy way to ensure condition 2 is to
impose that the subscale flux satisfy:∫

�a

ũ d� = 0 ∀�a ∈ SH. (55)

Condition 3 requires that the subscale velocity be a
solution to local problems using the fine-scale perme-
ability k. In an attempt to satisfy condition 4, we let
the subgrid flux on each coarse edge scale with the
coarse flux through that edge. Equations 53 and 54 are
then rewritten as:

ũ =
∑

a

(
Ñskel

a + Ñ0
a

)
Ua =

∑
a

ÑaUa, (56)

p̃ =
∑

a

(
φ̃skel

a + φ̃0
a

)
Ua =

∑
a

φ̃aUa. (57)

Therefore, we can define the multiscale velocity as the
sum of the coarse-scale and subgrid-scale components:

uH,h = uH + ũ =
∑

a

(
NH

a + Ña

)
Ua =

∑
a

NH,h
a Ua,

(58)

where NH,h
a is the multiscale velocity basis function

associated with interface �a. Different definitions of the

multiscale basis functions exist [1, 2, 16], and in this
work, we have adopted the recent one proposed by [27],
where the multiscale basis function is the solution to
a flow problem restricted to a pair of adjacent coarse
elements with source terms specified in such a way
that the flow through the interface is identically one
(see Fig. 1). More precisely, the multiscale basis func-
tions (NH,h

a , φH,h
a ) for interface �a (common to coarse

elements Ei and Ej) are the solution to the following
local problem:

k−1NH,h
a + ∇φH,h

a = 0 in Ei ∪ Ej, (59)

∇ · NH,h
a =

⎧⎪⎪⎨
⎪⎪⎩

w(x)

/ ∫
Ei

w(x) d� if x ∈ Ei,

−w(x)

/ ∫
Ej

w(x) d� if x ∈ Ej,

(60)

NH,h
a · n = 0 on ∂(Ei ∪ Ej). (61)

In [27], it is suggested that the source function w(x)

be scaled with the trace of the permeability tensor,
trace k(x). To ensure that the method is mass conser-
vative at the coarse and subscale level, we impose the
following scaling for w(x) on each element:

w(x) =
{

trace k(x) if �H f = 0,

1 if �H f �= 0.
(62)

It is important to observe that the coarse-scale RT0

basis functions are in fact solutions to Eqs. 59–62 with
k(x) = constant and w(x) = 1.

Proposition If we define the subscale basis functions on
each element Ei as:

Ña = NH,h
a − NH

a , (63)

φ̃Ei
a = φH,h

a − 1

|Ei|
∫

Ei

φH,h
a d�, (64)

Fig. 1 Diagram illustrating the local flow problem defining the
multiscale basis functions
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then

ũ =
∑

a

ÑaUa, (65)

p̃ =
∑

a

φ̃Ei
a Ua, (66)

is a solution to the subgrid problem (45)–(46).

Proof We first show that solutions (65)–(66) satisfy the
mass balance equation (46). Recall that we consider
the case with a source function f = �H f only. The
case f /∈ WH will be treated in Section 4. Under this
assumption, Eq. 46 reduces to

(w̃, ∇ · ũ)E = 0 ∀w̃ ∈ W̃E (67)

or, equivalently,∑
a

Ua(w̃, ∇ · Ña)E = 0 ∀w̃ ∈ W̃E. (68)

We must consider two cases:

1. Zero source on element E, �H f = 0. In this case,
mass conservation on the coarse scale implies

∇ · uH = 0 on E ⇒
∫

∂ E
uH · n d� = 0

⇒
∑

a

Ua = 0. (69)

Under this condition, Eq. 68 is satisfied as long as
∇ · Ña is a function of position, but independent of
the face a. This is indeed satisfied by our definition
of the multiscale basis functions with w(x) given by
Eq. 62.

2. Nonzero source on element E, �H f �= 0. In this
case, Eq. 69 does not hold, and Eq. 68 implies

(w̃, ∇ · Ña)E = 0 ∀w̃ ∈ W̃E. (70)

for all �a ∈ ∂ E individually. This condition, to-
gether with Equation 55, implies that ∇ · Ña ≡ 0
on E. Once again, this is satisfied by our definition
of the source function in Eq. 62.

We now need to show that (ũ, p̃) defined in Eqs. 65
and 66 satisfy the Darcy equation (45). First we note
that, by virtue of Eqs. 63 and 64,∫

�a

Ña · n d� = 0,

∫
E

φ̃E
a d� = 0. (71)

Therefore, (ũ, p̃) ∈ ṼE,ũ × W̃E independently of the
coarse-scale fluxes Ua. Using integration by parts, we
write Eq. 45 in strong form:

k−1ũ + ∇ p̃ = −k−1uH in E (72)

or, equivalently:

∑
a

Ua

(
k−1NH,h

a + ∇φH,h
a

)
= 0 in E. (73)

Indeed, the term in parenthesis is identically equal to
zero by Eq. 59. This completes the proof. ��

Remark The local problems (59–61) can be solved
using a low-order (RT0) mixed finite element method
or a finite volume method. Clearly, for constant k,
the multiscale basis function reduces to the common
RT0 basis function, and the subgrid basis function is
identically equal to zero. In the presence of subgrid
heterogeneity, the subgrid basis function will capture
not only flow redistribution within the coarse element,
but also preferential flow across the interface.

