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Abstract. In this paper, we analyze an empirical model of viscous fingering for three-com-
ponent, two-phase, first-contact miscible flows. We present the complete range of analyti-
cal solutions to secondary and tertiary water-alternating-gas (WAG) floods. An important
ingredient in the construction of analytical solutions is the presence of detached (nonlo-
cal) branches of the Hugoniot locus, that is, curves in composition space that satisfy the
Rankine-Hugoniot conditions but do not contain the reference state. We illustrate how,
in water-solvent floods into a medium with mobile water and residual oil (immobile to
water), the solvent front and the water Buckley—Leverett front may interact, resulting in
a leading water/solvent shock that is stable to viscous fingering. The analytical solutions
explain why in these miscible tertiary floods, oil and solvent often break through simulta-
neously. We discuss the implications of the new solutions in the design of miscible tertiary
floods, such as the estimation of the optimum WAG ratio.

Key words: miscible flooding, viscous fingering, water-alternating-gas, optimum WAG
ratio, Riemann problem, Hugoniot locus, detached branches.

1. Introduction

Solvent injection is a commonly used technology for enhanced oil recov-
ery in hydrocarbon reservoirs (Stalkup, 1983; Lake, 1989), and it can be
a viable option for environmental remediation of groundwater pollution
by nonaqueous phase liquids (Khan et al., 1996). The objective of sol-
vent flooding is to develop miscibility between the resident and injected
hydrocarbon phases, thereby mobilizing the residual oil, and enhancing the
mobility of the hydrocarbon phase. One of the key technical and practi-
cal aspects of miscible flooding is the development of fluid instabilities in
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the form of viscous fingering when a low viscosity fluid (solvent) is injected
into a formation filled with more viscous fluids (water and oil) (Saffman
and Taylor, 1958).

Despite its high local displacement efficiency, the overall effectiveness of
solvent injection may be compromised by the low sweep efficiency associ-
ated with an unstable displacement process: the solvent fingers through the
porous medium, leading to early breakthrough and leaving much of the oil
behind. Simultaneous injection of solvent and water has shown to be effec-
tive at limiting the degree of fingering, by reducing the mobility contrast
between the injected and displaced fluids (Caudle and Dyes, 1958). In prac-
tice, water and solvent are injected in alternating slugs in a process called
water-alternating-gas or WAG. Thus, we shall refer to WAG injection even
though, strictly speaking, we mean simultaneous water—solvent injection.

Viscous fingering in porous media flows has been studied at length over
the past few decades. A comprehensive review of this phenomenon is given
by Homsy (1987). Viscous fingering can only occur in a multidimensional
scenario that allows for interface instabilities to develop. There are two
modeling approaches: (1) high-resolution numerical simulations that cap-
ture the details of the viscous fingering phenomenon (Christiec and Jones,
1987; Tan and Homsy, 1988; Christie, 1989; Zimmerman and Homsy, 1991;
Christie et al., 1993; Tchelepi and Orr, 1994; Chen Meiburg, 1998; Ruith
and Meiburg, 2000) and (2) macroscopic models that capture just the rel-
evant averaged behavior of these displacements such as breakthrough time
and amounts of displaced and displacing fluids produced over time. In this
investigation we concentrate on the latter approach.

While there is conclusive theoretical, computational and experimental
evidence of the importance of viscous fingering in miscible displacements at
adverse mobility ratios in homogeneous porous media, other factors such
as permeability heterogeneity and gravity segregation may affect the dis-
placement patterns in the field. Several investigations (Fayers et al., 1992;
Chang et al., 1994; Tchelepi and Orr, 1994) suggest rather convincingly
that if the permeability field is highly heterogenecous with large correla-
tion lengths, the displacement will also be dominated by channeling of
the injected solvent through the high-permeability streaks. Gravity override
may also play a major role in three-dimensional displacements, especially in
combination with large-scale heterogeneities (Christie et al., 1990; Christie
et al., 1993; Chang et al., 1994; Tchelepi and Orr, 1994).

