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Summary

In miscible flooding, injection of solvent is often combined with
water to reduce the mobility contrast between injected and dis-
placed fluids and control the degree of fingering. Using traditional
fractional-flow theory, Stalkup estimated the optimum water-
solvent ratio (or WAG ratio) when viscous fingering effects are
ignored, by imposing that the solvent and water fronts travel at the
same speed. Here we study how the displacement efficiency and
the mobility ratio across the solvent front vary with the WAG ratio
when fingering is included in the analysis. We do so by computing
analytical solutions to a 1D model of two-phase, three-component,
first-contact miscible flow that includes the macroscopic effects of
viscous fingering. The macroscopic model, originally proposed by
Blunt and Christie (1993, 1994), employs an extension of the
Koval fingering model to multiphase flows. The premise is that the
only parameter of the model—the effective mobility ratio—must
be calibrated dynamically until self-consistency is achieved be-
tween the input value and the mobility contrast across the solvent
front. This model has been extensively validated by means of
high-resolution simulations that capture the details of viscous fin-
gering and carefully-designed laboratory experiments.

The results of this paper suggest that, while the prediction of
the optimum WAG ratio does not change dramatically by incor-
porating the effects of viscous fingering, it is beneficial to inject
more solvent than estimated by Stalkup’s method. We show that,
in this case, both the pore volumes injected (PVI) for complete oil
recovery and the degree of fingering are minimized.

Introduction

Solvent flooding is a commonly used technology for enhanced oil
recovery in hydrocarbon reservoirs, which aims at developing mis-
cibility, thereby mobilizing the residual oil and enhancing the mo-
bility of the hydrocarbon phase (Stalkup 1983; Lake 1989). De-
spite its high local displacement efficiency, the overall effective-
ness of solvent injection may be compromised by viscous
fingering, channeling, and gravity override, all of which contribute
negatively to sweep efficiency (Christie and Bond 1987; Christie
1989; Christie et al. 1993; Chang et al. 1994; Tchelepi and Orr
1994). In this paper, we focus on the effect of viscous fingering;
that is, the instability that occurs when a low-viscosity fluid (sol-
vent) is injected into a formation filled with more viscous fluids
(water and oil).

Mobility control of the injected solvent can be achieved by
simultaneous coinjection of water—typically in alternating water
and solvent slugs (WAG) (Caudle and Dyes 1958). In this way, the
mobility contrast between the injected and displaced fluids is re-
duced, thereby limiting the degree of fingering.

There is an optimum ratio of water to solvent that maximizes
recovery—in the sense of minimizing the number of pore volumes
injected—while providing effective mobility control. For linear
floods in homogeneous media, and without consideration of vis-
cous fingering effects, a graphical construction of the optimum
WAG ratio was given by Stalkup (1983) for both secondary floods
(water/solvent injection into a medium filled with mobile oil and

Copyright © 2007 Society of Petroleum Engineers

This paper (SPE 99721) was accepted for presentation at the 2006 SPE/DOE Symposium
on Improved Oil Recovery, Tulsa, 22—26 April, and revised for publication. Original manu-
script received for review 23 February 2006. Revised manuscript received 29 January 2007.
Paper peer approved 1 February 2007.

486

immobile water) and tertiary floods (water-solvent injection into a
medium filled with mobile water and immobile oil). The design
condition imposed in Stalkup’s method is that the velocity of the
water and solvent fronts be the same. Walsh and Lake (1989)
performed an interesting analysis of the WAG ratio (the ratio of
injected water to solvent) on the displacement efficiency for sec-
ondary and tertiary floods, using fractional-flow theory. They did
not include the effects of viscous fingering, but they estimated the
mobility contrast across the solvent front as a measure of the
severity of fingering.

In this paper, we analyze the effect of viscous fingering on the
simultaneous injection of water and solvent for secondary and
tertiary oil recovery. We restrict our attention to homogeneous
porous media, linear (effectively 1D) displacements, and simple
phase behavior characterized by first-contact miscibility of oil and
solvent. We employ the empirical viscous-fingering model pro-
posed by Blunt and Christie (1993, 1994). They used an extension
of the Koval (1963) and Todd and Longstaff (1972) models to
describe fingering of the solvent in a two-phase, three-component
system. They proposed a self-consistency condition to calibrate the
only parameter of the fingering model—the effective mobility ra-
tio M. With some simplifications on the structure of the solution
and the estimation of M, analytical solutions were obtained for
secondary and tertiary floods. They reported excellent agreement
between analytical predictions from the empirical 1D model and
averaged saturation and concentration profiles from 2D direct nu-
merical simulations.

