
DOI 10.1007/s11242-005-5049-z
Transport in Porous Media (2006) 64: 339–373 © Springer 2006

Analytical Solutions to Multiphase
First-Contact Miscible Models with
Viscous Fingering

RUBEN JUANES1,� and MARTIN J. BLUNT2

1Department of Petroleum Engineering, Stanford University, 65 Green Earth Sciences
Bldg., Stanford, CA 94305, USA
2Department of Earth Science and Engineering, Imperial College, London SW7 2AZ, UK

(Received 8 March 2005; accepted in final form: 2 November 2005)

Abstract. In this paper, we analyze an empirical model of viscous fingering for three-com-
ponent, two-phase, first-contact miscible flows. We present the complete range of analyti-
cal solutions to secondary and tertiary water-alternating-gas (WAG) floods. An important
ingredient in the construction of analytical solutions is the presence of detached (nonlo-
cal) branches of the Hugoniot locus, that is, curves in composition space that satisfy the
Rankine–Hugoniot conditions but do not contain the reference state. We illustrate how,
in water–solvent floods into a medium with mobile water and residual oil (immobile to
water), the solvent front and the water Buckley–Leverett front may interact, resulting in
a leading water/solvent shock that is stable to viscous fingering. The analytical solutions
explain why in these miscible tertiary floods, oil and solvent often break through simulta-
neously. We discuss the implications of the new solutions in the design of miscible tertiary
floods, such as the estimation of the optimum WAG ratio.

Key words: miscible flooding, viscous fingering, water-alternating-gas, optimum WAG
ratio, Riemann problem, Hugoniot locus, detached branches.

1. Introduction

Solvent injection is a commonly used technology for enhanced oil recov-
ery in hydrocarbon reservoirs (Stalkup, 1983; Lake, 1989), and it can be
a viable option for environmental remediation of groundwater pollution
by nonaqueous phase liquids (Khan et al., 1996). The objective of sol-
vent flooding is to develop miscibility between the resident and injected
hydrocarbon phases, thereby mobilizing the residual oil, and enhancing the
mobility of the hydrocarbon phase. One of the key technical and practi-
cal aspects of miscible flooding is the development of fluid instabilities in
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the form of viscous fingering when a low viscosity fluid (solvent) is injected
into a formation filled with more viscous fluids (water and oil) (Saffman
and Taylor, 1958).

Despite its high local displacement efficiency, the overall effectiveness of
solvent injection may be compromised by the low sweep efficiency associ-
ated with an unstable displacement process: the solvent fingers through the
porous medium, leading to early breakthrough and leaving much of the oil
behind. Simultaneous injection of solvent and water has shown to be effec-
tive at limiting the degree of fingering, by reducing the mobility contrast
between the injected and displaced fluids (Caudle and Dyes, 1958). In prac-
tice, water and solvent are injected in alternating slugs in a process called
water-alternating-gas or WAG. Thus, we shall refer to WAG injection even
though, strictly speaking, we mean simultaneous water–solvent injection.

Viscous fingering in porous media flows has been studied at length over
the past few decades. A comprehensive review of this phenomenon is given
by Homsy (1987). Viscous fingering can only occur in a multidimensional
scenario that allows for interface instabilities to develop. There are two
modeling approaches: (1) high-resolution numerical simulations that cap-
ture the details of the viscous fingering phenomenon (Christie and Jones,
1987; Tan and Homsy, 1988; Christie, 1989; Zimmerman and Homsy, 1991;
Christie et al., 1993; Tchelepi and Orr, 1994; Chen Meiburg, 1998; Ruith
and Meiburg, 2000) and (2) macroscopic models that capture just the rel-
evant averaged behavior of these displacements such as breakthrough time
and amounts of displaced and displacing fluids produced over time. In this
investigation we concentrate on the latter approach.

While there is conclusive theoretical, computational and experimental
evidence of the importance of viscous fingering in miscible displacements at
adverse mobility ratios in homogeneous porous media, other factors such
as permeability heterogeneity and gravity segregation may affect the dis-
placement patterns in the field. Several investigations (Fayers et al., 1992;
Chang et al., 1994; Tchelepi and Orr, 1994) suggest rather convincingly
that if the permeability field is highly heterogeneous with large correla-
tion lengths, the displacement will also be dominated by channeling of
the injected solvent through the high-permeability streaks. Gravity override
may also play a major role in three-dimensional displacements, especially in
combination with large-scale heterogeneities (Christie et al., 1990; Christie
et al., 1993; Chang et al., 1994; Tchelepi and Orr, 1994).

In this investigation, we examine a rather simplified setting in which
the medium is quasi-homogeneous and gravity forces are negligible. These
conditions are such that viscous fingering is the dominant mechanism for
pattern formation and, admittedly, may not be representative of the con-
ditions often encountered in heterogeneous reservoirs. However, the study
of viscous fingering under these assumptions is still of major interest:
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(1) short correlation-length heterogeneity and moderate gravity effects can
be included in macroscopic models of viscous fingering (Koval, 1963;
Fayers et al., 1992) and (2) conventional reservoir models do not capture
the fine-scale heterogeneity of the medium and the details of the displace-
ment patterns. Macroscopic models of viscous fingering are therefore useful
as a means of accounting for viscous fingering within each simulation grid
block (Todd and Longstaff, 1972; Christie et al., 1993).

Empirical models of viscous fingering have been successful at predict-
ing average behavior of unstable miscible floods of a single hydrocarbon
phase (Koval, 1963; Todd and Longstaff, 1972). Such empirical models
have later been extended and validated for three-component flows in which
two of the components (solvent and oil) are completely miscible (Blunt and
Christie, 1993, 1994), and for near-miscible compositional displacements
(Blunt et al., 1994).

In this paper, we revisit the analytical theory of first-contact miscible
displacements in the presence of viscous fingering. We consider three-com-
ponent flows (water, oil and solvent), and assume that oil and solvent mix
in all proportions to form a single hydrocarbon phase, which is immiscible
with the aqueous phase.