A slightly modified problem needs to be solved for
the multiscale basis function at a face �a on the bound-
ary of the domain. If �a ⊂ �p, we solve the same local
problem (59)–(61), with an imaginary coarse element
whose permeability is a reflection (with respect to �a)
of the permeability of the element inside the domain.
Although our description in this paper is restricted to
the case of zero prescribed flux, ū = 0, our implemen-
tation certainly allows for ū �= 0. In that case, if �a ⊂ �u,
we solve the following local problem:

k−1NH,h
a + ∇φH,h

a = 0 in Ei, (74)

∇ · NH,h
a = −w(x)

/ ∫
Ei

w(x) d�, (75)

NH,h
a · n =

⎧⎨
⎩

0 on ∂ Ei \ �a,

ū
/ ∫

�a

ū d� on �a,
(76)

We note that the multiscale basis function may differ
from the RT0 coarse basis function due to subgrid
variability of either the permeability k or the prescribed
flux ū. Our definition ensures that the fine-scale bound-
ary fluxes are honored exactly.

3.5 The coarse-scale problem revisited

Making use of the compatibility condition (37) and the
orthogonality relation (42), the coarse-scale problems
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(26) and (27) read: Find (uH, pH) ∈ VH × WH such
that

(vH, k−1uH) + (vH, k−1ũ) − (∇ · vH, pH)

= −〈vH · n, p̄〉�p, (77)

(wH, ∇ · uH) = (wH, f ), (78)

for all vH ∈ VH and wH ∈ WH . It is interesting to note
that the subgrid contribution to the coarse-scale prob-
lem, albeit essential, is confined to the second term of
Eq. 77.

This form of the problem is nonsymmetric. In prac-
tice, it is convenient to express it as an equivalent,
symmetric problem. For this purpose, we define the
multiscale velocity and pressure space functions:

VH,h =
{

vH,h : vH,h =
MH∑
a=1

NH,h
a Va, Vb = 0 ∀�b ∈ �u

}
,

(79)

WH,h = WH ⊕ W̃

=
{

wH,h : wH,h =
NH∑
i=1

χ H
i

(
Wi +

∑
a

φ̃Ei
a Va

)}
,(80)

Proposition The coarse scale problem (77)–(78) can
be written in the following equivalent, symmetric form:
Find (uH,h, pH,h) ∈ VH,h × WH,h such that

(vH,h, k−1uH,h) − (∇ · vH,h, pH,h) = −〈vH,h · n, p̄〉�p,

(81)

(wH,h, ∇ · uH,h) = (wH,h, f ), (82)

for all vH,h ∈ VH,h and wH,h ∈ WH,h.

Proof We first show that Eqs. 77 and 81 are equivalent.
The first term in Eq. 81 can be written as:

(vH,h, k
−1uH,h) = (vH, k−1uH,h) + (ṽ, k−1uH,h). (83)

Exploiting the orthogonality properties div VH ⊥ W̃
and div Ṽ ⊥ WH and integration by parts, the second
term reads:

− (∇ · vH,h, pH,h) = − (∇ · vH, pH) + (ṽ, ∇ p̃)

− 〈ṽ · n, p̄〉�p . (84)

Inserting the two equations above in Eq. 81, we obtain:

(vH, k−1uH,h) − (∇ · vH, pH) + (ṽ, k−1uH,h + ∇ p̃)

= −〈vH · n, p̄〉�p . (85)

The third term in the equation above vanishes due
to our definition of the subgrid problem, so we have
arrived at Eq. 77.

We now show the equivalence of Eqs. 77 and 82.
Exploiting the orthogonality properties once again and
recalling that, in this section, we are considering the
case f = �H f only, Eq. 82 takes the form:

(wH, ∇ · uH) + (w̃, ∇ · ũ) = (wH, f ). (86)

The second term vanishes due to the imposed mass
conservation at the fine scale (see Eq. 67 and the subse-
quent discussion). This completes the proof. ��

3.6 A multiscale method with a coarse pressure
approximation

The proposition above shows that, for the case in
which the source term does not display fine-scale vari-
ability, our variational multiscale mixed finite element
(VMSMFE) method is equivalent to a multiscale mixed
finite element method. This observation was made in
[6] for the case when subgrid communication was dis-
allowed (they also treated a method with oversampling
that leads to a nonconforming fine-scale velocity field).
Numerical results from the solution of Eqs. 77 and 78
(or their symmetric equivalent [Eqs. 81 and 82]) were
given in [26]. Further experimentation has shown that
improved results are obtained when the pressure space
is restricted to belong to the space of piecewise constant
functions on the coarse grid.

