
RESEARCH ARTICLE
10.1002/2013WR015175

Coupled multiphase flow and poromechanics:
A computational model of pore pressure effects on
fault slip and earthquake triggering
Birendra Jha1 and Ruben Juanes1

1Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA

Abstract The coupling between subsurface flow and geomechanical deformation is critical in the assess-
ment of the environmental impacts of groundwater use, underground liquid waste disposal, geologic stor-
age of carbon dioxide, and exploitation of shale gas reserves. In particular, seismicity induced by fluid
injection and withdrawal has emerged as a central element of the scientific discussion around subsurface
technologies that tap into water and energy resources. Here we present a new computational approach to
model coupled multiphase flow and geomechanics of faulted reservoirs. We represent faults as surfaces
embedded in a three-dimensional medium by using zero-thickness interface elements to accurately model
fault slip under dynamically evolving fluid pressure and fault strength. We incorporate the effect of fluid
pressures from multiphase flow in the mechanical stability of faults and employ a rigorous formulation of
nonlinear multiphase geomechanics that is capable of handling strong capillary effects. We develop a
numerical simulation tool by coupling a multiphase flow simulator with a mechanics simulator, using the
unconditionally stable fixed-stress scheme for the sequential solution of two-way coupling between flow
and geomechanics. We validate our modeling approach using several synthetic, but realistic, test cases that
illustrate the onset and evolution of earthquakes from fluid injection and withdrawal.

1. Introduction

Coupling between fluid flow and mechanical deformation in porous media plays a critical role in subsurface
hydrology, hydrocarbon recovery, and seismic activity in the Earth’s crust. Subsidence due to groundwater
withdrawal has been studied for decades, but continues to pose significant challenges in many parts of the
world [Geertsma, 1973; Gambolati and Freeze, 1973; Bear and Corapcioglu, 1981; Mossop and Segall, 1997;
Galloway et al., 1998; Gambolati et al., 2000; Galloway and Burbey, 2011]. Production and injection of fluids in
oil, gas, and geothermal fields have also been associated with surface subsidence and earthquakes along
preexisting faults [Raleigh et al., 1976; Yerkes and Castle, 1976; Lofgren, 1981; Segall, 1989; Fialko and Simons,
2000; Ellsworth, 2013; Brodsky and Lajoie, 2013]. Earthquakes triggered due to groundwater withdrawal [Gon-
zalez et al., 2012], reservoir impoundment [Carder, 1945; Lomnitz, 1974; Gupta, 2002], and wastewater dis-
posal [Keranen et al., 2013; van der Elst et al., 2013] have been reported as has been fluctuation in
groundwater levels due to earthquakes [Roeloffs, 1996; Wang et al., 2001].

Recently, coupled flow and geomechanics has also gained attention due to its role in the long-term geo-
logic storage of carbon dioxide CO2 in saline aquifers, which is widely regarded as a promising technology
to help mitigate climate change by significantly reducing anthropogenic CO2 emissions into the atmos-
phere [e.g., Lackner, 2003; Pacala and Socolow, 2004; IPCC, 2005; Orr, 2009; Szulczewski et al., 2012]. Injection
of CO2 requires displacement or compression of the ambient groundwater, and an overpressurization of the
target aquifer, which could fracture the caprock [Birkholzer and Zhou, 2009], trigger seismicity, and cause
shear slip on preexisting faults [Rutqvist et al., 2007, 2008; Chiaramonte et al., 2008; Rutqvist et al., 2010; Mor-
ris et al., 2011a, 2011b; Cappa and Rutqvist, 2011a, 2011b], and potentially compromise the caprock by acti-
vating faults [Zoback and Gorelick, 2012a].