We employ the empirical model proposed by Blunt and Christie (1993,
1994). They used an extension of the Todd and Longstaff model (1972) to
describe fingering of the solvent in a two-phase, three-component system.
They proposed a self-consistency condition to calibrate the only parame-
ter of the fingering model – the effective mobility ratio Meff . Analytical
solutions were obtained for secondary floods (water–solvent injection into
a medium filled with mobile oil and immobile water) and tertiary floods
(water–solvent injection into a medium filled with mobile water and immo-
bile oil). They obtained an excellent agreement between analytical predic-
tions using the empirical one-dimensional model and averaged saturation
and concentration profiles from two-dimensional direct numerical simu-
lations. Their analysis was restricted, however, to secondary and tertiary
WAG floods in which the leading edge of the solvent front is slower than
the water shock.

In this paper we provide a comprehensive analysis of the system
of equations, and develop analytical solutions for secondary and ter-
tiary floods in which no a priori assumption is made on the veloc-
ity of the solvent front. An important ingredient in the construction
of analytical solutions is the presence of detached (nonlocal) branches
of the Hugoniot locus, that is, curves in composition space that satisfy
the Rankine–Hugoniot conditions but do not contain the reference state.
We show that the analytical solution may comprise a leading water/sol-
vent shock that is stable to viscous fingering. The analytical solutions
explain why, in miscible tertiary floods, oil and solvent often break through
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simultaneously. We anticipate that this result has important implications in
the design of miscible tertiary floods.

The paper is organized as follows. In Section 2 we present the math-
ematical model, which leads to a system of two first-order partial differ-
ential equations. The character of the system of equations is analyzed in
Section 3. In Section 4 we describe the complete catalogue of analytical
solutions to the Riemann problem for secondary and tertiary floods, for
any water–solvent injection ratio. In Section 5 we discuss further some of
the relevant findings, and we illustrate how the results carry over to a
model in which the effective mobility ratio is adapted dynamically. We spe-
cifically address the influence of viscous fingering on the estimation of the
optimum water–solvent ratio. Finally we give some conclusions and recom-
mendations in Section 6.

2. Mathematical Model

We study three-component (water, oil and solvent) flow in porous media
under the following assumptions (Blunt and Christie, 1993):

1. Water forms an aqueous phase, which is immiscible with the two hydro-
carbon components.

2. Oil and solvent mix in all proportions to form a single hydrocarbon
phase.

3. All fluids are incompressible.
4. There is no volume change in mixing.
5. The medium is rigid.
6. The effects of gravity and capillarity are negligible.
7. We use a multiphase extension of Darcy’s law (Muskat, 1949), with non-

hysteretic relative permeabilities.

It is useful to discuss further some of these assumptions. We are inter-
ested in the limit of negligible capillarity. Such approximation is sensible
when studying the large-scale behavior of viscous fingering in miscible sys-
tems. If the system is dominated by capillary forces, the instability in the
fluid displacement is of an entirely different nature (capillary fingering),
and neglecting capillary pressure between phases would not be appropriate
(Lenormand et al., 1988).

Hysteresis is not included in our analysis, that is, the relative perme-
ability functions do not reflect history dependence. This means that trap-
ping of the hydrocarbon phase during the water–solvent injection process is
ignored. For pure solvent floods, this assumption is not a limiting one: the
saturation of the (less wetting) hydrocarbon phase increases continuously,
with the solvent forming a continuous advancing cluster, thereby preclud-
ing trapping. However, this effect may become significant in simultaneous
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water–solvent injection, especially for secondary floods in which the water
front moves faster than the solvent front: the injected water may disconnect
some of the oil phase, making it less accessible for the solvent that trav-
els at a lower velocity. In such cases, modeling of the trapped hydrocar-
bon phase may be necessary (Lin and Huang, 1990; O’Steen and Huang,
1990). The effects of hysteresis (responsible for trapping of the oil) may
be even more relevant in water-alternating-gas applications (Spiteri and
Juanes, 2006; Spiteri et al., 2005).

Under the assumptions listed above, and ignoring the effect of viscous
fingering, the one-dimensional model describing the problem is given by the
following system of conservation equations (Juanes and Lie, 2005):

∂S

∂t
+ ∂f

∂x
=0, (1)

∂C

∂t
+ ∂

∂x

(
(1−f )

C

1−S

)
=0, (2)

where x and t are dimensionless space and time variables, respectively, S

is the water saturation, C is the solvent concentration, and f is the water
fractional flow function. The solvent concentration is the overall volume
fraction of solvent per unit pore volume:

C = (1−S)χ, (3)

where χ is the mass fraction of solvent in the hydrocarbon phase. The
water fractional flow f is the velocity of the aqueous phase divided by
the sum of the velocities of all flowing phases. When gravity and capillarity
are neglected, it takes the following simple form:

f = λw

λT

, (4)

where λT = λw + λh is the total mobility, and λα is the mobility of the α-
phase, defined as

λα = krα

µα

, (5)

where krα is the relative permeability and µα is the dynamic viscosity of the
α-phase. The viscosity of the hydrocarbon phase depends on the viscosities
of the oil and solvent components µo and µs (taken as constants) and the
mass fraction χ of solvent in the hydrocarbon phase. A common model for
the hydrocarbon viscosity is the quarter-power rule (Koval, 1963; Todd and
Longstaff, 1972):

µh =
[

1−χ

µ
1/4
o

+ χ

µ
1/4
s

]−4

. (6)
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Since the solvent viscosity is lower (usually much lower) than the oil viscos-
ity, the hydrocarbon viscosity is a decreasing function of the solvent mass
fraction. In Figure 1 we plot the hydrocarbon viscosity as a function of the
solvent mass fraction for an oil–solvent viscosity ratio M :=µo/µs =10. In
all the examples, we have used the following values of the fluid viscosities:
µw =1 cp, µo =4 cp, and µs =0.4 cp.

We assume that the relative permeabilities are unique functions of
the water saturation alone, therefore neglecting hysteresis effects and any
dependence of the hydrocarbon residual saturation on the solvent content.
In our examples, we have chosen a simple model with quadratic relative
permeabilities (Figure 2):

krw(S)=

⎧⎪⎨
⎪⎩

0 if S <Swc =0.2,(
S −Swc

1−Swc

)2

otherwise,
(7)

krh(S)=

⎧⎪⎨
⎪⎩

0 if 1−S <Shc =0.2,

0.1
(

1−S −Shc

1−Shc

)
+0.9

(
1−S −Shc

1−Shc

)2

otherwise.
(8)

As a result, the fractional flow is a function of both water saturation
and solvent concentration:

f =
krw(S)

µw

krw(S)

µw
+ krh(S)

µo((1−χ)+M1/4χ)

=f (S,C). (9)
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Figure 1. Dependence of the hydrocarbon viscosity on the solvent mass fraction.
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Figure 2. Top: relative permeabilities of the water and hydrocarbon phases. Bottom:
dependence of the fractional flow function on the solvent mass fraction.