In this investigation, we examine a rather simplified setting in which
the medium is quasi-homogeneous and gravity forces are negligible. These
conditions are such that viscous fingering is the dominant mechanism for
pattern formation and, admittedly, may not be representative of the con-
ditions often encountered in heterogeneous reservoirs. However, the study
of viscous fingering under these assumptions is still of major interest:
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(1) short correlation-length heterogeneity and moderate gravity effects can
be included in macroscopic models of viscous fingering (Koval, 1963;
Fayers et al., 1992) and (2) conventional reservoir models do not capture
the fine-scale heterogeneity of the medium and the details of the displace-
ment patterns. Macroscopic models of viscous fingering are therefore useful
as a means of accounting for viscous fingering within each simulation grid
block (Todd and Longstaff, 1972; Christie et al., 1993).

Empirical models of viscous fingering have been successful at predict-
ing average behavior of unstable miscible floods of a single hydrocarbon
phase (Koval, 1963; Todd and Longstaff, 1972). Such empirical models
have later been extended and validated for three-component flows in which
two of the components (solvent and oil) are completely miscible (Blunt and
Christie, 1993, 1994), and for near-miscible compositional displacements
(Blunt et al., 1994).

In this paper, we revisit the analytical theory of first-contact miscible
displacements in the presence of viscous fingering. We consider three-com-
ponent flows (water, oil and solvent), and assume that oil and solvent mix
in all proportions to form a single hydrocarbon phase, which is immiscible
with the aqueous phase.

We employ the empirical model proposed by Blunt and Christie (1993,
1994). They used an extension of the Todd and Longstaff model (1972) to
describe fingering of the solvent in a two-phase, three-component system.
They proposed a self-consistency condition to calibrate the only parame-
ter of the fingering model — the effective mobility ratio M.y. Analytical
solutions were obtained for secondary floods (water—solvent injection into
a medium filled with mobile oil and immobile water) and tertiary floods
(water—solvent injection into a medium filled with mobile water and immo-
bile oil). They obtained an excellent agreement between analytical predic-
tions using the empirical one-dimensional model and averaged saturation
and concentration profiles from two-dimensional direct numerical simu-
lations. Their analysis was restricted, however, to secondary and tertiary
WAG floods in which the leading edge of the solvent front is slower than
the water shock.

In this paper we provide a comprehensive analysis of the system
of equations, and develop analytical solutions for secondary and ter-
tiary floods in which no a priori assumption is made on the veloc-
ity of the solvent front. An important ingredient in the construction
of analytical solutions is the presence of detached (nonlocal) branches
of the Hugoniot locus, that is, curves in composition space that satisfy
the Rankine-Hugoniot conditions but do not contain the reference state.
We show that the analytical solution may comprise a leading water/sol-
vent shock that is stable to viscous fingering. The analytical solutions
explain why, in miscible tertiary floods, oil and solvent often break through
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simultaneously. We anticipate that this result has important implications in
the design of miscible tertiary floods.

The paper is organized as follows. In Section 2 we present the math-
ematical model, which leads to a system of two first-order partial differ-
ential equations. The character of the system of equations is analyzed in
Section 3. In Section 4 we describe the complete catalogue of analytical
solutions to the Riemann problem for secondary and tertiary floods, for
any water—solvent injection ratio. In Section 5 we discuss further some of
the relevant findings, and we illustrate how the results carry over to a
model in which the effective mobility ratio is adapted dynamically. We spe-
cifically address the influence of viscous fingering on the estimation of the
optimum water—solvent ratio. Finally we give some conclusions and recom-
mendations in Section 6.

2. Mathematical Model

We study three-component (water, oil and solvent) flow in porous media
under the following assumptions (Blunt and Christie, 1993):

1. Water forms an aqueous phase, which is immiscible with the two hydro-
carbon components.

2. Oil and solvent mix in all proportions to form a single hydrocarbon

phase.

All fluids are incompressible.

There is no volume change in mixing.

The medium is rigid.

The effects of gravity and capillarity are negligible.

We use a multiphase extension of Darcy’s law (Muskat, 1949), with non-

hysteretic relative permeabilities.