The problem to be solved is essentially identical
to Eqs. 81 and 82, except that the solution space for
the pressure is WH instead of WH,h: Find (uH,h, pH) ∈
VH,h × WH such that

(vH,h, k
−1uH,h) − (∇ · vH,h, pH) = −〈vH,h · n, p̄〉�p,

(87)

(wH, ∇ · uH,h) = (wH, f ), (88)

for all vH,h ∈ VH,h and wH ∈ WH .
In the absence of a source term with multiscale

character, this method is precisely the multiscale mixed
finite element method proposed in [27]. Our method
differs in its derivation (the VMS framework rather
than the multiscale finite element method) and, more
importantly, in the treatment of fine-scale sources. The
improved behavior is not only restricted to the pressure
solution, but also to the velocity field, as both fields are
coupled. In any case, the fine-scale pressure can still be
reconstructed according to the multiscale decomposi-
tion (23) with p̃ given by Eq. 66 once the solution has
been computed. This step does not carry any additional
computational cost, as the subgrid-scale pressure basis
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functions are obtained together with the velocity basis
functions.

3.6.1 Implementation

The implementation of the VMSMFE method is rela-
tively straightforward. It consists of the following steps:

1. Precompute the multiscale basis functions (NH,h
a ,

φH,h
a ) for each coarse interface �a.

2. Build the system of equations corresponding to the
coarse-scale problems (87) and (88):

[
A −Bt

B 0

] [
U
P

]
=

[
g
f

]
, (89)

to be solved for the coarse-scale interface
fluxes U = {Ua} and cell-center pressures P = {Pi}.
The system incorporates the subgrid-scale con-
tributions in matrix A, obtained by assembly of the
coarse-element contributions:

AE
ab =

∫
E

NH,h
a k−1NH,h

b d�. (90)

As both the permeability tensor and the basis func-
tions display a multiscale character, the integrals
must be evaluated on the underlying fine grid. The
matrix is symmetric, as it corresponds to the sym-
metric form of the problem.

3. Reconstruct the fine-scale velocity and pressure
fields resorting to the additive decompositions (22)
and (23). The subgrid part is obtained by linear
combination of the (known) coarse-scale fluxes and
(precomputed) subgrid-scale basis functions.

4 Multiscale source terms

In this section, we shall examine the case when the
source/sink term presents a multiscale character. This
is a scenario of paramount importance because, in
practice, flow is driven by injection and production
wells. Wells are features that are much smaller than the
resolution that one can afford in field-scale simulations
and should, therefore, be understood as concentrated
(point or line) sources. A well model relates the flow
rate into or out of the well with the difference between
the wellbore pressure and the average pressure of the
well gridblock. An analytical representation of such re-
lationship is possible in simplified cases—in particular,
when the well block is assumed to be homogeneous

[8, 30]. In a multiscale method that attempts to capture
subgrid variability, two things are needed:

1. A computational strategy to handle concentrated
sources with variability at the scale of the fine grid.

2. A well model that relates flow rate with the pressure
difference between the wellbore and the fine well
block.

In this paper, we concentrate exclusively on the first
issue and assume that the source term is a function
that displays variability at the scale of the fine grid.
In particular, we shall assume that the source term f
belongs to the space of piecewise constant functions on
the fine grid:

f = �h f ∈ Wh. (91)

To fully account for the presence of wells, standard well
models can then be used at the fine scale.

As this is a case of practical interest, we shall un-
derstand that f consists of a number of concentrated
sources:1

f (x) =
Nw∑
j=1

f j(x). (92)

Each f j is a concentrated source/sink that is constant
on a fine scale gridblock e j, inside a coarse block Ej. Of
course, several wells may exist within the same coarse
block. In Section 3, we presented a VMS method for the
solution of the problem without fine wells; that is, when
the sources where assumed to be spread over coarse
elements, f = �H f = 0. In this section, we extend the
formulation to consider subgrid variations of the source
term,

f̃ := f − �H f �= 0, (93)

while preserving mass conservation at both coarse and
subgrid scales.

4.1 Principle

We start by decomposing the source term into its coarse
scale and subscale components:

f = fH + f̃ , (94)

where fH ∈ WH and f̃ ∈ W̃. The subscale component
is simply the deviatoric (zero-mean) part of f on each

1In what follows, we shall abuse language and refer to ‘wells’
when, strictly speaking, we mean ‘concentrated or point sources’.
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coarse element. It is then natural to decompose the full
multiscale solution as follows:

uwell
H,h = uH,h + uwell, (95)

pwell
H,h = pH,h + pwell, (96)

where (uH,h, pH,h) is the solution to a problem with
coarse source terms fH and (uwell, pwell) is the solu-
tion to a problem with deviatoric fine-scale sources f̃ .
Special care must be taken of the prescribed-pressure
boundary conditions. As we will see, the well problem is
defined as a Neumann problem with deviatoric sources
on each element and zero-flux boundary conditions.
This results in certain pressures at the boundary, p̄well.
The multiscale solution must then be seen as the so-
lution to the original problem, but with coarse sources
and with pressure boundary conditions replaced by
p̄ − p̄well.