Since the hydrocarbon viscosity decreases with the solvent fraction, the
overall mobility of the hydrocarbon phase is enhanced, resulting in lower
values of the water fractional flow. The dependence of the fractional flow
function on the solvent mass fraction is illustrated in Figure 2.

The effects of viscous fingering are incorporated by an empirical model
that modifies the effective solvent flux in such a way that the dispersive
effect of viscous fingering is captured:

(1−f )
C

1−S
≡ (1−f )χ −→ (1−f )g. (10)

In Figure 3 we show a schematic diagram of a stable and an unstable mis-
cible, single-phase displacement. Macroscopic models of viscous fingering
introduce the solvent flux function g in an attempt to capture the aver-
aged solvent mass fraction with a one-dimensional advective model (Koval,
1963).
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Figure 3. Schematic diagram of a stable miscible displacement (left) and an unstable
miscible displacement (right) of oil by solvent.

In this work, we shall use the solvent flux function (fractional flow of
solvent within the hydrocarbon phase) proposed by Koval (1963) and Todd
and Longstaff (1972):

g = ĝ(χ)= χ

χ + 1−χ

Meff

, (11)

where Meff is the effective mobility ratio. It is equal to one if viscous finger-
ing is not present, and increases as viscous fingering effects become more
pronounced. Different models exist to predict the value of Mmeff given the
oil and solvent viscosities. For example, Koval (1963) proposed

Meff = (
0.78+0.22M1/4)4

, (12)

and Todd and Longstaff (1972) suggested

Meff =M1−ω (13)

with ω = 2/3. Both correlations produce good agreement with experimen-
tal results for single-phase miscible displacements. In this paper we have
used the solvent flux function proposed by Koval. We have chosen Koval’s
model because it does not require calibration of an extra parameter, and
produced better agreement with experimental data (Blackwell et al., 1959)
than the Todd and Longstaff model with a single value of the parameter
ω (Fayers et al., 1992; Blunt and Christie, 1993). In Figure 4 we plot this
function for an oil–solvent viscosity ratio M = 10, for which the effective
mobility ratio is Meff ≈1.88.
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Figure 4. Solvent fractional flow function proposed by Koval (1963) for an effective
mobility ratio Meff ≈1.88.

3. Character of the System of Equations

A detailed analysis of the mathematical character of the equations for the
miscible system with no viscous fingering is given in Juanes and Lie (2005),
and will not be repeated here. When the effect of viscous fingering is incor-
porated, the system of conservation equations takes the following form:

∂t

[
S

C

]
+ ∂x

[
f

(1−f )g

]
=

[
0
0

]
, (14)

where f and g are understood as functions of the conservation variables:
f =f (S,C) and g =g(S,C). The solution vector (S,C) is restricted to lie
on the unit triangle:

U ≡{(S,C) :S ≥0, C ≥0, S +C ≤1} . (15)

For some of the analysis that follows, it proves useful to use the relation
between the solvent concentration and the solvent mass fraction given by
Equation (3), and express the system (14) in terms of the nonconservation
variables (S,χ):

∂t

[
S

(1−S)χ

]
+ ∂x

[
f

(1−f )g

]
=

[
0
0

]
, (16)

where now f and g are understood as functions of the nonconservation
variables: f (S,C)= f̂ (S,χ) and g(S,C)= ĝ(χ).
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3.1. mathematical character

For smooth solutions, the system (14) can be written as

∂t

[
S

C

]
+A(S,C)∂x

[
S

C

]
=

[
0
0

]
, (17)

where A is the Jacobian matrix of the system:

A(S,C) :=
[

∂f

∂S

∂f

∂C

(1−f )
∂g

∂S
− ∂f

∂S
g (1−f )

∂g

∂C
− ∂f

∂C
g

]
. (18)

Alternatively, the quasi-linear form of the system of equations may be writ-
ten in terms of the nonconservation variables by use of the chain rule:

∂t

[
S

χ

]
+ Â(S,χ)∂x

[
S

χ

]
=

[
0
0

]
, (19)

where

Â(S,χ) :=
[

∂f̂

∂S
+ χ

1−S

∂f̂

∂χ
1

1−S

∂f̂

∂χ

χ
1−f̂

1−S

∂ĝ

∂χ
− ∂f̂

∂S
ĝ −χ

∂f̂

∂χ

ĝ

1−S

1−f̂

1−S

∂ĝ

∂χ
− ∂f̂

∂χ

ĝ

1−S

]
. (20)

The local character of the system is determined by the eigenvalues (ν1

and ν2) and eigenvectors (r1 and r2) of the Jacobian matrix (Zauderer,
1983). The system is hyperbolic if the eigenvalues are real, and strictly
hyperbolic if the eigenvalues are real and distinct. In the latter case, the
matrix is diagonalizable and there exist two real and linearly independent
eigenvectors. If the two eigenvalues are complex conjugates, the system is
said to be elliptic.

If we express the 2×2 Jacobian matrix (20) in the generic form

Â=
[
a b

c d

]
, (21)

the eigenvalues of the system are given by:

ν1,2 = 1
2

[
(a +d)∓

√
�

]
, (22)

where

�= (a −d)2 +4bc. (23)

The eigenvalues are the characteristic speeds of propagation of waves and
the eigenvectors are the corresponding characteristic directions in phase
space. The system is hyperbolic if � ≥ 0 and strictly hyperbolic if the
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inequality is strict. In our case, and after some algebraic manipulations, the
discriminant is given by

�=
[

∂f̂

∂S
− 1− f̂

1−S

∂ĝ

∂χ
− ∂f̂

∂χ

ĝ −χ

1−S

]2

−4
∂f̂

∂χ

ĝ −χ

1−S

1− f̂

1−S

∂ĝ

∂χ
. (24)

Equation (24) deserves some attention. The term in brackets is squared and
is always nonnegative. Since the water fractional flow and the solvent flux
functions satisfy the following conditions:

0≤ f̂ ≤1,
∂f̂

∂χ
≤0, χ ≤ ĝ ≤1,

∂ĝ

∂χ
>0, (25)

the second term in Equation (24) is always nonnegative also. Therefore, the
system is everywhere hyperbolic. However, it is not strictly hyperbolic for
certain composition states:

1. In the region of residual hydrocarbon saturation, S > 1 − Shc. In this
region, f̂ ≡ 1 and the discriminant is identically equal to zero. In fact,
the Jacobian matrix is the zero matrix, so both eigenvalues are equal to
zero and every direction is characteristic.