Nonhkw

It is useful to discuss further some of these assumptions. We are inter-
ested in the limit of negligible capillarity. Such approximation is sensible
when studying the large-scale behavior of viscous fingering in miscible sys-
tems. If the system is dominated by capillary forces, the instability in the
fluid displacement is of an entirely different nature (capillary fingering),
and neglecting capillary pressure between phases would not be appropriate
(Lenormand et al., 1988).

Hysteresis is not included in our analysis, that is, the relative perme-
ability functions do not reflect history dependence. This means that trap-
ping of the hydrocarbon phase during the water—solvent injection process is
ignored. For pure solvent floods, this assumption is not a limiting one: the
saturation of the (less wetting) hydrocarbon phase increases continuously,
with the solvent forming a continuous advancing cluster, thereby preclud-
ing trapping. However, this effect may become significant in simultaneous



MULTIPHASE MISCIBLE MODELS WITH VISCOUS FINGERING 343

water—solvent injection, especially for secondary floods in which the water
front moves faster than the solvent front: the injected water may disconnect
some of the oil phase, making it less accessible for the solvent that trav-
els at a lower velocity. In such cases, modeling of the trapped hydrocar-
bon phase may be necessary (Lin and Huang, 1990; O’Steen and Huang,
1990). The effects of hysteresis (responsible for trapping of the oil) may
be even more relevant in water-alternating-gas applications (Spiteri and
Juanes, 2006; Spiteri et al., 2005).

Under the assumptions listed above, and ignoring the effect of viscous
fingering, the one-dimensional model describing the problem is given by the
following system of conservation equations (Juanes and Lie, 2005):

05 of

= +3.=0 (1)
aC 0 C

¥+£((l—f)—1_s)=0, @

where x and ¢ are dimensionless space and time variables, respectively, S
i1s the water saturation, C is the solvent concentration, and f is the water
fractional flow function. The solvent concentration is the overall volume
fraction of solvent per unit pore volume:

C=010-5x, 3)

where x is the mass fraction of solvent in the hydrocarbon phase. The
water fractional flow f is the velocity of the aqueous phase divided by
the sum of the velocities of all flowing phases. When gravity and capillarity
are neglected, it takes the following simple form:

Ay
f= o “4)

where A7 =X, + A;, is the total mobility, and A, is the mobility of the «-
phase, defined as

o=, 5)
Mo

where k,, is the relative permeability and u, is the dynamic viscosity of the
a-phase. The viscosity of the hydrocarbon phase depends on the viscosities
of the oil and solvent components u, and u, (taken as constants) and the
mass fraction x of solvent in the hydrocarbon phase. A common model for
the hydrocarbon viscosity is the quarter-power rule (Koval, 1963; Todd and
Longstaff, 1972):

—4
l—x x

Hn = [ﬁ * Tm} - ©
Mo Ms
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Since the solvent viscosity is lower (usually much lower) than the oil viscos-
ity, the hydrocarbon viscosity is a decreasing function of the solvent mass
fraction. In Figure 1 we plot the hydrocarbon viscosity as a function of the
solvent mass fraction for an oil-solvent viscosity ratio M :=pu,/us;=10. In
all the examples, we have used the following values of the fluid viscosities:
uw=1cp, u,=4 cp, and u,=0.4 cp.

We assume that the relative permeabilities are unique functions of
the water saturation alone, therefore neglecting hysteresis effects and any
dependence of the hydrocarbon residual saturation on the solvent content.
In our examples, we have chosen a simple model with quadratic relative
permeabilities (Figure 2):

0 if S < Spe=0.2,

kra (§) = <‘19: S::>2 otherwise, ”
0 if 1-5<8,.=0.2,

krn(S) =1 0.1 (1 ;f;:hc> +0.9 (IIE—;;M)z otherwise. ®)

As a result, the fractional flow is a function of both water saturation
and solvent concentration:

krw (S)
— Huw —
f - krw(S) krh(S> - f(S, C). (9)
tw e (A=x)+MV4x)
1
0.8}
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Figure 1. Dependence of the hydrocarbon viscosity on the solvent mass fraction.
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Figure 2. Top: relative permeabilities of the water and hydrocarbon phases. Bottom:
dependence of the fractional flow function on the solvent mass fraction.