4.2 The local well problem

Recall the decomposition of the source term into indi-
vidual wells j = 1, . . . , Nw. We express the well solution
as

uwell =
Nw∑
j=1

Q jψ
well
j , (97)

pwell =
Nw∑
j=1

Q jϕ
well
j , (98)

where Q j is the strength of each well:

Q j =
∫

e j

f (x) dx = f j|e j|, (99)

and ψwell
j and ϕwell

j are the well velocity and pressure
basis functions, respectively.

To maintain the computational complexity of the
multiscale method, we assume that the well functions
have local support in a subdomain � j that is equal to or
larger than coarse block Ej containing the well; that is,
e j ⊂ Ej ⊆ � j. More precisely, the well basis functions
(ψwell

j , ϕwell
j ) for well j are the solution to the following

problem:

k−1ψwell
j + ∇ϕwell

j = 0 in � j, (100)

∇ · ψwell
j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

|e j| − 1

|Ej| if x ∈ e j

− 1

|Ej| if x ∈ Ej\e j

0 if x ∈ � j\Ej

(101)

ψwell
j · n = 0 on ∂� j. (102)

Fig. 2 Diagram illustrating the local flow problem defining the
well basis functions

From an implementation standpoint, the well region � j

is a group of elements surrounding the fine well block e j

(see Fig. 2). The actual size of � j is determined by set-
ting a length scale parameter Lw. We choose to express
this length scale as a fraction Nl of the characteristic
dimension of the domain, L�, such that:

Lw = Nl L�. (103)

Clearly, a larger Lw will allow for a more accurate rep-
resentation of the well effects, at the cost of increasing
the computational cost. In the numerical simulations of
the next section, we typically choose values between
Nl = 1/16 and Nl = 1/4. Near boundaries, the well
region is always restricted to lie inside the domain.

4.3 The coarse-scale problem revisited

The solution of the fine-scale well problem as pro-
posed here is independent of the multiscale problem
with coarse source terms. Once the well basis func-
tions (ψwell

j , ϕwell
j ) have been computed for all wells

and the fine-scale well solution constructed by linear
combination through Eqs. 97 and 98, the pressure at the
boundary p̄well is recorded.

The coarse-scale problems (87) and (88) must be
modified only to replace the source function by its
gridblock-averaged counterpart and to incorporate the
(subgrid-scale) influence of wells on boundaries with
prescribed pressure.
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Fig. 3 Small channelized
system. Fine-scale finite
volume solution
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The coarse-scale problem reads: Find (uH,h, pH) ∈
VH,h × WH such that

(vH,h, k
−1uH,h)−(∇ · vH,h, pH)=−〈vH,h · n, p̄− p̄well〉�p,

(104)

(wH, ∇ · uH,h) = (wH, fH), (105)

for all vH,h ∈ VH,h and wH ∈ WH . Once the coarse-scale
problem has been computed, the full solution is given
by Eqs. 95 and 96.

This formulation—based on introducing additional
basis functions associated with each well—removes
the singularities from the multiscale problem due to
the presence of wells. Our definition of the (local)
well problems as Neumann problems with a deviatoric
source in the coarse well block leads to a mass con-
servative velocity at both scales. An important feature
of our formulation is that well regions are allowed to
overlap without compromising mass conservation or
flux continuity, which gives flexibility with regard to the
choice of the well length scale.

5 Numerical simulations

In this section, we illustrate the performance of the
VMSMFE method in several cases of increasing com-
plexity. We restrict our attention to examples in two
dimensions with uniform rectangular grids. To assess
the accuracy and robustness of the method with respect
to heterogeneity, meshes and wells, we compare the so-
lutions obtained using the proposed multiscale method

with the reference fine-scale solution obtained using a
two-point finite volume method.

We compute a mean pressure error in the following
manner:

ε(p) = ‖p− pref‖2

‖pref‖2
, (106)

where p and pref are array vectors that contain the av-
erage pressure in each fine element (multiscale solution
and reference finite volume solution, respectively) and
‖ · ‖ is the usual discrete l2 norm. The velocity error is
computed as:

ε(u) = ‖ux − uref
x ‖2

‖uref
x ‖2

+ ‖uy − uref
y ‖2

‖uref
y ‖2

, (107)

where ux and uy are array vectors that contain the
average velocities across the fine mesh interfaces in the
x- and y-directions.