2. For particular states on the oil–water edge (χ =0) and the solvent–water
edge (χ =1) of the saturation triangle. Along these edges, ĝ =χ and the
discriminant simplifies to

�=
[

∂f̂

∂S
− 1− f̂

1−S

∂ĝ

∂χ

]2

. (26)

The solvent flux function (11) satisfies

∂ĝ

∂χ

∣∣∣∣
χ=0

=Meff ,
∂ĝ

∂χ

∣∣∣∣
χ=1

= 1
Meff

. (27)

On each edge, there is a single saturation state for which � = 0. For
that saturation state on the oil–water edge (χ = 0), the Jacobian matrix
reduces to

Â(S,χ) :=
[

∂f̂

∂S
1

1−S

∂f̂

∂χ

0 1−f̂

1−S
Meff

]
. (28)

The double eigenvalue is ν = 1−f

1−S
Meff . The matrix is not diagonalizable,

which means that the system is parabolic and there is one single char-
acteristic direction on the (S,C)-plane, r = (1,0). For the nonstrictly
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hyperbolic state on the solvent–water edge (χ = 1), the Jacobian matrix
takes the following expression:

Â(S,χ) :=
[

∂f̂

∂S
+ 1

1−S

∂f̂

∂χ
1

1−S

∂f̂

∂χ

− 1
1−S

∂f̂

∂χ

1−f̂

1−S
1

Meff
− 1

1−S

∂f̂

∂χ

]
. (29)

The double eigenvalue is ν = 1−f

1−S
1

Meff
. Again, the matrix is not diagonal-

izable and the double eigenvector on the (S,C)-plane is r = (1,−1).

We are interested in the solution of the Riemann problem associated
with the system of equations (14). Using vector notation, the problem con-
sists in finding a weak solution to the system of hyperbolic conservation
laws:

∂tu+ ∂xF =0, −∞<x <∞, t >0 (30)

with the following initial conditions:

u(x,0)=
{

ul if x <0,

ur if x ≥0.
(31)

The state ul = (Sl,Cl) is the ‘left’ or ‘injected’ state, and ur = (Sr,Cr) is
the ‘right’ or ‘initial’ state. The system of Equations (30) and the ini-
tial condition (31) are invariant under uniform stretching of coordinates
(x, t) 	→ (cx, ct), c>0. The solution must consist of centered waves emanat-
ing from the origin (x, t)= (0,0). Therefore, we seek a self-similar solution

u(x, t)=U(ζ ), (32)

where the similarity variable is ζ =x/t . In what follows we describe key ele-
ments that allow to characterize the different waves that may arise in the
solution.

3.2. integral curves and rarefactions

If the solution U(ζ ) is smooth, it must satisfy (Smoller, 1994)

A(U)U ′ = ζU ′, (33)

that is, ζ is an eigenvalue (ν1 or ν2) and U ′ is the corresponding eigenvec-
tor (r1 or r2). Therefore, smooth waves (rarefactions) must lie on an inte-
gral curve of the right eigenvectors. States U along an integral curve are
defined by the differential equation

dU

dτ
= ri(U(τ)), i =1,2. (34)
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The two families of integral curves (composition paths) are shown in
Figure 5. Additionally, admissible rarefactions connecting two states must
satisfy that the characteristic velocity ζ =x/t =ν1 or ν2 increases along the
integral curve from the left state to the right state.

3.3. hugoniot loci and shocks

If the solution is discontinuous, states on opposite sides of the discontinu-
ity must satisfy an integral version of the conservation equations, known as
the Rankine–Hugoniot conditions. The set of states u that can be joined to
a reference state û by a discontinuity must satisfy:

F(u)−F(û)=σ (u− û), (35)

where σ is the speed of propagation of the discontinuity.
Locally, in a neighborhood of the reference state, Equation (35) admits

two families of solutions, associated with the slow and fast eigenvalues.
These two sets of solutions define the local branches of the Hugoniot locus.

Figure 5. Integral curves of the 1-family (blue) and 2-family (red) on the ternary
diagram. The two circles (◦) correspond to states where the system is nonstrictly
hyperbolic.
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In general, Hugoniot loci and integral curves locally have second-order tan-
gency (Smoller, 1994).

Not all states in the Hugoniot locus can be joined to the reference state
through a physically admissible discontinuity. A shock must satisfy addi-
tional entropy conditions to be physically valid. Entropy conditions for
strictly hyperbolic systems were compiled by Lax (1957) and extended by
Liu (1974, 1975) into what is now known as e-Lax admissibility criterion.
The development of suitable entropy conditions for nonstrictly hyperbolic
systems is still an open issue. A large body of literature has emerged in an
attempt to develop conditions that guarantee existence and uniqueness of
the solution (Schaeffer and Shearer, 1987a, b; Marchesin and Plohr, 2001).

In this work, we find unique solutions to the Riemann problem that sat-
isfy the e-Lax entropy criterion. Therefore, a valid discontinuity that joins
states u and û may be a 1-Lax shock if it satisfies:

ν1(u)≥σ ≥ν1(û),

σ <ν2(û),
(36)

or a 2-Lax shock if it satisfies:

ν2(u) ≥σ ≥ν2(û),

ν1(u) <σ.
(37)

A common feature of systems of conservation laws describing multi-
phase flow is the existence of detached branches of the Hugoniot locus
(Barkve, 1989; da Mota, 1992; de Souza, 1992; Falls and Schulte, 1992;
Isaacson et al., 1992; Marchesin and Plohr, 2001). These consist of states
which satisfy the Rankine–Hugoniot conditions, but do not belong to the
local branches that emanate from the reference state. In Figure 6 we plot
the Hugoniot locus for a reference state û= (0.2,0) that corresponds to a
secondary flood. In addition to the local branches associated with a slow
shock (along the line C = 0) and a fast shock (line S = 0.2), there is a
detached branch of states that satisfy the Rankine–Hugoniot conditions.
This set of states, however, does not satisfy the Lax entropy conditions and
does not play a role in the construction of solutions. In Figure 7 we show
the Hugoniot locus for a reference state û = (0.8,0). As before, the two
local branches are C =0 (slow shock) and S =0.8 (fast shock). A detached
branch also exists, which corresponds to admissible 2-Lax shocks. As we
discuss in Section 4, the presence of this detached branch is essential in the
construction of analytical solutions for tertiary floods.