Since the hydrocarbon viscosity decreases with the solvent fraction, the
overall mobility of the hydrocarbon phase is enhanced, resulting in lower
values of the water fractional flow. The dependence of the fractional flow
function on the solvent mass fraction is illustrated in Figure 2.

The effects of viscous fingering are incorporated by an empirical model
that modifies the effective solvent flux in such a way that the dispersive
effect of viscous fingering is captured:

C
-7 EE(I—JC)X — (1-/s. (10)
In Figure 3 we show a schematic diagram of a stable and an unstable mis-
cible, single-phase displacement. Macroscopic models of viscous fingering
introduce the solvent flux function g in an attempt to capture the aver-
aged solvent mass fraction with a one-dimensional advective model (Koval,

1963).
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Figure 3. Schematic diagram of a stable miscible displacement (left) and an unstable
miscible displacement (right) of oil by solvent.

In this work, we shall use the solvent flux function (fractional flow of
solvent within the hydrocarbon phase) proposed by Koval (1963) and Todd
and Longstaff (1972):

. X
§=800=—7— (1D
Ll
X
Mgy

where M. is the effective mobility ratio. It is equal to one if viscous finger-
ing is not present, and increases as viscous fingering effects become more
pronounced. Different models exist to predict the value of Mper given the
oil and solvent viscosities. For example, Koval (1963) proposed

Mo = (0.78+0.22M'4)*, (12)
and Todd and Longstaft (1972) suggested
Moy =M"'"" (13)

with w =2/3. Both correlations produce good agreement with experimen-
tal results for single-phase miscible displacements. In this paper we have
used the solvent flux function proposed by Koval. We have chosen Koval’s
model because it does not require calibration of an extra parameter, and
produced better agreement with experimental data (Blackwell et al., 1959)
than the Todd and Longstaff model with a single value of the parameter
w (Fayers et al., 1992; Blunt and Christie, 1993). In Figure 4 we plot this
function for an oil-solvent viscosity ratio M =10, for which the effective
mobility ratio is Mg~ 1.88.
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Figure 4. Solvent fractional flow function proposed by Koval (1963) for an effective
mobility ratio M.y~ 1.88.

3. Character of the System of Equations

A detailed analysis of the mathematical character of the equations for the
miscible system with no viscous fingering is given in Juanes and Lie (2005),
and will not be repeated here. When the effect of viscous fingering is incor-
porated, the system of conservation equations takes the following form:

s £ 7.0
rlefenlane-lo] .

where f and g are understood as functions of the conservation variables:
f=f(S,C) and g=g(S, C). The solution vector (S, C) is restricted to lie
on the unit triangle:

U={(S5,C): >0, C>0,S+C<1}. (15)

For some of the analysis that follows, it proves useful to use the relation
between the solvent concentration and the solvent mass fraction given by
Equation (3), and express the system (14) in terms of the nonconservation
variables (S, x):

s £ o100
& [(I—S»J*a" [(l—f)g]_[o]’ (1o

where now f and g are understood as functions of the nonconservation
variables: f(S,C)=f(S, x) and g(S,C)=g(x).
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3.1. MATHEMATICAL CHARACTER

For smooth solutions, the system (14) can be written as

, [g] +ACS, C), [é} . [8}, 17

where A is the Jacobian matrix of the system:

of of
A(S,C):= 18
(5.6 [(1 f)——ﬁga—f)——ﬁg} (1)

Alternatively, the quasi-linear form of the system of equations may be writ-
ten in terms of the nonconservation variables by use of the chain rule:

3, [i] +AGS. %), B] - [8] , (19)
where
R of 4 x of 1 of
A<S’X>i=[ io iy el ng_xa_fL] 0
XT=soy 958 " XoxT=s T-saxy ~ ax1-S