5.1 Small channelized system

The first example illustrates the ability of the method
to capture the global and detailed flow pattern in the
presence of drastic subgrid heterogeneity. The fine grid
is just a 4 × 4 grid, with isotropic permeability field
shown in Fig. 3a. The red blocks are highly conduc-
tive (k = 1), and the blue blocks correspond to low
permeability (k = 10−3). Flow is left to right, with the
left boundary set at a pressure p̄left = 1 and the right

Fig. 4 Small channelized
system. VMS solution on a
2 × 2 coarse grid
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boundary at p̄right = 0. The top and bottom boundaries
are no-flow boundaries.

The pressure and flux in the x-direction from a finite
volume solution computed on the fine grid are shown
in Fig. 3. The contours of x-flux clearly indicate the
preferential flow path along the high-conductivity chan-
nel. In Fig. 4, we show the solution obtained using the
VMSMFE method on a coarse grid of 2 × 2 elements.
The multiscale solution captures the sharp contrast
in permeability, although there is no scale separation
at all (the high-permeability channel spans the entire
domain).

The fine-scale finite volume solution predicts an
overall flow rate across the domain of 0.2064 and the
VMS solution a flow rate of 0.2422 (a 17% error).
For comparison, the flow rate computed with the finite
volume method on a refined grid of 16 × 16 elements
is 0.2477. This represents a 17% difference with respect
to the flow rate computed on a 4 × 4 grid on which the
permeability is defined. In this particular case, the error
between VMS and fine-scale finite volume solutions
is thus of the same order as the error between finite
volume solutions on the fine-scale and on the refined
grid. In the examples that follow, the VMS solution on a
number of coarse grids is compared only with the finite
volume solution on the original fine grid in which the
permeability is defined.

5.2 Quarter five-spot simulations

In this study, we show results for corner-to-corner flow
in a two-dimensional unit square geometry, a config-
uration known as a quarter of a five-spot pattern. In-
jector and producer are located in diagonally opposite
vertices of the grid (Fig. 5), and all boundaries are no-
flow boundaries. Wells at the corners of the domain are
modeled as source/sink terms over the fine-scale corner
grid block. We used a fine grid of 64 × 64 elements.

Inj

Prod

Fig. 5 Schematic of the quarter five-spot problem

The objective of this section is to study the perfor-
mance of the proposed VMS formulation for:

– Different heterogeneous permeability fields:
smoothly varying and channelized.

– A variety of coarse meshes: from 2- to 16-fold up-
gridding in each direction (N = 32 × 32 to 4 × 4,
respectively).

– Various choices of the well length scale: well region
ranging from 2 × 2 to 16 × 16 fine blocks (Nl = 1/32
to 1/4, respectively).

5.2.1 Isotropic correlation structure

In this heterogeneous structure, the permeability is
isotropic and log-normally distributed with dimension-
less correlation length equal to 0.1 in each direction,
and σ 2

log k ≈ 1.0. The permeability field is shown in
Fig. 6.

In Fig. 7, we plot the velocity and pressure errors for
different coarse discretizations and well length scales
used to compute the fine well contributions. As ex-
pected, the error decreases with increasing number of
coarse cells. In this case, the multiscale solutions are
fairly independent of the well length scale, although
larger support for the well basis function results in
slightly smaller error.

5.2.2 System with vertical channels

In this study, we present results for a highly heteroge-
neous system (the permeability varies over 8 orders of
magnitude) in which the heterogeneity is dominated by
a large correlation length (about 1.0) in the y-direction.
The correlation length in the x-direction is around 0.1,
as before. The log-permeability map is shown in Fig. 8.

The velocity and pressure errors are shown in Fig. 9.
The pressure error decreases monotonically, as the
coarse grid is refined, and it decreases also (albeit
slightly) with increasing well length scale. The velocity
error displays a somewhat different behavior: The error
is larger for a coarse grid of 8 × 8 or 16 × 16 elements
than for a coarse grid of 4 × 4 elements. The reason is
that, due to the drastic changes in permeability in the
x-direction, the VMSMFE exhibits a mild resonance
effect for coarse discretizations of the same length scale
as the x-correlation length.

5.2.3 System with diagonal channels

Similar observations apply for a heterogeneous perme-
ability field with large correlation length in the diag-
onal direction (Fig. 10). The pressure error decreases
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Fig. 6 Log-permeability field for the isotropic correlation
structure

monotonically with increasing refinement of the coarse
grid and well length scale. The velocity error, on the
other hand, is small but does not exhibit a clear trend
with respect to the coarse discretization (Fig. 11).

5.3 Study of anisotropy

It has been reported recently [27, 29] that some multi-
scale methods have difficulty in producing high quality
solutions in the presence of permeability anisotropy or
large aspect ratios of the grid (both cases are common
in reservoir models). In this study, we demonstrate
the ability of our proposed method to cope with these
scenarios. We consider diagonal permeability tensors

k =
(

kxx 0
0 kyy

)
, (108)

where α = kyy/kxx is the anisotropy ratio. To fully
explore the effect of anisotropy, we used values of α

ranging from 0.01 to 100 (the same value of α is used
for all gridblocks in any given simulation). To isolate
the effect of anisotropy, but avoid the physically unre-
alistic case of homogeneous media, we perturbed the
permeability field with

kxx = 1 + δ, (109)

where δ is a random number, uniformly distributed and
of magnitude bounded by |δ| ≤ 0.01. The actual log-
permeability (kxx) field defined on a 64 × 64 fine grid
is shown in Fig. 12.