3.4. inflection loci and rarefaction–shocks

The two characteristic fields of the system (14) are neither genuinely non-
linear nor linearly degenerate in the sense of Lax (1957). A field is said
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Figure 6. Hugoniot loci for a reference state û= (0.2,0) (�) corresponding to a sec-
ondary flood.

to be genuinely nonlinear if eigenvalues vary monotonically along integral
curves. A field is linearly degenerate if eigenvalues are constant along inte-
gral curves of a particular characteristic family. In our case, however, eigen-
values attain a local extremum along integral curves. The local extrema of
the i-family satisfy the following condition:

∇νi · ri =0. (38)

The locus of states for which Equation (38) is satisfied is known as the
i-inflection locus (Johansen and Winther, 1988; Schecter et al., 1996;
Ancona and Marson, 2001). In Figures 8 and 9 we plot the inflection loci
of the 1- and 2-characteristic families, respectively, along with the contours
of the corresponding eigenvalues. The relevance of inflection loci stems
from the fact that an admissible rarefaction cannot be extended across the
inflection locus of the associated family. For genuinely nonlinear systems,
individual waves may only be rarefactions or shocks (Lax, 1957). However,
for systems that are not genuinely nonlinear, such as the Buckley–Lever-
ett equation, individual waves may involve both (Liu, 1974). When inflec-
tion loci are single, connected curves a wave may only be a combination



354 RUBEN JUANES AND MARTIN J. BLUNT

Figure 7. Hugoniot loci for a reference state û= (0.8,0) (�) corresponding to a ter-
tiary flood.

of one rarefaction and one shock. If, in addition, inflection loci correspond
to maxima of eigenvalues, the rarefaction is always slower than the shock
(Ancona and Marson, 2001). This property was employed extensively in the
development of a complete Riemann solver for three-phase immiscible flow
(Juanes and Patzek, 2004; Juanes, 2005).

4. Analytical Solutions

We develop analytical solutions to the Riemann problem (30)–(31) for two
cases of interest: secondary floods and tertiary floods. In the case of sec-
ondary floods, we consider injection of a water–solvent mixture into a
medium that contains oil and connate water. A tertiary flood refers to the
case when the water–solvent mixture is injected into a reservoir that has
previously been waterflooded to residual oil saturation. Therefore, our anal-
ysis is restricted to initial states along the oil–water edge (C = 0) and to
injected states along the water–solvent edge (C = 1 − S). Although we do
not anticipate major difficulties in developing a full catalogue and classifi-
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Figure 8. Isocontours of eigenvalues of the 1-family, and the corresponding inflec-
tion locus.

cation of solutions for any initial and injected states, the complete Riemann
solver is not presented here.

Our analysis in this section is restricted to using the nominal value of
the effective mobility ratio Meff given by Equation (12). No attempt was
made to adapt Meff in a self-consistent fashion (Blunt and Christie, 1993,
1994). However, even if the effective mobility ratio is adapted dynamically
depending on the mobility drop across a solvent front, the global structure
of the solution for tertiary floods is still similar to that presented here and
still involves the detached branch of the Hugoniot locus. We discuss and
illustrate this point in Section 5.3.

We use the Lax entropy criterion for the construction of our solutions.
Therefore, solutions are obtained as a sequence of a slow 1-wave and a fast
2-wave, which are connected at an intermediate constant state:
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Figure 9. Isocontours of eigenvalues of the 2-family, and the corresponding inflec-
tion locus.

ul
W1−→um

W2−→ur. (39)

Each of the two waves (i =1,2) may be a rarefaction Ri , a shock Si , or a
rarefaction–shock RiSi . We obtain unique admissible solutions using this
entropy criterion (at least for the cases considered below). Some of the
solutions involve detached branches of the shock curves in an essential way.

In the discussion that follows, a comparison is performed between the
analytical solution and a one-dimensional numerical solution. In all cases,
we used a single-point upstream finite-difference method, with an explicit
Forward Euler time integration scheme. The numerical solutions were com-
puted on a grid of 1000 cells and a time step of δt =0.00025, correspond-
ing to a CFL number of about 0.5 for most of the cases presented. From
numerical experiments with different grid resolutions (keeping the CFL
number constant), it appears that the numerical simulations reflect con-
verged solutions.
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4.1. secondary floods

We consider the initial state ur = (Sr,Cr)= (0.2,0), that is, an oil–water sys-
tem at connate water saturation, and different injection states.

Case I. The first case we consider is that of pure solvent injection, ul =
(Sl,Cl) = (0,1). The solution, shown in Figure 10, consists of a slow rar-
efaction R1 (in fact, a contact discontinuity of zero speed), and a long
fast rarefaction R2 associated with the dispersed solvent front. This solu-
tion displays the basic feature of the viscous fingering model: the fast sol-
vent front, which would be a sharp contact discontinuity if fingering effects
are ignored (Juanes and Lie, 2005), is now a smooth rarefaction with
a ratio between its maximum and minimum speeds equal to M2

eff where
Meff ≈1.88. On the left plot of Figure 10 we show the composition path
corresponding to the analytical solution (solid line) and the numerical solu-
tion (dotted line – superimposed to the solid line in this case and there-
fore barely visible). Also shown are the inflection loci of the slow and fast
families (dashed lines). On the right plot of Figure 10 we show the cor-
responding composition profile. We plot the profiles of water saturation S

(solid line) and solvent mass fraction χ (dashed line) against the self-sim-
ilarity variable ζ . Also shown with circles connected by a dotted line is
the numerical solution obtained by single-point upstream finite differences.
Because of the large number of points, these lines often look like thick
solid lines. The agreement between the analytical and numerical solutions
is excellent.