The results of the present paper constitute an extension of the
analytical model analyzed in previous papers by the authors.
Juanes and Lie (2005, 2007, in press) described the general ana-
lytical solution to the Riemann problem (constant initial and in-
jected conditions) for the three-component, two-phase, first-
contact miscible solvent system, and applied it to the simulation of
3D problems in heterogeneous reservoirs by means of streamline/
front-tracking techniques. The effects of viscous fingering were
ignored. Juanes and Blunt (2006) obtained analytical solutions in
the presence of viscous fingering for secondary and tertiary floods,
and for the entire range of water solvent injected conditions. The
viscous fingering model was validated by means of high-resolution
simulations that capture the details of the fingering phenomenon
(Blunt and Christie 1993, 1994; Blunt et al. 1994) and by carefully
designed laboratory experiments.

The main result of this paper is a series of plots that show how
the number of PVI for complete oil recovery and the mobility
contrast across the solvent front vary as a function of the WAG
ratio. These results suggest that, while the prediction of the opti-
mum WAG ratio does not change dramatically by incorporating
the effects of viscous fingering, it is beneficial to inject more
solvent than estimated by Stalkup’s method. We show that, in this
case, both the PVI for complete oil recovery and the degree of
fingering are minimized.

Mathematical Model

We are interested in the flow through a porous medium of a mix-
ture of three components (water, oil, and solvent) that form two
distinct fluid phases (aqueous and hydrocarbon phases). We as-
sume that water is immiscible with the two hydrocarbon compo-
nents, and that oil and solvent mix readily (first-contact miscibil-
ity) to form a single hydrocarbon phase. The mathematical treat-
ment is simplified by the assumptions that the fluids and the
medium are incompressible, and that there is no volume change
upon mixing of the hydrocarbon components. In addition, the
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fluid-flow dynamics are assumed to be governed by the traditional
multiphase flow extension of Darcy’s law, with nonhysteretic rela-
tive permeability functions. In order to render the mathematical
model amenable to analysis, and to make it possible to obtain
analytical solutions, we neglect the effects of gravity and capillar-
ity. These assumptions are discussed critically elsewhere (Juanes
and Blunt 2006).

Governing Equations Without Viscous Fingering. The math-
ematical model describing 1D flow under the previously described
assumptions—and ignoring the effects of viscous fingering—is a
system of two first-order conservation equations (Juanes and Lie
2005, 2007):

as of
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In Egs. 1 and 2, x and ¢ are dimensionless space and time variables.
Eq. 1 can be understood as the usual Buckley-Leverett equation
(1942) where S is the water saturation and f is the water fractional
flow. The water fractional flow is equal to the mean water velocity
divided by the sum of the mean velocity of all flowing phases.
Under the assumption that gravity and capillarity forces are neg-
ligible, the water fractional flow is simply the ratio of water mo-
bility to total mobility:

and k,, is the relative permeability and u,, is the dynamic viscosity
of the a-phase. Therefore, the only difference between Eq. 1 and
the Buckley—Leverett equation for immiscible two-phase flow is
that the hydrocarbon viscosity w, depends on the mass fraction of
solvent y in the hydrocarbon phase. In this paper, we have used the
common quarter-power rule (Koval 1963; Todd and Longstaff 1972):

l-x x|
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We shall refer to the oil/solvent viscosity ratio also as the nominal
mobility ratio M= w /u,. The relative permeability functions and
the resulting water fractional-flow curves are shown in Fig. 1 for
different values of the solvent mass concentration y in the hydro-
carbon phase.

Eq. 2 expresses mass conservation of the solvent. The con-
servation variable C is the volume of solvent per unit pore vol-
ume. Clearly,

C=(1-95)x.

where S is the water saturation and y is the solvent mass fraction
in the hydrocarbon phase. The flux term in Eq. 2 can be understood
as a “fractional flow of solvent,” where (1—) is the fractional flow
of the hydrocarbon phase, and C/1-S) = x is the mass fraction of
solvent in the hydrocarbon phase.