The flow scenario is the same as the one described
in the previous section: no-flow boundaries, with an
injection well at the bottom-left corner and a producer
at the top-right corner of the square domain. This is in
fact a challenging test case that leads to the formation
of boundary layers. The fine grid is a 64 × 64 grid, and
we make use of several coarse meshes with unit aspect
ratio: 4, 8, 16, and 32. As an illustration of the good
behavior of the method, we show in Fig. 13 the pressure
field computed with a finite volume method on the
fine grid and the VMSMFE method for a value of the
anisotropy ratio of α = 0.1. The multiscale solution was
computed on a 8 × 8 coarse grid and with a well length
scale Nl = 1/4.

Figure 14 shows the velocity and pressure errors for
different anisotropy ratios α and different choices of the
coarse grid. The well length scale is set at a value Nl =
1/4 for all computations. The results reveal the very
robust behavior of the proposed VMSMFE method
with respect to anisotropy. For α = 1 (isotropic), the
method yields a very accurate solution for all coarse
discretizations: ε(u) ≈ 10−2 for all coarse grids, and
ε(p) decreases monotonically, as the coarse grid is

Fig. 7 Velocity (left) and
pressure (right) errors for the
isotropic correlation scenario
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vertical channels

refined. Another indication of the robustness of the
method is that the results for α = 10 (resp. α = 100) are
virtually identical to those for α = 0.1 (resp. α = 0.01).
Of course, increasing levels of anisotropy (α = 10, 100)
lead to larger velocity and pressure errors. However,
the errors are still small, and they decrease with refine-
ment of the coarse grid.

5.4 Simulations in realistic two-dimensional
reservoirs

5.4.1 Highly heterogeneous, smoothly varying
permeability

This test case is a two-dimensional problem with a
highly heterogeneous isotropic permeability. The per-
meability field, shown in Fig. 15a, has large (but

smooth) variations of 6 orders of magnitude. It is taken
from the top layer of the 10th SPE comparative solution
project [17]. The fine grid on which the permeability is
defined consists of 60 × 220 gridblocks. All boundaries
are no-flow boundaries. Flow is driven by an injection
well at the center of the domain and four production
wells, one at each corner (see Fig. 15a). Production
wells are modeled as sinks over one fine gridblock – the
corner gridblock. To respect symmetry, the production
well is modeled as a source over four gridblocks on
the fine grid. The location of fine-scale sources and
sinks is independent of the choice of the coarse grid.
Therefore, the wells may be placed at the center or at
the boundary of a coarse element, depending on the
coarse discretization.

The finite volume solution computed on the fine
grid is shown in Fig. 15. Most of the pressure drop
occurs at the low permeability region 20 < y < 40. The
contour plots of x- and y-flux clearly indicate flow
focusing along the more permeable regions, bypassing
the low-permeability areas. The velocity field displays,
however, significant small-scale structure in response to
the spatial permeability variations.

In Fig. 16, we show the solution (fine-scale pressure,
x-flux and y-flux) obtained with the VMSMFE method
on a coarse grid of 6 × 22 elements (each containing
10 × 10 fine blocks) and a well length scale of Nl = 1/4.
Despite the severe heterogeneity and the rather ag-
gressive 100-fold upgridding, the multiscale solution is
remarkably accurate. The velocity error is ε(u) = 0.185.
Moreover, both the large and small scale flow patterns
are captured with very high fidelity. It should be noted,
however, that, although the average (coarse) pres-
sure field is accurate, the reconstructed (fine) pressure
presents slight oscillations at the interfaces between
coarse elements.

Fig. 9 Velocity (left) and
pressure (right) errors for
the scenario with vertical
channels
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In Fig. 17, we show the velocity and pressure error
of the VMS method for a fixed length scale Nl = 1/4
as a function of the coarse discretization into Nx × Ny

elements, for all combinations of Nx = {6, 10, 30} and
Ny = {11, 22, 55, 110}. In this way, we test the robust-
ness of the method with respect to not only coarseness
of the (coarse) grid, but also to (coarse) grid aspect
ratio. We make the following observations:

– The method displays very good behavior even for
aggressive upgridding. As expected, the error is
smaller for discretizations with aspect ratio close to
unity (6 × 22, 10 × 55, and 30 × 110 grids), and it
decreases with refinement of the coarse grid.

– The pressure error is very small, between 10−3

and 10−2 in most cases. Pressure errors are larger,
however, for grids with Ny = 11. These grids have
coarse elements with 20 fine gridblocks in the
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Fig. 12 Log-permeability (kxx) field for the study of anisotropy

y-direction – approximately the extent of the low-
permeability zone.