Case II. Next we consider the case when a mixture of water and solvent
is injected, with a water saturation greater than the connate water satura-
tion: ul = (0.4,0.6). The solution is now made up of a slow 1-Lax shock S1

at constant solvent mass fraction, and the same fast rarefaction R2 as in

Figure 10. Secondary flood. Case I: injection state (S,C)= (0,1).
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the previous case (see Figure 11). Since the water shock lags behind the
solvent front and does not interact with it, the injection scheme is not more
efficient than that of Case I, but requires less solvent.

Case III. If one injects a water–solvent mixture with a higher propor-
tion of water, the composition path of the slow wave is no longer along the
the water–solvent edge. In Figure 12 we show the analytical solution when
the injected state is ul = (0.5,0.5). The solution still presents a fast rarefac-
tion, but its amplitude is reduced compared with the previous two cases.
The reason is that the slow wave intersects the fast rarefaction at an inter-
mediate state that is not on the water–solvent edge. Notice that the slow
wave is a rarefaction–shock R1S1 that crosses the 1-inflection locus.

Case IV. If the ratio of water to solvent injected is sufficiently high, the
slow wave is a single rarefaction associated with the solvent front that lags
behind a classical Buckley–Leverett shock. One such case is shown in Fig-

Figure 11. Secondary flood. Case II: injection state (S,C)= (0.4,0.6).

Figure 12. Secondary flood. Case III: injection state (S,C)= (0.5,0.5).
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ure 13 for an injected state ul = (0.65,0.35). One can conclude that there
is an optimum ratio of water to solvent injected (Stalkup, 1983; Blunt and
Christie, 1993) that would lie between Cases III and IV, and for which the
leading edge of the solvent front and the water front would travel at the
same speed.

4.2. tertiary floods

We consider the initial state ur = (Sr,Cr)= (0.8,0), that is, an oil–water sys-
tem at residual oil saturation. We study the different solution types that
emerge as we vary the water–solvent ratio of the injected fluid.

Case I. Pure solvent is injected into the medium, that is, ul = (0,1).
The solution comprises two waves: a slow rarefaction R1 along the
water–solvent edge (constant solvent mass fraction χ = 1), and a fast
rarefaction–shock R2S2 (Figure 14). The essential ingredient in the con-
struction of the solution is that the rarefaction and the shock join at a
state that belongs to the detached branch of the Hugoniot locus of the
initial state (see Figure 7). This is one of the distinct features that charac-
terizes our solutions to tertiary WAG flooding. This solution is fundamen-
tally different from the ones presented in Blunt and Christie (1993), where
the initial condition considered was such that the solvent front would not
interact with a leading Buckley–Leverett shock, so the solution would not
involve the detached branch. In our case, on the other hand, the fast wave
embodies simultaneous changes of both water saturation and solvent mass
fraction. The solution constructed in this way is the unique solution that
satisfies the Lax entropy criterion. Moreover, we show at the end of this
section that the leading shock is stable to viscous fingering and, therefore,
consistent with our model description.

Figure 13. Secondary flood. Case IV: injection state (S,C)= (0.65,0.35).
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Figure 14. Tertiary flood. Case I: injection state (S,C)= (0,1).

Case II. If the injected state is a water–solvent mixture with a low frac-
tion of water (but higher than the connate water saturation), the solution
is essentially the same as for Case I, except that the slow wave is a 1-Lax
shock with constant solvent mass fraction χ =1 (Figure 15). The fast wave
is identical to that of the previous case and, therefore, oil recovery is not
more effective but requires less solvent.

Case III. When the injected mixture contains a higher proportion of
water, the composition path of the slow wave does not follow the water–
solvent edge. Shown in Figure 16 is the solution for ul = (0.47,0.53). The
slow wave is now a composite rarefaction–shock R1S1 that intersects the
fast rarefaction–shock R2S2 at a state inside the ternary diagram. It is
worth noting that both waves cross the inflection locus of their respective
family. The amplitude and speed of the leading shock is the same as in

Figure 15. Tertiary flood. Case II: injection state (S,C)= (0.4,0.6).
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Figure 16. Tertiary flood. Case III: injection state (S,C)= (0.47,0.53).

Figure 17. Tertiary flood. Case IV: injection state (S,C)= (0.51,0.49).

Cases I and II above, but the speed of the slow wave is higher, leading to
a (slightly) more effective recovery scheme.

Case IV. For an injected state ul = (0.51,0.49), the amplitude of the fast
rarefaction R2 is minimized, while the amplitude of the leading shock S2

is maximized. The solution in this case, shown in Figure 17, consists of a
slow rarefaction R1 and a fast rarefaction–shock R2S2 with a very small
rarefaction. It is important to notice that both waves (the slow rarefaction
and the fast shock) entail simultaneous changes in the volume fractions of
all three fluids.

Case V. If the fraction of injected water is increased further, the ampli-
tude and the speed of the leading shock are lower and the speed of the
slow wave decreases also, resulting in a less effective recovery scheme. In
Figure 18 we plot the solution for ul = (0.6,0.4). The solution consists of
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Figure 18. Tertiary flood. Case V: injection state (S,C)= (0.6,0.4).

Figure 19. Tertiary flood. Case VI: injection state (S,C)= (0.75,0.25).

a slow rarefaction R1 and a fast shock S2, which join at an intermediate
state on the detached branch.

Case VI. For very high water to solvent ratio, the analytical solution
is still of type R1S2 as in Case V, but the slow rarefaction intersects with
the local branch of the Hugoniot locus, rather than the detached branch.
Therefore, the intermediate state is on the water–oil edge, as shown in Fig-
ure 19 for an injected state ul = (0.75,0.25).

5. Discussion

In this section, we discuss further several important aspects of the analyti-
cal solutions presented above: (1) the need to consider the detached branch
of the Hugoniot locus; (2) the influence of the viscous fingering model;
(3) the extension of the analysis to use a self-consistent value of the effec-
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Figure 20. Wrong solution for a tertiary flood, in which the detached branch of the
Hugoniot locus is not considered.

tive mobility ratio; and (4) the impact of viscous fingering on the predic-
tion of the optimum WAG ratio.