A similar set of issues arises in the extraction of oil and natural gas from low-permeability hydrocarbon res-
ervoirs, and in particular oil and gas shales. The extraction of shale gas has undergone a revolution due to
the massive deployment of a technology called hydraulic fracturing, or ‘‘fracking’’ [Cueto-Felgueroso and
Juanes, 2013]. Concerns have been raised regarding whether fracking—and, in particular, subsurface
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disposal of produced water—may lead to venting of methane from gas shales [Howarth et al., 2011] or to
contamination of groundwater by fracking fluids [Osborn et al., 2011; Jackson et al., 2013]. Therefore, under-
standing of the potential leakage through faults undergoing slip from injection overpressure has become a
key point of the scientific discussion surrounding the viability of CCS as a climate change mitigation tech-
nology [Zoback and Gorelick, 2012a; Juanes et al., 2012; Zoback and Gorelick, 2012b] and the risks associated
with the production of shale gas [Warner et al., 2012a; Engelder, 2012; Warner et al., 2012b].

Despite the growing environmental, industrial, and economic importance of coupled flow and geome-
chanics, many aspects remain poorly understood. One of the fundamental unresolved issues is the ability to
describe the mechanical and hydraulic behavior of faults, and the influence of the full stress tensor and
change in pressure on fault slip. Injection and production of fluids from a geologic reservoir induce changes
in the state of stress, both within and outside the reservoir, and these can affect the stability of preexisting
faults. The effects of injection and production depend on the initial state of stress, the elastic moduli of the
geologic structures, and the fault frictional properties. The effects are not always intuitively obvious and
should be quantified using geomechanical models. This requires the development of a new generation of
geomechanical models that include coupling between fluid flow and fault motion.

Currently, geomechanical models typically treat faults as failure zones that are discretized as three-
dimensional elements where the rheology is allowed to be different (e.g., plastic with weakening failure)
than in the rest of the domain (e.g., elastoplastic with hardening law) [Rutqvist et al., 2008; Cappa and Rutqv-
ist, 2011a, 2011b]. This approach has several limitations, including the inability to model actual slip along a
surface of discontinuity, and the dependence of the simulation results on the level of grid refinement. Other
models represent faults as surfaces using interface elements [e.g., Ferronato et al., 2008], but so far these
models are uncoupled to flow, and they model fault slip using a penalty method [Glowinsky and Le Tallec,
1989]. Such methods require a priori selection of the penalty parameters for the fault, and therefore cannot
represent dynamically evolving fault strength, such as slip-weakening or rate- and state-friction models
[Dieterich, 1979]. Interface elements have also been used to model tensile fractures during the simulation of
coupled flow and deformation in fractured media [Segura and Carol, 2004, 2008a, 2008b].

The interactions between flow and geomechanics have been modeled computationally using various cou-
pling schemes [Dean et al., 2006; Jeannin et al., 2007; Jha and Juanes, 2007; Mainguy and Longuemare, 2002;
Minkoff et al., 2003; Settari and Mourits, 1998; Settari and Walters, 2001; Thomas et al., 2003; Tran et al., 2004,
2005; Kim et al., 2011a, 2011b, 2011c, 2013]. In the fully implicit method, one solves the coupled discrete
nonlinear system of equations simultaneously, typically using the Newton-Raphson scheme [Sukirman and
Lewis, 1993; Pao and Lewis, 2002; Lewis et al., 2003; Li et al., 2005; Ferronato et al., 2010]. The fully implicit
method guarantees unconditional stability if the mathematical problem is well posed, but the simulation of
flow and geomechanics for realistic fields becomes computationally very expensive [Settari and Mourits,
1998; Thomas et al., 2003; Jha and Juanes, 2007]. Sequential approaches to modeling coupled flow and geo-
mechanics are highly desirable because they offer the flexibility of using separate simulators for each sub-
problem [Felippa and Park, 1980; Samier and Gennaro, 2007; Minkoff et al., 2003; Rutqvist et al., 2002]. The
design and analysis of sequential methods with appropriate stability properties for poromechanics and
thermomechanics has a long history [Zienkiewicz et al., 1988; Armero and Simo, 1992, 1993; Armero, 1999;
Settari and Mourits, 1998; Mainguy and Longuemare, 2002; Jeannin et al., 2007]. Recently, a new sequential
method for coupled flow and geomechanics, termed the ‘‘fixed-stress split,’’ has been proposed and ana-
lyzed [Kim et al., 2011a, 2011b, 2013]. Stability and convergence analyses have shown that the fixed-stress
split inherits the dissipation properties of the continuum problem and is therefore unconditionally stable,
both in the linear (poroelastic) and nonlinear (poroelastoplastic) regime. The analysis has shown that the
fixed-stress split enjoys excellent convergence properties, even in the quasi-incompressible limit. It has also
been shown recently that the stability and convergence properties of the fixed-stress split for single-phase
flow carry over to multiphase systems if a proper definition of pore pressure, the ‘‘equivalent pore pressure’’
[Coussy, 2004], is used [Kim et al., 2013].