A Viscous Fingering Model. Because of the low viscosity of the
solvent, displacements associated with solvent injection may be
unstable. These fluid instabilities lead, in a multidimensional sce-
nario, to the formation and growth of fingers along the displace-
ment front. The objective of a viscous fingering model is to capture
the averaged behavior of the fingering phenomenon along the
main flow direction, thereby allowing for a 1D description of the
problem. This is illustrated in Fig. 2. Viscous fingering is incor-
porated into the formulation by an empirical model that modifies
the effective solvent flux in such a way that the macroscopic
effects of viscous fingering are captured. Therefore, the “solvent
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Fig. 1—Top: relative permeability functions for the water and
hydrocarbon phases. Bottom: water fractional flow as a func-
tion of water saturation, for different values of the solvent mass
fraction, x=0; 0.2, ..., 1.

flux” (1-f)x in Eq. 2 is replaced by (1-)g(x), where ¢ is a function
that attempts to capture the averaged solvent mass fraction with a
1D advective model:

Tol o
S5 [1=PB00T=0. oo %)

This type of empirical model was pioneered by Koval (1963) and
Todd and Longstaff (1972). They proposed the following solvent
flux function (fractional flow of solvent within the hydrocarbon
phase):

&)=

where M is the effective mobility ratio. It is equal to one if
viscous fingering is not present, and increases as viscous fingering
effects become more pronounced. Different models exist to predict
the value of M, given the oil and solvent viscosities. For example,
Koval (1963) proposed

M= (078 +0.22M" . 9)

In this paper, we use the empirical model proposed by Blunt and
Christie (1993, 1994). They used the same solvent flux function
§(x) and effective mobility ratio M. (Eqs. 8 and 9) but dynami-
cally calibrated the mobility ratio M. The premise is that the de-
gree of fingering depends on the mobility contrast across the
solvent front. For single-phase flows in which a first-contact mis-
cible solvent is injected into an oil-filled medium, the mobility
contrast M is equal to the viscosity ratio w/u,. For multiphase
flows, the mobility contrast is computed as the ratio of the total
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Fig. 2—Schematic of a stable displacement (left) and an unstable displacement that develops viscous fingering (right).

mobility immediately upstream and immediately downstream of
the solvent front:

up
A7

The effective mobility ratio M can then be calculated by insert-
ing this value of M into Eq. 9. Obviously, the value of the effective
mobility ratio affects the solution, and an iterative scheme is re-
quired to achieve consistency between the input effective mobility
ratio M} and the output MSit obtained from Eqgs. 10 and 9 once the
solution is computed.

Composition Diagrams. The model given by Egs. 1 and 2 (or Egs.
1 and 7 if viscous fingering is modeled) must be supplemented
with initial and boundary conditions. We are interested in the
solution to the Riemann problem; that is, the solution in an un-
bounded domain where the initial conditions are simply two con-
stant states (left or injected state [S,C,], and right or initial state
[S,.C,]) separated by a single discontinuity at x=0. The Riemann
problem approximates common experimental and field conditions,
in which the initial saturations and compositions are uniform and
the injected conditions are held constant in time.

At any point in space and time, the solution vector [S,C] must
lie on the unit triangle:

U={S,C:5=0,C=0,S+C=1},

that is, the water saturation (S), the overall solvent volume fraction
(C), and the overall oil volume fraction (1-S—C) must be between
0 and 1. This unit triangle representing water saturation and sol-
vent concentration is called the phase (or composition) space.
The system of equations and the initial condition are invariant
under uniform stretching of coordinates (x, #)—>(cx, ct) with ¢>0,
which means that the solution [S(x,7), C(x,7)] does not depend on x
and ¢ independently but, rather, on the similarity variable {=x/t
(the characteristic speed). If the solution is known at a given time,
it is automatically known at any other time by simple rescaling.
Therefore, the solution can be interpreted as a route on the phase
space, from the injected state to the initial state (Helfferich 1981;
Pope 1980). The entire route is composed of a sequence of waves
connecting injected and initial states and, possibly, other interme-
diate constant states. Each wave has a corresponding characteristic
velocity, which must increase from the injected to the initial state.
There are various types of wave, including continuous (rarefac-
tion) waves, discontinuous self-sharpening (shock) waves, and dis-
continuous indifferent (contact) waves (Smoller 1994). Juanes and
Lie (2007) provide a complete analysis of the system without
viscous fingering by drawing an analogy with the polymer system
(Isaacson 1980), and Juanes and Blunt (2006) do the same for the
system that includes viscous fingering. That analysis, which in-
cludes a study of the mathematical character of the system of