5.1. role of detached branches

It is apparent that the presence of a detached branch of the Hugoniot locus
of the right state is essential for the construction of analytical solutions to
tertiary floods. In Figure 20 we plot the solution that would be determined
for an injected state ul = (0.6,0.4) if one uses the local branches of the
Hugoniot locus only. The solution is still of type R1S2, but the sequence
of wave speeds is not monotonically increasing, and the global solution is
clearly inadmissible. The fast shock connecting the intermediate state um

with the right state ur does not satisfy the Lax entropy criterion because
even though the characteristics of the 2-family impinge onto the shock,

ν2(um)>σ >ν2(ur), (40)

the characteristic of the 1-family is faster than the shock:

ν1(um)>σ, (41)

which violates conditions (37). This inadmissible solution should be com-
pared with the correct entropy solution in Figure 18. For a reader who is
familiar with fractional flow theory (Pope, 1980; Helfferich, 1981; Walsh
and Lake, 1989), the presence of detached branches means that the solution
cannot be constructed graphically from the water–oil and water–solvent
fractional flow curves alone, because the leading shock involves changes in
all three compositions.
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The presence of admissible parts in the detached branches of the Hu-
goniot locus has also been observed in hyperbolic models of three-phase
immiscible flow (Marchesin and Plohr, 2001; Isaacson et al., 1992; de
Souza, 1992; Falls and Schulte, 1992) and nonisothermal two-phase flow
(Barkve, 1989; da Mota, 1992).

5.2. effect of the viscous fingering model

The second aspect we want to emphasize is the influence of the viscous
fingering model in the global structure of the solution. To illustrate this
effect, we compare the analytical solutions for a tertiary flood of pure sol-
vent injection predicted by the multiphase first-contact miscible model with
and without viscous fingering. Such comparison is presented in Figure 21.
On the left side of the figure we plot the composition path, the compo-
sition profiles and the mobility profile corresponding to the solution that
does not account for viscous fingering (Juanes and Lie, 2005). The solution
comprises two wave groups: (1) a slow wave group with a contact discon-
tinuity and a slow rarefaction at constant solvent mass fraction χ =1; and
(2) a fast wave group with a contact discontinuity describing the solvent
front and a fast rarefaction-shock at constant solvent mass fraction χ =0.
The mobility ratio across the solvent front is about 10, indicating that such
front is unstable to viscous fingering.

The analytical solution for the model with viscous fingering is shown on
the right side of Figure 21. The important point is that the effect of the
viscous fingering model is not restricted to spreading out the solvent front.
The solution now involves the detached branch of the Hugoniot locus, and
the composition path is entirely different. Physically, this is related to the
fact that the solvent front is dispersed to an extent that its leading edge
interacts with the fast Buckley–Leverett shock. The consequence of this
interaction is the presence of a genuine shock at the leading edge of the
oil bank that involves changes of both water saturation and solvent mass
fraction. From the mobility profile shown in the bottom-right plot of Fig-
ure 21, it is clear that this shock entails a favorable mobility contrast, that
is, λ

up
T /λdown

T <1. Therefore, the leading edge of the oil bank is stable with
respect to viscous fingering.

5.3. a self-consistent effective mobility ratio

The Todd and Longstaff model of viscous fingering was extended to multi-
phase-multicomponent flows in Blunt and Christie (1993, 1994), and Blunt
et al. (1994). They used the same solvent flux function ĝ(χ), but dynamically
calibrating the only parameter of the model, the effective mobility ratio Meff .
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Figure 21. Comparison of the predictions for a tertiary flood of pure solvent. Left:
no viscous fingering. Right: viscous fingering with nominal Meff .

The premise is that the degree of fingering depends on the mobility con-
trast across the solvent front. For single-phase flows in which a first-contact
miscible solvent is injected into an oil-filled medium, the mobility con-
trast M is equal to the viscosity ratio µo/µs . For multiphase flows, the
mobility contrast is computed as the ratio of the total mobility immediately
upstream and immediately downstream of the solvent front:

M = λ
up
T

λdown
T

. (42)

The effective mobility ratio Meff can then be calculated by inserting this
value of M in Equation (12). Obviously, the value of the effective mobility
ratio affects the solution, and so an iterative scheme is required to achieve
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consistency between the input effective mobility ratio M in
eff and the output

Mout
eff obtained from Equations (42) and (12) once the solution is computed.
This type of consistency is missing from the solution given in Figure 21.

The solution makes use of the nominal value of the mobility ratio,
Min =10, which corresponds to M in

eff ≈ 1.88. The mobility contrast across
the solvent front of the computed solution is Mout ≈ 4.32, that is, Mout

eff ≈
1.45. Clearly, the nominal value of the mobility ratio is too large, which
means that the degree of fingering is overestimated. The question is
whether the structure of the solution persists if the correct value of Meff

is used. In particular, we want to know if the smearing of the solvent is
sufficient to interact with the leading Buckley–Leverett shock.

The self-consistent value of Meff was found by iteration. We used the
secant method rather than the fixed-point iteration suggested in Blunt and
Christie (1993) because of its much faster convergence. Given values of Min

at two iterations, and their corresponding values Mout obtained from the
respective solutions, the new trial value of the mobility ratio is:

M
(k+1)

in = M
(k−1)
out −αM

(k−1)

in

1−α
, where α = M

(k)
out −M

(k−1)
out

M
(k)

in −M
(k−1)

in

. (43)

The values of the input and output mobility ratios during the iterative pro-
cess are reported in Table I.

The solution for the self-consistent value Min =Mout =5.81 (Meff ≈1.58)
is shown in Figure 22. The important observation is that the degree of
fingering is sufficient for the solvent front to interact with the leading
Buckley–Leverett shock and, as a result, the solution involves the detached
branch of the Hugoniot locus. Physically, this means that the solvent front
pushes through and destroys the oil bank, resulting in a leading shock
where both oil and solvent break through. This leading shock is stable.