In this article, we present a new computational model for coupled flow and geomechanics of faulted reser-
voirs. We couple a flow simulator with a mechanics simulator using the fixed-stress scheme [Kim et al., 2011b].
We employ a rigorous formulation of nonlinear multiphase geomechanics [Coussy, 1995] based on the incre-
ment in mass of fluid phases, instead of the more common, but less accurate, scheme based on the change in
porosity [Settari and Mourits, 1998; Minkoff et al., 2003; Thomas et al., 2003; Tran et al., 2004, 2005; Rutqvist
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et al., 2002]. Our nonlinear formulation is required to properly model systems with high compressibility or
strong capillarity [Coussy, 1995], as can be the case for geologic CO2 sequestration [Rutqvist et al., 2007, 2008],
groundwater extraction from unconfined aquifers [Gambolati and Freeze, 1973; Gonzalez et al., 2012], and
shale gas production [Engelder, 2012]. To account for the effect of surface stresses along fluid-fluid interfaces,
we use the equivalent pore pressure in the definition of multiphase effective stress [Coussy, 2004; Kim et al.,
2013]. We model faults as surfaces of discontinuity using interface elements [Aagaard et al., 2012, 2013]. This
allows us to model stick-slip behavior on the fault surface for dynamically evolving fault strength.

2. Governing Equations

2.1. Balance Laws
We use a classical continuum representation in which the fluids and the solid skeleton are viewed as over-
lapping continua [Bear, 1972; Coussy, 2005]. The governing equations for coupled flow and geomechanics
are obtained from conservation of mass and balance of linear momentum. We assume that the deforma-
tions are small, that the geomaterial is isotropic, and that the conditions are isothermal. Let X be our
domain of interest and @X be its closed boundary. Under the quasi-static assumption for earth displace-
ments, the governing equation for linear momentum balance of the solid/fluid system can be expressed as

r � r1qbg50; (1)

where r is the Cauchy total stress tensor, g is the gravity vector, and qb5/
Xnphase

b

qbSb1ð12/Þqs; is the bulk

density, qb and Sb are the density and saturation of fluid phase b, qs is the density of the solid phase, / is
the true porosity, and nphase is the number of fluid phases. The true porosity is defined as the ratio of the
pore volume Vp to the bulk volume Vb in the current (deformed) configuration. Assuming that the fluids are
immiscible, the mass conservation equation for each phase a is

dma

dt
1r � wa5qafa; (2)

where the accumulation term dma=dt describes the time variation of fluid mass relative to the motion of the solid
skeleton, wa is the mass flux of fluid phase a relative to the solid skeleton, and fa is the volumetric source term for
phase a. Balance equations (1) and (2) are coupled by virtue of poromechanics. On one hand, changes in the
pore fluid pressure lead to changes in effective stress and induce deformation of the porous material—such as
ground subsidence caused by groundwater withdrawal. On the other hand, deformation of the porous medium
affects fluid mass content and fluid pressure. The simplest model of this two-way coupling is Biot’s macroscopic
theory of poroelasticity [Biot, 1941; Geertsma, 1957; Coussy, 1995]. In the remainder of this section, we provide the
mathematical description of poroelasticity, first for single-phase, and then for multiphase fluid systems.

2.2. Single-Phase Poromechanics
For isothermal single-phase flow of a slightly compressible fluid in a poroelastic medium with no stress
dependence of permeability, the single-phase fluid mass conservation equation reduces to

dm
dt

1r � w5qf f ; (3)

where m is the fluid mass content (fluid mass per unit bulk volume of porous medium), qf is the fluid den-
sity, w5qf v is the fluid mass flux (fluid mass flow rate per unit area and time), and v is the seepage velocity
relative to the deforming skeleton, given by Darcy’s law:

v52
k
l
rp2qf gð Þ; (4)

where k is the intrinsic permeability tensor, l is the fluid dynamic viscosity, and p is the pore fluid pressure
[Bear, 1972]. It is useful to define the fluid content variation f
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f : 5
dm
qf ;0

; (5)

where dm5m2m0 is the increment in fluid mass content with respect to the initial reference state and qf,0

is the reference fluid density.