488

equations, a description of the different waves that may arise, and
a complete classification of the Riemann solution, will not be
repeated here. We illustrate, however, some of the important dif-
ferences between the two models in terms of the so-called com-
position diagram. The composition diagram is a representation of
potentially admissible continuous (rarefaction) waves on the phase
space. Although this information alone is insufficient to construct
solutions to the Riemann problem (because shock curves and rar-
efaction curves do not coincide, in general), it does provide a good
idea of what type of saturation/composition variations one may
expect. In the case of a hyperbolic system of two equations, these
curves are organized into two families, each associated with the
slow or fast characteristic family (Smoller 1994).

In Fig. 3, we show the composition diagram for the system
without viscous fingering. The slender continuous lines correspond
to waves in which water saturation changes and the solvent mass
fraction y remains constant: waves of the S-family, also called
tie-lines in fractional flow theory (Helfferich 1981). The discon-
tinuous curves are associated with waves in which the solvent
mass fraction changes: waves of the C-family or nontie-lines. It
turns out that these are indifferent waves (contact discontinuities);
the characteristic speed is constant along them. The thick black
curve denotes the transition curve: a line along which the charac-
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Fig. 3—Composition diagram for the system with no vis-
cous fingering.
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Fig. 4—Composition diagram with viscous fingering, for the
nominal mobility ratio M=10 (M,~1.88).

teristic speeds of S-waves and C-waves are the same. To the left of
the transition curve, the wave speed of tie-lines is lower than that
of the nontie-lines, while the wave speed of tie-lines is higher than
that of nontie-lines to the right of the transition curve. Therefore,
the two characteristic families change order as the transition curve
is crossed.

For the system that accounts for viscous fingering, the precise
form of the composition diagram depends on the effective mobility
ratio M. which, in turn, depends on the mobility ratio M through
Koval’s formula. The composition diagram (integral curves of
slow and fast eigenvectors) is shown in Fig. 4 for an oil/solvent
viscosity ratio M =10, for which the effective mobility ratio is
M.+ =1.88. The composition diagram is similar to that of the case
with no viscous fingering, but with some notable differences: (1)
there is no transition curve but, rather, a whole region in which
tie-line paths effectively switch to nontie-line paths; (2) waves
associated primarily with changes in water saturation are no longer
straight lines; and (3) waves associated primarily with changes in
composition no longer correspond to curves of constant character-
istic speed.

Prediction of Optimum WAG Ratio

The WAG ratio is defined as the ratio of injected water to injected
solvent, both expressed in reservoir volumes:

_ ﬁnj
1 _ﬁnj ’

where f; is the water fractional flow of the injected conditions. In
this section, we revisit the classical method for estimating the
optimum WAG ratio in the absence of viscous fingering due to
Stalkup (1983). We provide an interpretation of Stalkup’s method
from the point of view of the composition diagram, and extend the
analysis for the prediction of the optimum WAG ratio when the
governing equations include viscous fingering.

Wr

Stalkup’s Method. There is an optimum WAG ratio at which the
number of pore volumes injected required for 100% recovery of
the oil is minimized while, at the same time, reducing the mobility
contrast across the solvent front and therefore limiting the degree
of fingering.

A graphical construction for the evaluation of the optimum
WAG ratio in secondary and tertiary floods was first given by
Stalkup (1983) when viscous fingering is not included in the analy-
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Fig. 5—Stalkup’s method for the prediction of optimum WAG
ratio in secondary floods.

sis. The premise is that, for these injected conditions, the water
and solvent fronts travel at the same speed. A careful and ele-
gant analysis using fractional flow theory is given by Walsh and
Lake (1989).