Table I. Iteration towards a self-consistent
value of the effective mobility ratio

Iter Min (M in
eff ) Mout

0 10.000 (1.8817) 4.3161
1 4.3161 (1.4487) 7.7917
2 6.4729 (1.6357) 5.3758
3 5.9554 (1.5943) 5.7012
4 5.7993 (1.5814) 5.8179
5 5.8100 (1.5823) 5.8096
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Figure 22. Predictions for a tertiary flood of pure solvent, using a viscous fingering
model with a self-consistent value of the effective mobility ratio.
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5.4. optimum wag ratio

The original motivation behind simultaneous injection of solvent and water
was to limit the degree of fingering by reducing the mobility contrast
between the injected and displaced fluids (Caudle and Dyes, 1958). The
WAG ratio is defined as the ratio of injected water to injected solvent, both
expressed in reservoir volumes:

WR = finj

1−finj
, (44)

where finj is the water fractional flow of the injected conditions. There is an
optimum WAG ratio at which water and solvent fronts travel at the same
speed, minimizing the degree of fingering and maximizing oil recovery. A
graphical construction for the evaluation of the optimum WAG ratio in
secondary and tertiary floods was first given by Stalkup (1983) when vis-
cous fingering is not included in the analysis. An interesting application
of fractional flow theory to miscible flooding was presented by Walsh and
Lake (1989). They analyzed the effect of WR on the displacement efficiency
for both secondary and tertiary floods. Viscous fingering was not included,
but they estimated the mobility contrast across the solvent front as a mea-
sure of the severity of fingering. The influence of the injected water–solvent
ratio on displacement efficiency in the presence of viscous fingering was
studied by Blunt and Christie (1993, 1994) using a self-consistent calibra-
tion of the effective mobility ratio. However, their analysis of tertiary floods
was restricted to cases in which the solvent front would lag behind the
leading edge of the oil bank.

In this section, we evaluate how the number of pore volumes injected
(PVI) for 100% recovery and the mobility ratio across the solvent front
vary with the WAG ratio. We restrict our attention to tertiary floods,
but we cover the entire range of water–solvent ratios. Each individual
solution has been obtained by iterating on the mobility ratio to achieve
self-consistency as explained in Section 5.3. We also analyze how the new
predictions compare with those when viscous fingering is not included
(Walsh and Lake, 1989). The result of our analysis is shown in Figure 23.
We plot the mobility ratio across the solvent front (top) and the number of
PVI for 100% recovery (bottom) as a function of the injected water frac-
tional flow finj.

The model without viscous fingering predicts that the displacement effi-
ciency and the mobility ratio across the solvent front remain unchanged
for 0 < finj < f crit

inj . At this critical f crit
inj the mobility ratio drops from a

value of about 10 to a much lower value of about 4. For finj > f crit
inj the

mobility ratio changes little, while the displacement efficiency decreases as
WR increases (more PVI are required to recover all the oil). The optimum
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Figure 23. Dependence of the mobility ratio across the solvent front and the num-
ber of PVI for 100% recovery. The predictions using a self-consistent Meff are com-
pared with those when viscous fingering is ignored.

WAG ratio is then taken as a value slightly above the critical value, W
opt
R ≈

0.78, because it combines the highest displacement efficiency PVIopt ≈ 0.77
with a relatively low value of the mobility contrast.

The model with viscous fingering, on the other hand, predicts a con-
tinuous dependence of the displacement efficiency and the self-consistent
mobility ratio across the solvent front with respect to the water–solvent
ratio. The curves of PVI and mobility ratio both show a minimum at
approximately the same water fractional flow. The minimum of the PVI
curve corresponds to W

opt
R ≈0.56, for which PVIopt ≈0.94.
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The differences between the two models are exactly what one would
expect. Because the solvent fingers through, the displacement is less effi-
cient than what the fingering-free model predicts. Thus, more solvent is
required at the optimum WAG ratio (38% difference), and more pore vol-
umes need to be injected to recover all the oil (22% difference).

6. Conclusions and Future Work

In this paper, we have revisited an empirical model of three-component,
two-phase, first-contact miscible flow that includes the effects of viscous fin-
gering. The model was originally presented in Blunt and Christie (1993,
1994), where analytical solutions were developed for secondary and ter-
tiary WAG floods, and validated by comparison with the average profiles
of highly detailed multidimensional simulations. Here, we have analyzed the
mathematical character of the system of equations in detail, showing that
the system is strictly hyperbolic almost everywhere, except for the region
of residual hydrocarbon saturations and two states on the edges of the ter-
nary diagram, where the system displays a parabolic degeneracy. Our anal-
ysis also includes the evaluation of the integral curves (composition paths)
in phase space, and the location of the inflection loci of each of the char-
acteristic fields. We have presented the complete range of analytical solu-
tions to secondary and tertiary WAG floods. An important element of our
analysis is a study of the Hugoniot locus of the initial states. We have
shown that detached branches of the Hugoniot locus are essential in the
construction of the solution for tertiary floods. We have illustrated how, in
WAG tertiary floods, the solvent front and the water Buckley-Leverett front
may interact. The result of that interaction is a leading shock that involves
changes in both water saturation and solvent mass fraction, and is stable
to viscous fingering. The main features of the solution persist even when
the dispersive effects of viscous fingering are limited by the use of a self-
consistent effective mobility ratio. The analytical solutions explain why, in
miscible tertiary floods, oil and solvent may break through simultaneously.
We have also shown that accounting for viscous fingering affects the predic-
tions of the optimum WAG ratio for tertiary floods, and that the propor-
tion of injected solvent should be higher than that obtained with Stalkup’s
method.

An important consideration is whether the mathematical model pre-
sented here is successful at reproducing experimental observations. For
instance, the one-dimensional model makes use of a multiphase extension
of the Todd and Longstaff model developed for single-phase flow. It is
not obvious that this model yields accurate predictions when the satura-
tion of the second phase (water) changes along the oil–solvent mixing zone.
Also, the analytical model predicts that the leading edge of the oil bank
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is stable with respect to viscous fingering, but it is unclear whether pres-
sure oscillations associated with viscous fingering in a multidimensional set-
ting may induce instabilities. We have recently addressed these issues and
validated the model, in particular, for situations in which oil and solvent
break through simultaneously. Validation of the model was accomplished
by means of high-resolution direct numerical simulations that resolve the
details of viscous fingering and carefully designed laboratory experiments
(Juanes et al., submitted). The conclusion of that investigation is that the
parameter-free, one-dimensional analytical model yields accurate quanti-
tative predictions of the macroscopic effects of viscous fingering in two-
phase, three-component flow.

The work presented here is the first step towards the development of a
complete Riemann solver for this problem, that is, an algorithm that com-
putes the exact solution for any initial and injected states. The Riemann
solver should account for the dynamic calibration of the effective mobil-
ity ratio Meff , which introduces additional complexity because the com-
position paths depend on the value of Meff . Such Riemann solver could
then be used as a building block in a front-tracking algorithm to compute
approximate solutions to the transport equations along streamlines, leading
to accurate and efficient simulation of multiphase first-contact miscible flow
in three-dimensional heterogeneous formations (Juanes and Lie, 2005; Lie
and Juanes, 2005).
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