The self-consistent theory of poroelastic behavior proposed by Biot [1941] links the changes in total stress
and fluid pressure with changes in strain and fluid content. Following Coussy [1995], the poroelasticity equa-
tions can be written in incremental form as

dr 5 Cdr : e2bdp1

f5bev1
1
M

dp;
(6)

where Cdr is the rank-4 drained elasticity tensor, 1 is the rank-2 identity tensor, e is the linearized strain
tensor, defined as the symmetric gradient of the displacement vector u,

e : 5
1
2
ru1rT u
� �

; (7)

and ev5tr ðeÞ is the volumetric strain. Note that we use the convention that tensile stress is positive. It is use-
ful to express the strain tensor as the sum of its volumetric and deviatoric components:

e5
1
3

ev 11e; (8)

from which it follows that the volumetric stress rv5tr ðrÞ=3 satisfies

drv5Kdrev2bdp: (9)

Equation (6) implies that the effective stress in single-phase poroelasticity, responsible for skeleton defor-
mation, is defined in incremental form as

dr0 : 5dr1bdp1: (10)

Biot’s theory of poroelasticity has two coupling coefficients: the Biot modulus M and the Biot coefficient b.
They are related to rock and fluid properties as [Coussy, 1995]

1
M

5/0cf 1
b2/0

Ks
; b512

Kdr

Ks
; (11)

where cf 5 1=Kf is the fluid compressibility, Kf is the bulk modulus of the fluid, Ks is the bulk modulus of the
solid grain, and Kdr is the drained bulk modulus of the porous medium.

To set the stage for the numerical solution strategy of the coupled problem, it is useful to write the fluid mass
balance equation (3) (the pressure equation) in a way that explicitly recognizes the coupling with mechanical
deformation. Equation (6) state that the increment in fluid mass content has two components: increment due to
expansion of the pore space and increment due to increase in the fluid pressure. Assuming small elastic defor-
mations and applying linearization from the reference state to the current state, we can write equation (6) as

r2r05Cdr : e2b p2p0ð Þ1; (12)

1
qf ;0
ðm2m0Þ5bev1

1
M
ðp2p0Þ: (13)

Substituting equation (13) into equation (3), we obtain the fluid mass balance equation in terms of the pres-
sure and the volumetric strain:
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1
M
@p
@t

1b
@ev

@t
1r � v5f : (14)

Linearizing the relation between volumetric total stress and volumetric strain with respect to the reference
state,

rv2rv;05Kdrev2b p2p0ð Þ; (15)

allows us to express the change in porosity as the sum of a volumetric stress component and a fluid pres-
sure component. From m5qf / and equation (13),

qf

qf ;0
/2/05

b
Kdr

rv2rv;0
� �

1
b2

Kdr
1

1
M

� �
p2p0ð Þ: (16)

Using the effective stress equation (15), we can rewrite equation (14) in terms of pressure and volumetric
total stress:

b2

Kdr
1

1
M

� �
@p
@t

1
b

Kdr

@rv

@t
1r � v5f : (17)

Note that equations (14) and (17) are exactly equivalent. They both recognize the two-way poromechanical
coupling, but they lead naturally to different operator splits in a sequential solution method: the fixed-strain
split and the fixed-stress split, respectively [Kim et al., 2011b, 2011c]. Note that, by virtue of the porome-
chanical coupling, quantities like fluid compressibility and rock compressibility do not appear explicitly in
the equation. Instead, the fluid-rock compressibility behavior is determined from the poroelastic coefficients
Kdr, b, and M [Kim et al., 2011b].