Stalkup’s graphical construction is reproduced in Fig. 5 for the
case of secondary floods; that is, when the reservoir is initially
filled with mobile oil and connate (immobile) water. The injected
conditions can be represented as a point on the water/solvent frac-
tional flow curve. The slope of the straight line from point (1,1) to
the injected conditions (S, f;,;) corresponds to the speed of the
solvent front. The slope of the straight line from the injected state
to the initial state (S,,., 0) is the speed of the water shock. The
optimum injected conditions are those for which both slopes are
the same, as shown in Fig. 5.

The graphical construction for obtaining the optimum WAG
ratio in tertiary floods is slightly more complicated (see Fig. 6). In
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Fig. 6—Stalkup’s method for the prediction of optimum WAG
ratio in tertiary floods.
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Fig. 7—Interpretation of Stalkup’s method for secondary floods, and corresponding solution profile.

this case, the initial state of the reservoir corresponds to residual oil
after waterflood (point B). As before, the injected conditions can
be represented as a point on the water/solvent fractional flow
curve. It turns out that, in this case, the fast wave is always a
Buckley-Leverett shock, the speed of which is computed by draw-
ing the tangent from point B to the water/oil fractional-flow curve
(point D). If the WAG ratio is below optimal, there will be two
waves behind this fast Buckley-Leverett shock: a water front and
a solvent front. The speed of the solvent front corresponds to the
slope of the straight line from point (1,1) to the tangent of the
water/oil curve (point C). The speed of the water front is given by
the slope of a straight line from the injected conditions (S;,,;, fiy,;) to
the intersection of the water/solvent curve with the extension of the
straight line EC. Both fronts (the water front and the solvent front)
will have the same speed when the injected conditions are pre-
cisely at the intersection of the straight line EC with the water/
solvent fractional flow curve. This optimum is shown in Fig. 6 and
is, in general, different from the secondary flood optimum.

Interpretation of Stalkup’s Method. Stalkup’s method for predict-
ing the optimum injected conditions can be reinterpreted as the point
for which a bifurcation in the solution occurs on the phase diagram.

Consider secondary floods first. The initial state is
u,=[S,,C,]=1[S,. 0] and the injected state will be a state
u; =[S, C,] somewhere along the diagonal of the unit triangle (be-
cause no oil is injected). The solution on the phase diagram will be
a combination of waves connecting the injected state to the initial
state. If the amount of injected water is low, the solution will be of
the type SC: a sequence of a slow water shock from the injected
state u, to an intermediate state 1!, and a fast solvent front from
u'? to the initial state u,. In contrast, if the amount of injected
water is high, the solution will consist of a slow solvent front from
the injected state u, to an intermediate state u>, and a faster water
shock displacing the oil that connects the intermediate state u”
with the initial state u, (solution of type CS). The two types of
solution have markedly different paths on the phase diagram.
There is, in fact, an injected state for which the solution bifurcates,
representing the transition between the two types of solution (see
Fig. 7). This state is precisely the one for which the S-wave and the
C-wave travel at the same speed and, therefore, corresponds to
Stalkup’s definition of optimum injected state. The profiles of
water saturation S and solvent mass fraction y in the hydrocarbon
phase are shown on the right plot of Fig. 7, where it is evident that
the speeds of both waves are the same. It should be noted that,
despite the fact that bifurcation occurs on the phase diagram, the
solution shows continuous dependence on the injected conditions
in physical space. That is, the saturation and concentration profiles
vary continuously with changes in the injected conditions.
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Similar arguments apply to tertiary floods. The initial state is
now u,=|[S,,C,]=[1-S,,,0] and the injected state u,=[S,C,] is on
the diagonal edge of the unit triangle. If the injected water satu-
ration is low, the solution consists of a sequence of three waves: a
slow water shock S from u, to an intermediate constant state u!’,
preceded by a faster solvent front C that connects u}’ to a tangent
shock state u,, which is itself preceded by a faster Buckley-
Leverett water shock S from u, to the initial state «,. On the other
hand, if the amount of water injected is sufficiently high, the
slower water and solvent fronts merge onto one single traveling
discontinuity, which we still denote as a solvent front C. Bifurca-
tion between these two solution types occurs for an injected state
such that the slow S- and C-waves have the same speed, as shown
in Fig. 8. Also shown in Fig. 8 are the water saturation and solvent
concentration profiles which, once again, emphasize the fact that
the water and solvent fronts travel with the same speed.