– The velocity error is larger for grids with a large
aspect ratio (notably, for the 6 × 110 coarse grid).

5.4.2 Highly heterogeneous, channelized
permeability

This test case is a challenging two-dimensional problem
with a highly heterogeneous, but now rough (channel-
ized) permeability field (see Fig. 18a). It is a synthetic
model of a fluvial reservoir, taken from Layer 59 of the
10th SPE comparative solution project. The fine grid,
boundary conditions, and well locations are the same
as in the previous example.

In Fig. 18, we plot the pressure and fluxes from a fine-
grid finite volume solution. The most salient feature
is the pronounced focusing of flow along the high-

Fig. 11 Velocity (left) and
pressure (right) errors for the
scenario with diagonal
channels
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Fig. 13 Pressure field for
the anisotropic permeability
field (α = 0.1). Left fine-scale
finite volume solution.
Right variational multiscale
solution on a 8 × 8 grid
(8 × 8 upgridding)
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permeability channels, leading to very high velocities
(in both x- and y-directions) over very narrow regions
of the domain. This is also true near the injection and
production wells.

The VMS solution is shown in Fig. 19. It was com-
puted, as before, on a coarse grid of 6 × 22 elements,
each containing 10 × 10 fine blocks, using a well length
scale of Nl = 1/4. The method is able to capture the
high-velocity regions very accurately, although they
have a long range in the streamwise direction and a
very short range in the spanwise direction. The global
flow pattern is reproduced accurately as well. This is
evidenced by the small mean velocity error of ε(u) =
0.330. Clearly, an essential ingredient of the proposed
method is its ability to account for subgrid variability
at the element interfaces. Once again, the multiscale
pressure solution agrees well with the fine-grid finite
volume solution on an average sense, but presents
mild discrepancies after the fine-scale reconstruction
step, including spurious local maxima at coarse element
interfaces.

The mean velocity and pressure errors of the VMS
method for a fixed well length scale Nl = 1/4 and for
various coarse grids are shown in Fig. 20. As in the

previous example, the bar plot displays a valley (min-
ima) for discretizations with grid aspect ratio close to
unity (6 × 22, 10 × 55, and 30 × 110) and hills (maxima)
for discretizations with large aspect ratios (30 × 11 and
6 × 110).

Given the large values of the velocity error ε(u),
we investigate the applicability of the VMS method
for the accurate simulation of transport problems. We
simulate the transport of a passive tracer, described by
the advection equation, using a single-point upstream
discretization, and an explicit forward Euler time step-
ping [8]. The velocity field is fixed from the solution to
the pressure equation. We use the reconstructed fine-
scale fluxes obtained with the VMS method on various
coarse grids. The computed concentration field on a
number of different coarse grids is shown in Fig. 21. The
concentration fields are of very high quality, even for
the coarse grids on which the fluxes display large errors
(that is, the 30 × 22 and 30 × 55 grids).

The VMS method is also able to capture the behavior
of the breakthrough curves of the passive tracer at the
production wells. As shown in Fig. 22, the breakthrough
curves computed with the 6 × 22 and 30 × 55 grids
show very mild inaccuracies. The results for the 30 × 22

Fig. 14 Velocity (left) and
pressure (right) errors
for the anisotropic
permeability field

4 8 16 32
10

–3

10
–2

10
–1

10
0

Number of Coarse Elements in each direction

ε(
v)

α = 0.01
α = 0.1
α = 1
α = 10
α = 100

4 8 16 32
10

–6

10
–5

10
–4

10
–3

10
–2

10
–1

Number of Coarse Elements in each direction

ε(
p)

α = 0.01
α = 0.1
α = 1
α = 10
α = 100



Comput Geosci

Fig. 15 Smooth permeability
field. Finite volume solution
on the fine 60 × 220 grid
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Fig. 16 Smooth permeability
field. VMS solution on a
6 × 22 grid (10 × 10
upgridding) with well length
scale Nl = 1/4
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field. Velocity and pressure
errors for different coarse
discretizations
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Fig. 18 Channelized
permeability field. Finite
volume solution on the
fine 60 × 220 grid
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Fig. 19 Channelized
permeability field. VMS
solution on a 6 × 22 grid
(10 × 10 upgridding)
with well length scale
Nl = 1/4
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Fig. 20 Channelized
permeability field. Velocity
and pressure errors
for different coarse
discretizations
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Fig. 21 Concentration maps
at breakthrough with fluxes
obtained by a finite volume
method on the fine
60 × 220 grid; b VMS on
a 6 × 22 grid; c VMS on a
30 × 22 grid; d VMS on
a 30 × 55 grid
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grid are less accurate, but still far better than the ve-
locity error of ε(u) ≈ 4 would suggest. These results
show that the VMS method is applicable for accurate
simulation of transport problems and that the measure
given by the global velocity error ε(u) may be overly
pessimistic.