2.3. Multiphase Poromechanics
In the multiphase or partially saturated fluid system, it is not possible to linearize equation (6) around a ref-
erence state because [Coussy, 1995]:

1. Gases are very compressible.

2. Capillary pressure effects are intrinsically nonlinear.

3. Phase saturations vary between 0 and 1 and, therefore, a typical problem samples the entire range of
nonlinearity.

Therefore, following Coussy [1995], we use the incremental formulation of poromechanics for multiphase
systems, which does not assume physical linearization of total stress from the initial state to the current
(deformed) state.

To make progress, we make a modeling assumption that allows us to express the deformation of a multi-
phase porous material in terms of the increment in applied total stresses and internal fluid pressures. Similar
to the single-phase case (equation (6)), we adopt an effective stress formulation in the multiphase porome-
chanics [Bishop, 1959; Bishop and Blight, 1963] because constitutive modeling of porous materials is usually
done in terms of the effective stress. Under this formulation, we split the total stress on the porous material
into two parts: one that is responsible for deformation of the solid skeleton (the effective stress), and
another component that is responsible for changes in the fluid pressures

dr5Cdr : de2
X

b

bbdpb1; (18)

where bb are the Biot coefficients for individual phases such that
X

b

bb5b, where b is the Biot coefficient of

the saturated porous material. It is common to further assume that bb are proportional to the respective sat-
urations Sb [Lewis and Sukirman, 1993; Coussy et al., 1998; Lewis and Schrefler, 1998].
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The effective stress concept allows us to treat a multiphase porous medium as a mechanically equivalent
single-phase continuum [Khalili et al., 2004; Nuth and Laloui, 2008]. The appropriate form of the effective
stress equation in a multiphase system is still an active area of research [Gray and Schrefler, 2001; Coussy
et al., 2004; Nuth and Laloui, 2008; Vlahinic et al., 2011; Nikooee et al., 2013; Kim et al., 2013]. Here we use the
concept of equivalent pressure [Coussy et al., 2004] in the effective stress equation (equation (18))

pE5
X

b

Sbpb2U; (19)

where U5
X

b

ð
pbdSb is the interfacial energy computed from the capillary pressure relations [Kim et al.,

2013]. The equivalent pressure accounts for the interface energy in the free energy of the system and leads
to a thermodynamically consistent and mathematically well-posed description of the multiphase fluid
response to the solid deformation [Kim et al., 2013]. For a system with two phases, the wetting phase w and
the nonwetting phase g, the capillary pressure is

PcðSwÞ � PwgðSwÞ5pg2pw ; (20)

and the interfacial energy is U5

ð1

Sw

PwgdS. Assuming bb 5 bSb [Lewis and Sukirman, 1993; Coussy et al., 1998;

Lewis and Schrefler, 1998] and using equation (19) in equation (18), we obtain the stress-strain relationship
for multiphase linear poroelasticity:

dr5dr02bdpE 1; dr05Cdr : de: (21)

Once we have a definition of the effective stress in multiphase systems, we now express the change in the
fluid mass in terms of the mechanical deformation and the change in the fluid pressures. In the deformed
configuration, the mass of phase a per unit volume of porous medium is

ma5qaSa/ð11evÞ: (22)

Note that, by definition, the sum of all fluid phase saturations satisfies
Xnphase

b
Sb � 1. Extending equation

(13) for multiphase systems [Coussy, 1995, 2004], we have

dm
q

� �
a

5badev1
X

b

Nabdpb; (23)

where N5M21 is the inverse Biot modulus. In a multiphase system, the Biot modulus is a symmetric positive
definite tensor M5½Mab�, and the Biot coefficient is a vector. To determine the coupling coefficients Nab as a
function of the primary variables (pressure, saturations, and displacement), and rock and fluid properties,
we develop an alternate expression for the differential increment in fluid mass. Using equation (22),

dma5dðqaSa/ð11evÞÞ; (24)

which can be expanded as

dm
q

� �
a

5/
@Sa

@Pab
dPab1/Sacadpa1/Sadev1Sad/; (25)

where ca5
1
qa

dqa
dpa

is the compressibility of the fluid phase a, and @Sa=@Pab is the inverse capillary pressure
derivative. Above, repeated indices do not imply summation and we have assumed infinitesimal deforma-
tions. We can express the increment in porosity, d/, as a function of the volumetric effective stress, drv