The local character of the system is determined by the eigenvalues (v
and v;) and eigenvectors (r; and r;) of the Jacobian matrix (Zauderer,
1983). The system is hyperbolic if the eigenvalues are real, and strictly
hyperbolic if the eigenvalues are real and distinct. In the latter case, the
matrix is diagonalizable and there exist two real and linearly independent
eigenvectors. If the two eigenvalues are complex conjugates, the system is
said to be elliptic.
If we express the 2 x 2 Jacobian matrix (20) in the generic form

A ab
A:[C d], @1)

the eigenvalues of the system are given by:

1
Ma=3 [(a+d)$\/K], (22)
where
A=(a—d)*+4bc. (23)

The cigenvalues are the characteristic speeds of propagation of waves and
the eigenvectors are the corresponding characteristic directions in phase
space. The system is hyperbolic if A >0 and strictly hyperbolic if the
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inequality is strict. In our case, and after some algebraic manipulations, the

discriminant is given by

—-4—==>=_ - > 24
ox 1—-S1—-S0y 24)

3S 1-Sax axl—S

Equation (24) deserves some attention. The term in brackets is squared and
is always nonnegative. Since the water fractional flow and the solvent flux
functions satisfy the following conditions:

0<f<l1, =<0, x<g<Il, —=>>0, (25)

the second term in Equation (24) is always nonnegative also. Therefore, the
system is everywhere hyperbolic. However, it is not strictly hyperbolic for
certain composition states:

1. In the region of residual hydrocarbon saturation, S > 1 — Sj.. In this
region, f=1 and the discriminant is identically equal to zero. In fact,
the Jacobian matrix is the zero matrix, so both eigenvalues are equal to
zero and every direction is characteristic.

2. For particular states on the oil-water edge (x =0) and the solvent-water
edge (x =1) of the saturation triangle. Along these edges, ¢=x and the
discriminant simplifies to

N R 2
0 1—fag
A | _1=r08 ) (26)
aS 1—Sayx
The solvent flux function (11) satisfies
0g 0g 1
T @7)
aX x=0 aX x=1 Meff

On each edge, there is a single saturation state for which A =0. For
that saturation state on the oil-water edge (x =0), the Jacobian matrix
reduces to

. af 1 af
AS, x):=|? lljfsax . (28)
0 =5 Merr

The double eigenvalue is v= ll:—gMeff. The matrix is not diagonalizable,
which means that the system is parabolic and there is one single char-
acteristic direction on the (S, C)-plane, » = (1,0). For the nonstrictly
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hyperbolic state on the solvent-water edge (x =1), the Jacobian matrix
takes the following expression:

of 4 1 af 1 of
A .| as 1-S oy 1-S oy
AS, %)= 1 af 1-f 1 L af |- (29)
1—S9x 1-SMer ~ 1-5dx

The double eigenvalue is v= % Mleff. Again, the matrix is not diagonal-

izable and the double eigenvector on the (S, C)-plane is r=(1, —1).

We are interested in the solution of the Riemann problem associated
with the system of equations (14). Using vector notation, the problem con-
sists in finding a weak solution to the system of hyperbolic conservation
laws:

u+0, F=0, —oo<x<oo, t>0 (30)
with the following initial conditions:

u; if x <0,
u(x,0)= (3D

u, if x>0.

The state u; = (S;, C;) is the ‘left’ or ‘injected’ state, and u, = (S,,C,) is
the ‘right’ or ‘initial’ state. The system of Equations (30) and the ini-
tial condition (31) are invariant under uniform stretching of coordinates
(x,t) (cx,ct), ¢ >0. The solution must consist of centered waves emanat-
ing from the origin (x,t)=(0, 0). Therefore, we seek a self-similar solution

u(x,1)=U(%), (32)

where the similarity variable is ¢ =x/¢. In what follows we describe key ele-
ments that allow to characterize the different waves that may arise in the
solution.