Including Viscous Fingering. Analytical solutions to the Rie-
mann problem are much more complex when viscous fingering
effects are incorporated into the model. They have been fully
characterized, however, for secondary and tertiary floods (Juanes
and Blunt 2006). The additional complexity in the treatment of the
multiphase first-contact miscible model with viscous fingering
comes from the following:

1. The wave paths associated with changes in solvent concen-
tration are no longer contact discontinuities; that is, they do not
have a constant wave speed.

2. For tertiary floods, the shock curves present detached (non-
local) branches. This leads to scenarios in which the slower solvent
front and the faster Buckley-Leverett shock interact, or, in other
words, the solvent front pushes through, destroying the oil bank.
The result of that interaction is a leading shock that involves
changes in both water saturation and solvent mass fraction. Inter-
estingly, this feature explains why in miscible tertiary floods, oil
and solvent often break through simultaneously.

3. Evaluation of the solution requires that the correct value of
the effective mobility ratio be used. Iteration is needed to achieve
self-consistency between the input and output values of the mo-
bility contrast across the solvent front. Quite often, the structure of
the solution is very sensitive to the value of the effective mobility
ratio, and implementation of a robust iterative algorithm is there-
fore a challenge. We discuss this issue further in the Discussion
and Conclusions section.

Stalkup’s construction results in injected states that satisfy the
following property: they maximize the water-to-solvent ratio of the
mixture, while simultaneously minimizing the number of pore vol-
umes injected required for 100% oil recovery. In the previous
subsection, we saw that the model without viscous fingering leads
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Fig. 8—Interpretation of Stalkup’s method for tertiary floods, and corresponding solution profile.

to bifurcation of the solution in phase space. This is not the case
when viscous fingering effects are incorporated: the solution de-
pends continuously on the initial data both on physical and phase
space (Juanes and Blunt 2006). Therefore, bifurcation of the so-
lution cannot be used as a criterion for the definition of the opti-
mum WAG ratio. However, we can still define the optimum WAG
ratio as the injected state that minimizes the number of pore vol-
umes injected for complete recovery of the oil in place.

To illustrate the differences in the solution when viscous fin-
gering effects are included, we show in Figs. 9 and 10 the com-
position path, the saturation and composition profiles, and the total
mobility profile for the optimum injected state in secondary and
tertiary floods, respectively. The solutions with viscous fingering
follow composition paths that are somewhere in between the two

bifurcation solutions of the model without viscous fingering. There
are notable dissimilarities between them, however. For example,
the solvent fronts in the solutions with viscous fingering are rar-
efaction waves that reflect the dispersive nature of viscous finger-
ing. The added benefit of including viscous fingering in a self-
consistent fashion is that predictions are performed using the mo-
bility contrast across the front and, therefore, accounting for the
degree of fingering that actually takes place.

Impact of Viscous Fingering

In this section, we compile the main results of the paper, in the
form of plots of the number of pore volumes injected (PVI) re-
quired for 100% recovery and mobility contrast across the solvent
front, as a function of the injected water fractional flow. Each
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Fig. 9—Composition path and composition profiles at the optimum injected WAG ratio for secondary floods.
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Fig. 10—Composition path and composition profiles at the optimum injected WAG ratio for tertiary floods.

individual solution of these curves was obtained by iterating on the
mobility ratio to achieve self-consistency, as explained earlier. We
also compare the new predictions with those obtained when vis-
cous fingering is neglected, therefore complementing the analysis
of Walsh and Lake (1989), where viscous fingering was not included.

Moderate Viscosity Ratio. In Fig. 11, we plot the PVI for 100%
recovery (bottom) and the corresponding mobility contrast across
the solvent front (top) as a function of the injected water fractional
flow, for simultaneous water/solvent secondary floods. We com-
pare the results of the models with and without viscous fingering
when the nominal mobility ratio (oil/solvent viscosity ratio) is
equal to 10.