5.4.3 All layers

We complete our analysis of the performance of
the proposed VMS method by simulating the same
injection–production scenario for all layers of the
10th SPE comparative solution project, which includes

Fig. 22 Breakthrough curves
of the passive tracer at each
of the production wells,
computed using fine-scale
fluxes from different
coarse-grid discretizations.
Clockwise, from top-left:
Top-left well; Top-right
well; Bottom-right well;
Bottom-left well
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Fig. 23 All layers of the 10th SPE comparative solution project.
Velocity error

the two previous test cases and 83 other layers. The
first 35 layers correspond to the Tarbert formation
and display large, but smooth, variations in permeabil-
ity. The last 50 layers correspond to the Upper Ness
formation and are characterized by a channelized per-
meability field.
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Fig. 24 All layers of the 10th SPE comparative solution project.
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Fig. 25 Comparison of �BHP between the reference finite vol-
ume solution and the VMS solution with 100-fold upgridding for
all layers of the 10th SPE comparative solution project

Fine-scale velocity Finite volume solutions are com-
puted on a fine grid of 60 × 220 gridblocks, on which
the permeability field is defined. In Fig. 23, we plot
the velocity error of the VMSMFE solution for each
layer. The multiscale solution was computed using a
well length scale of Nl = 1/4 and a 6 × 22 coarse grid
(10 × 10 upgridding). It is apparent that the errors are
consistently lower for the first 35 layers, for which the
permeability field is smoother.

Simulation of transport The computed velocity error
takes large values, in the range 0.3–1.0, for the layers
in the highly channelized formation. As shown in the
previous subsection, however, this large velocity error
does not necessarily mean that the VMS method fails to
give accurate solutions to transport problems. To illus-
trate this, we simulate the transport of a passive tracer
using the reconstructed fine-scale fluxes from the VMS
solution on a 6 × 22 grid and compare the solution to a
reference finite volume solution on the fine grid. We
employ a simple measure of the mean concentration
error (at breakthrough in the first production well)
computed in the following manner:

ε(c) = ‖c− cref‖2

‖cref‖2
, (110)

where c and cref are array vectors that contain the av-
erage tracer concentration in each fine element (multi-
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scale solution and reference finite volume solution,
respectively) and ‖ · ‖ is the usual discrete l2 norm.

In Fig. 24, we plot the concentration error at break-
through for each layer. Clearly, the error remains small,
even for the challenging layers corresponding to the
Upper Ness formation. The mean concentration error
is 〈ε(c)〉 ≈ 0.033, almost an order of magnitude smaller
than the average velocity error, 〈ε(u)〉 ≈ 0.28. These
results indicate that the measure given by the velocity
error is too stringent and not entirely representative of
the quality of the flow solution.

Well pressures In practice, well rates are dependent
on the difference between the well pressure and the
gridblock pressure. Therefore, it is very important that
the fine-scale pressure be of high quality. In this study,
we measure the quality of the fine-scale pressure so-
lution by computing a weighted pressure difference
between injectors and producers. More precisely, we
compute the following quantity:

�BHP :=
Nw∑
j=1

Q jp j, (111)

where Q j is the well rate (positive for injectors,
negative for producers) and p j is the well fine-scale
gridblock pressure. For each layer, we compare the
computed quantity �BHP from a fine-scale finite volume
solution and the VMSMFE solution on a 6 × 22 grid
(100-fold upgridding) with Nl = 1/4. This comparison
is shown in Fig. 25. For the entire range of values,
�BHP from the VMS solution is remarkably accurate –
if the VMS solution were exact, the graph would show
a perfect 1 : 1 correlation. This is an essential property
for the practical use of the proposed VMS method in
reservoir simulation.

6 Conclusions and future work

The numerical simulations of the previous section
demonstrate that the VMS mixed finite element
method provides highly accurate solutions to flow sce-
narios with challenging permeability fields and concen-
trated fine-scale source terms. In the spirit of many
other multiscale methods, this is accomplished through
the solution of a global coarse-grid problem that incor-
porates (rigorously, in a variational setting) the effect of
the subgrid scales computed locally. The method is an
extension of the numerical subgrid upscaling technique
proposed in [4] and, as we show here, has a clear

connection with the multiscale mixed finite element
method [27]. The key ingredients of our method are:

1. A weak localization assumption of the subgrid
problems that allows for subgrid communication
across element interfaces.

2. A decomposition of fine-scale source terms into
coarse and deviatoric components and the defini-
tion of multiscale “well” basis functions.

The method is locally conservative, flux-continuous,
and employs a low-order mixed finite element approx-
imation at both scales. The method, as presented here,
is amenable to a number of extensions, such as:

1. Introducing a Peaceman-type well model for prac-
tical use of the method in reservoir simulation.

2. Coupling with the transport equation and extend-
ing it to the nonlinear regime (non-unit mobility
ratio and multiphase flow).

3. Incorporating global information in the definition
of the local subgrid problems, in the spirit of the
coupled local–global upscaling approach [15, 18].
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