3.2. INTEGRAL CURVES AND RAREFACTIONS

If the solution U (¢) is smooth, it must satisfy (Smoller, 1994)
AUYU' =¢U/, (33)

that is, ¢ is an eigenvalue (v; or v,) and U’ is the corresponding eigenvec-
tor (r; or rp). Therefore, smooth waves (rarefactions) must lie on an inte-
gral curve of the right eigenvectors. States U along an integral curve are
defined by the differential equation

d—U:ri(U(r)), i=1,2. (34)
dr
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The two families of integral curves (composition paths) are shown in
Figure 5. Additionally, admissible rarefactions connecting two states must
satisfy that the characteristic velocity { =x/f=v; or v, increases along the
integral curve from the left state to the right state.

3.3. HUGONIOT LOCI AND SHOCKS

If the solution is discontinuous, states on opposite sides of the discontinu-
ity must satisfy an integral version of the conservation equations, known as
the Rankine—-Hugoniot conditions. The set of states u that can be joined to
a reference state u by a discontinuity must satisfy:

Fu—F@ =0 (u—un), (35)

where o is the speed of propagation of the discontinuity.

Locally, in a neighborhood of the reference state, Equation (35) admits
two families of solutions, associated with the slow and fast eigenvalues.
These two sets of solutions define the /ocal branches of the Hugoniot locus.

)
I 1-family
o
NU! - - - - 2-family
| |
0.8 N !
| |
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Lol I "Il‘
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\ \ [ l\\ N
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Figure 5. Integral curves of the 1-family (blue) and 2-family (red) on the ternary
diagram. The two circles (o) correspond to states where the system is nonstrictly
hyperbolic.
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In general, Hugoniot loci and integral curves locally have second-order tan-
gency (Smoller, 1994).

Not all states in the Hugoniot locus can be joined to the reference state
through a physically admissible discontinuity. A shock must satisfy addi-
tional entropy conditions to be physically valid. Entropy conditions for
strictly hyperbolic systems were compiled by Lax (1957) and extended by
Liu (1974, 1975) into what is now known as e-Lax admissibility criterion.
The development of suitable entropy conditions for nonstrictly hyperbolic
systems is still an open issue. A large body of literature has emerged in an
attempt to develop conditions that guarantee existence and uniqueness of
the solution (Schaeffer and Shearer, 1987a, b; Marchesin and Plohr, 2001).

In this work, we find unique solutions to the Riemann problem that sat-
isfy the e-Lax entropy criterion. Therefore, a valid discontinuity that joins
states u and a4 may be a I-Lax shock if it satisfies:

vi(u)>o >v (@),

36
o < (it), (36)

or a 2-Lax shock if it satisfies:
nu) >0 >wvn), 37)

vi(u) <o.

A common feature of systems of conservation laws describing multi-
phase flow is the existence of detached branches of the Hugoniot locus
(Barkve, 1989; da Mota, 1992; de Souza, 1992; Falls and Schulte, 1992;
Isaacson et al., 1992; Marchesin and Plohr, 2001). These consist of states
which satisfy the Rankine-Hugoniot conditions, but do not belong to the
local branches that emanate from the reference state. In Figure 6 we plot
the Hugoniot locus for a reference state u=(0.2,0) that corresponds to a
secondary flood. In addition to the local branches associated with a slow
shock (along the line C =0) and a fast shock (line §=0.2), there is a
detached branch of states that satisfy the Rankine-Hugoniot conditions.
This set of states, however, does not satisfy the Lax entropy conditions and
does not play a role in the construction of solutions. In Figure 7 we show
the Hugoniot locus for a reference state i = (0.8,0). As before, the two
local branches are C =0 (slow shock) and §=0.8 (fast shock). A detached
branch also exists, which corresponds to admissible 2-Lax shocks. As we
discuss in Section 4, the presence of this detached branch is essential in the
construction of analytical solutions for tertiary floods.