The model without viscous fingering predicts that the displace-
ment efficiency and the mobility ratio across the solvent front
remain unchanged for 0<f;,.<f fgj" At this critical f fl‘,J“ the mobility
ratio drops from a value of exactly 10 to a much lower value of
approximately 4. For f, .<f f,f}‘ the mobility ratio continues to de-
crease, but the displacement efficiency also decreases as W in-
creases (more PVI are required to recover all the oil). In this
classical analysis, the optimum WAG ratio (which coincides with
the value obtained by Stalkup’s method) is then taken as a value
slightly greater than the critical value, W,=0.88 in this case, be-
cause it combines the highest displacement efficiency PVI=0.80
with a relatively low value of the mobility contrast.

The model with viscous fingering, on the other hand, predicts
a continuous dependence of the displacement efficiency and the
self-consistent mobility ratio across the solvent front with respect
to the water/solvent ratio. The curves of PVI and mobility ratio
both show a minimum at approximately the same water fractional
flow. The minimum of the PVI curve corresponds to W,=0.78, for
which PVI=0.93.

In Fig. 12, we perform the same analysis for tertiary floods,
with similar observations. The model without viscous fingering
predicts a constant mobility contrast and PVI for 100% recovery
for WAG ratios below the Stalkup optimal, and a progressive
increase in PVI together with a decrease in mobility contrast for
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WAG ratios above the Stalkup optimal. From this analysis that
ignores viscous fingering, one would choose a WAG ratio slightly
above the critical value W,=0.78, for which PVI=0.77. The model
predictions that account for viscous fingering predict, on the other
hand, a lower value of the optimal WAG ratio, W,=0.56, and a
higher value of the associated PVI=0.94.

Severe Viscosity Ratio. A relevant question is whether the discrep-
ancy in the predictions between the models with and without viscous
fingering is heavily dependent on the nominal mobility ratio. In-
tuitively, it seems reasonable to think it is and that, for severe
oil/solvent viscosity ratios, the two models will yield very different
predictions. We address this question by repeating the previously
described analysis with a higher viscosity ratio, M =100.

The results for tertiary floods are shown in Fig. 13. Note that
the plot of the mobility contrast across the solvent front has a
semilog scale. When comparing the two models, it is apparent that,
for low WAG ratios, the model that ignores viscous fingering
severely overestimates the mobility contrast across the front and
significantly underestimates the PVI for 100% recovery. This is to
be expected, because this is the range of injected conditions (too
much solvent) for which viscous fingering plays a dominant role.

However, when the WAG ratio is sufficiently high, the differ-
ences between the two models are reduced. The fractional flow
model that ignores viscous fingering yields an optimum WAG
ratio of Wy=2.13 (equal to the Stalkup optimum) and an associated
PVI=0.77. The model that accounts for viscous fingering in a
self-consistent fashion predicts a lower optimum WAG ratio,
We=1.45, with PVI=0.90 for 100% recovery. While the discrep-
ancy between models is larger than for M =10, it is less pro-
nounced than what one might have anticipated given the large
value of the oil/solvent viscosity ratio.

Discussion and Conclusions

The results of the previous section display several general trends.
1. The first observation is that the estimates of the optimum WAG
ratio that account for viscous fingering are lower than those that
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Fig. 11—Mobility contrast and pore volumes injected for 100%
recovery as a function of the injected water fractional flow. Sec-
ondary floods.

ignore viscous fingering effects. This means that the number of
PVI for complete oil recovery is minimized by injecting a higher
solvent fraction than predicted by the Stalkup method. What is
more, the self-consistent minimum in the mobility contrast dis-
plays a minimum for WAG ratios below the Stalkup optimum,
indicating that it is safe to inject more solvent, and that the
measure of the degree of fingering predicted by the classical
fractional-flow theory (Walsh and Lake 1989) is unreliable.

2. The solutions without viscous fingering display bifurcation in
phase space and discontinuous behavior in the mobility contrast
across the solvent front as the injected water fractional flow
changes. This is not the case for the solutions with viscous
fingering: the composition route varies continuously as a func-
tion of the injected state, and so does the self consistent mobility
ratio. To reiterate this point, we plot in Fig. 14 the variation of
the Todd and Longstaft (1972) parameter w as a function of the
injected water fractional flow for both secondary and tertiary
floods. This parameter can be computed directly by using the
definition of the effective mobility ratio proposed by Todd and
Longstaff (1972):

Ma=M"" . (13)
together with Eq. 9, to yield

10gM ¢ log(0.78 +0.22M""%) "

=1 oant =1~ g (14)

The Todd and Longstaff parameter w serves also as a measure
of the degree of fingering. It is equal to 1 if fingering is com-
pletely suppressed, and a lower value indicates more fingering.

December 2007 SPE Journal

12

107

mobility contrast

0.4 0.6 0.8 1
water fractional flow

0 0.2

—o— with viscous fingering
—o— no viscous fingering

PVI for 100% recovery

L

O L

0 0.2 0.4 0.6 0.8 1

water fractional flow

Fig. 12—Mobility contrast and pore volumes injected for 100%
recovery as a function of the injected water fractional flow. Ter-
tiary floods.

From this figure, it is apparent that w is continuously varying
with the injected conditions. There are significant discrepancies
between this figure and the corresponding figure (Fig. 11) in the
study of Blunt and Christie (1993). Without going into all the
details, the differences can be attributed to the following factors,
all of them ignored or simplified by Blunt and Christie (1993):

(a) The intermediate constant state of the solution may be well
inside the composition triangle, and not on the water-solvent edge or
the water-oil edge (see Figs. 9 and 10).

(b) The solution involves in fact two solvent fronts and, therefore,
two values of the mobility contrast given by Eq. 10. The presence of
two solvent fronts with different mobility contrast is evident from the
mobility profiles in Figs. 9 and 10. If the injected mixture is rich in
solvent, M associated with the fast solvent front (red curve in Figs. 9
and 10) is larger. As a higher fraction of water is injected, there is a
crossover, and M associated with the slow front (blue curve) is larger.
It is the larger value of M that is used to iterate on the self-consistent
M., something that was not accounted for by Blunt and Christie
(1993). This also explains why M, (and thus the Todd and Longstaff
parameter w) should be the same for secondary and tertiary floods if
the fraction of water injected is large enough: in this case, M from the
slow front dominates and the slow wave is actually identical for both
secondary and tertiary floods (Juanes and Blunt 2006).

As a result, Blunt and Christie (1993) predict a monotonic curve
of w vs. injected water fractional flow, a discontinuity in w at the
optimum WAG ratio, and very high values of w above the optimum.
In contrast, we predict nonmonotonic (but continuously varying)
with f,,;, and relatively low values of  (lower than 0.8) throughout.

3. Because the solvent fingers through, the displacement is less
efficient than predicted by the model that neglects viscous fin-
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tiary floods with severe viscosity ratio 1/=100.

gering. Thus, the PVI required for complete recovery of the oil
is always larger in the model that accounts for viscous fingering.
4. The models with and without viscous fingering differ only mar-
ginally with regard to the predictions of optimum WAG ratio,
even for cases with severe viscosity ratio. The reason is that near
the optimum WAG ratio, the mobility contrast across the solvent
front is much lower than the nominal mobility ratio. However,
as noted earlier, the results of this paper suggest that it is ben-

— — — secondary flood
L tertiary flood

0.7 -

0 0.2 0.4 0.6 0.8 1
water fractional flow

Fig. 14—Variation of the Todd and Longstaff (1972) parameter o
as a function of the injected water fractional flow.
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eficial to inject a higher fraction of solvent than predicted by
Stalkup’s method.

Nomenclature

C = overall solvent volume fraction
C, = injected solvent concentration
initial solvent concentration
f = water fractional flow
Jfinj = injected water fractional flow
Jope = optimum water fractional flow
¢ = solvent flux function
k,, = hydrocarbon relative permeability
k,,, = water relative permeability
M = mobility contrast across the solvent front
M, = effective mobility ratio
S = water saturation
S, = injected water saturation
S, = residual oil saturation
S, = initial water saturation
= connate water saturation
t = dimensionless time
U = unit composition triangle
1, = injected composition state

a
Il

u,,, u, = intermediate composition states
u, = initial composition state
Wi = WAG ratio
x = dimensionless space variable
{ = x/t, characteristic speed
A, = mobility of the hydrocarbon phase
A,, = mobility of the aqueous phase
Ar = A, +A, total mobility
u,, = viscosity of the hydrocarbon phase
W, = oil viscosity
i, = solvent viscosity
W, = water viscosity
X = solvent mass fraction in the hydrocarbon phase
® = Todd and Longstaff parameter
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