3.4. INFLECTION LOCI AND RAREFACTION—SHOCKS

The two characteristic fields of the system (14) are neither genuinely non-
linear nor linearly degenerate in the sense of Lax (1957). A field is said
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Figure 6. Hugoniot loci for a reference state u=(0.2,0) (2) corresponding to a sec-
ondary flood.

to be genuinely nonlinear if eigenvalues vary monotonically along integral
curves. A field is linearly degenerate if eigenvalues are constant along inte-
gral curves of a particular characteristic family. In our case, however, eigen-
values attain a local extremum along integral curves. The local extrema of
the i-family satisfy the following condition:

VUi < T =0. (38)

The locus of states for which Equation (38) is satisfied is known as the
i-inflection locus (Johansen and Winther, 1988; Schecter et al., 1996;
Ancona and Marson, 2001). In Figures 8 and 9 we plot the inflection loci
of the 1- and 2-characteristic families, respectively, along with the contours
of the corresponding eigenvalues. The relevance of inflection loci stems
from the fact that an admissible rarefaction cannot be extended across the
inflection locus of the associated family. For genuinely nonlinear systems,
individual waves may only be rarefactions or shocks (Lax, 1957). However,
for systems that are not genuinely nonlinear, such as the Buckley—Lever-
ett equation, individual waves may involve both (Liu, 1974). When inflec-
tion loci are single, connected curves a wave may only be a combination
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Figure 7. Hugoniot loci for a reference state =(0.8,0) (A) corresponding to a ter-
tiary flood.

of one rarefaction and one shock. If, in addition, inflection loci correspond
to maxima of eigenvalues, the rarefaction is always slower than the shock
(Ancona and Marson, 2001). This property was employed extensively in the
development of a complete Riemann solver for three-phase immiscible flow
(Juanes and Patzek, 2004; Juanes, 2005).

4. Analytical Solutions

We develop analytical solutions to the Riemann problem (30)—(31) for two
cases of interest: secondary floods and tertiary floods. In the case of sec-
ondary floods, we consider injection of a water—solvent mixture into a
medium that contains oil and connate water. A tertiary flood refers to the
case when the water—solvent mixture is injected into a reservoir that has
previously been waterflooded to residual oil saturation. Therefore, our anal-
ysis is restricted to initial states along the oil-water edge (C =0) and to
injected states along the water—solvent edge (C=1—S). Although we do
not anticipate major difficulties in developing a full catalogue and classifi-
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1

Figure 8. Isocontours of eigenvalues of the 1-family, and the corresponding inflec-
tion locus.

cation of solutions for any initial and injected states, the complete Riemann
solver is not presented here.

Our analysis in this section is restricted to using the nominal value of
the effective mobility ratio My given by Equation (12). No attempt was
made to adapt My in a self-consistent fashion (Blunt and Christie, 1993,
1994). However, even if the effective mobility ratio is adapted dynamically
depending on the mobility drop across a solvent front, the global structure
of the solution for tertiary floods is still similar to that presented here and
still involves the detached branch of the Hugoniot locus. We discuss and
illustrate this point in Section 5.3.

We use the Lax entropy criterion for the construction of our solutions.
Therefore, solutions are obtained as a sequence of a slow 1-wave and a fast
2-wave, which are connected at an intermediate constant state:
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Figure 9. Isocontours of eigenvalues of the 2-family, and the corresponding inflec-
tion locus.

w w
U —> ty —> u,. (39)

Each of the two waves (i =1, 2) may be a rarefaction R;, a shock S;, or a
rarefaction-shock R;S;. We obtain unique admissible solutions using this
entropy criterion (at least for the cases considered below). Some of the
solutions involve detached branches of the shock curves in an essential way.

In the discussion that follows, a comparison is performed between the
analytical solution and a one-dimensional numerical solution. In all cases,
we used a single-point upstream finite-difference method, with an explicit
Forward Euler time integration scheme. The numerical solutions were com-
puted on a grid of 1000 cells and a time step of 5t =0.00025, correspond-
ing to a CFL number of about 0.5 for most of the cases presented. From
numerical experiments with different grid resolutions (keeping the CFL
number constant), it appears that the numerical simulations reflect con-
verged solutions.
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4.1. SECONDARY FLOODS

We consider the initial state u, =(S,, C,)=(0.2,0), that is, an oil-water sys-
tem at connate water saturation, and different injection states.

Case I. The first case we consider is that of pure solvent injection, u; =
(S;, C;)) =(0,1). The solution, shown in Figure 10, consists of a slow rar-
efaction R; (in fact, a contact discontinuity of zero speed), and a long
fast rarefaction R, associated with the dispersed solvent front. This solu-
tion displays the basic feature of the viscous fingering model: the fast sol-
vent front, which would be a sharp contact discontinuity if fingering effects
are ignored (Juanes and Lie, 2005), is now a smooth rarefaction with
a ratio between its maximum and minimum speeds equal to MZ. where
My ~1.88. On the left plot of Figure 10 we show the composition path
corresponding to the analytical solution (solid line) and the numerical solu-
tion (dotted line — superimposed to the solid line in this case and there-
fore barely visible). Also shown are the inflection loci of the slow and fast
families (dashed lines). On the right plot of Figure 10 we show the cor-
responding composition profile. We plot the profiles of water saturation S
(solid line) and solvent mass fraction x (dashed line) against the self-sim-
ilarity variable ¢. Also shown with circles connected by a dotted line is
the numerical solution obtained by single-point upstream finite differences.
Because of the large number of points, these lines often look like thick
solid lines. The agreement between the analytical and numerical solutions
is excellent.

Case II. Next we consider the case when a mixture of water and solvent
is injected, with a water saturation greater than the connate water satura-
tion: u; = (0.4, 0.6). The solution is now made up of a slow 1-Lax shock S
at constant solvent mass fraction, and the same fast rarefaction R, as in

Figure 10. Secondary flood. Case I: injection state (S, C)=(0, 1).
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the previous case (see Figure 11). Since the water shock lags behind the
solvent front and does not interact with it, the injection scheme is not more
efficient than that of Case I, but requires less solvent.

Case III. If one injects a water—solvent mixture with a higher propor-
tion of water, the composition path of the slow wave is no longer along the
the water—solvent edge. In Figure 12 we show the analytical solution when
the injected state is u; = (0.5, 0.5). The solution still presents a fast rarefac-
tion, but its amplitude is reduced compared with the previous two cases.
The reason is that the slow wave intersects the fast rarefaction at an inter-
mediate state that is not on the water—solvent edge. Notice that the slow
wave 1s a rarefaction—shock R1S; that crosses the 1-inflection locus.

Case IV. If the ratio of water to solvent injected is sufficiently high, the
slow wave is a single rarefaction associated with the solvent front that lags
behind a classical Buckley—Leverett shock. One such case is shown in Fig-
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Figure 11. Secondary flood. Case II: injection state (S, C)=(0.4,0.6).
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Figure 12. Secondary flood. Case III: injection state (S, C)=1(0.5,0.5).
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ure 13 for an injected state u; = (0.65,0.35). One can conclude that there
is an optimum ratio of water to solvent injected (Stalkup, 1983; Blunt and
Christie, 1993) that would lie between Cases III and IV, and for which the
leading edge of the solvent front and the water front would travel at the
same speed.

4.2. TERTIARY FLOODS

We consider the initial state u, =(S,, C,)=(0.8, 0), that is, an oil-water sys-
tem at residual oil saturation. We study the different solution types that
emerge as we vary the water—solvent ratio of the injected fluid.

Case I. Pure solvent is injected into the medium, that is, u; = (0, 1).
The solution comprises two waves: a slow rarefaction R; along the
water—solvent edge (constant solvent mass fraction y = 1), and a fast
rarefaction-shock R,S, (Figure 14). The essential ingredient in the con-
struction of the solution is that the rarefaction and the shock join at a
state that belongs to the detached branch of the Hugoniot locus of the
initial state (see Figure 7). This is one of the distinct features that charac-
terizes our solutions to tertiary WAG flooding. This solution is fundamen-
tally different from the ones presented in Blunt and Christie (1993), where
the initial condition considered was such that the solvent front would not
interact with a leading Buckley—Leverett shock, so the solution would not
involve the detached branch. In our case, on the other hand, the fast wave
embodies simultaneous changes of both water saturation and solvent mass
fraction. The solution constructed in this way is the unique solution that
satisfies the Lax entropy criterion. Moreover, we show at the end of this
section that the leading shock is stable to viscous fingering and, therefore,
consistent with our model description.