0, to
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obtain a closed-form expression of equation (25). Let Vs5Vb2Vp be the volume of the solid matrix, and
desv5dVs=Vs5drsv=Ks be the volumetric dilation of the solid matrix, where rsv is the volumetric matrix
stress. From d/5dðVp=VbÞ5/ðdVp=Vp2dVb=VbÞ, we can write the incremental form of strain partition as

ð12/Þdev5ð12/Þdesv1d/: (26)

Similarly, the volumetric Cauchy total stress can be partitioned into the volumetric matrix stress and the
fluid pressure as

drv5ð12/Þdrsv2/dpE : (27)

Substituting drsv from equation (27) into equation (26), we obtain

d/5
b2/

Kdr
dr

0

v1ð12bÞdpE

� �
: (28)

Equation (28) implies that an increment in porosity is related to increments in volumetric effective stress
and fluid pressures, similar to equation (16) in the single-phase case. Substituting dev from equation (21)
and d/ from equation (28) into equation (25) allows us to express the increment in the phase mass as a
function of the increments in the total volumetric stress and phase pressures. Equating this to equation (23)
yields the desired expressions for the coupling coefficients Nab, which for a water-gas system are

Ngg 52/
@Sw

@Pwg
1/Sgcg1S2

gN;

Ngw 5Nwg5/
@Sw

@Pwg
1SgSw N;

Nww 52/
@Sw

@Pwg
1/Sw cw1S2

w N;

(29)

where N5ðb2/Þð12bÞ=Kdr , and the subscripts w and g denote water and gas phases, respectively.

Finally, we obtain the multiphase flow equation for phase a in a poroelastic medium by substituting the
two constitutive relations, the effective stress equation (equation (21)) and the fluid mass increment equa-
tion (equation (23)) in the mass balance equation (equation (2)):

@

@t
qa

X
b

Nab1
babb

Kdr

� �
pb

 !
1

1
Kdr

@

@t
qabarvð Þ1r �wa5qafa; 8a51; . . . ; nphase : (30)

The role of N and b as the coupling coefficients among different fluid phases and the solid phase is evident
from the above equation. The bulk density qb in the mechanical equilibrium equation (equation (1)) also
acts as a coupling parameter because it is a function of the porosity and the phase saturations. Because we
assume that the fluids are immiscible, the mass flux of phase a is wa5qava, where we adopt the traditional
multiphase flow extension of Darcy’s law [Muskat, 1949; Bear, 1972]:

va52
kkr

a

la
ðrpa2qagÞ; (31)

where la and kr
a are the dynamic viscosity and the relative permeability of phase a in the presence of other

fluid phases.

2.4. Poromechanics of Faults
There are two basic approaches to represent faults in a three-dimensional medium: either as a three-dimensional
fault zone [e.g., Rutqvist et al., 2008] or a two-dimensional fault surface [e.g., Juanes et al., 2002; Molinero et al.,
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2002; Ferronato et al., 2008]. The
advantage of representing faults as
surfaces of discontinuity is that
they can more faithfully describe
the localized (discontinuous) dis-
placement at the fault, and that
one can incorporate models of
dynamic frictional strength (like the
rate- and state-friction model)
capable of reproducing runaway
fault slip characteristic of earth-
quakes. Moreover, introducing dis-
crete fault surfaces does not
preclude modeling an adjacent
fault zone with appropriate
rheology.

A central feature of our work is that
we treat faults as surfaces of discontinuity embedded in the continuum, across which displacement is allowed to be
discontinuous to recognize the possibility of fault slip (Figure 1). We use zero-thickness elements, also known as
interface elements or cohesive elements in the finite element literature [Goodman et al., 1968; Beer, 1985; Carol et al.,
1985; Gens et al., 1988; Lei et al., 1995], to represent the fault surfaces. Mathematically, the fault surface is treated as
an interior boundary between the two adjacent domains. The two sides of the fault surface, which need not be pla-
nar, are designated as the ‘‘1’’ side and the ‘‘–’’ side, and the fault normal vector n points from the negative side to
the positive side. Slip on the fault is the displacement of the positive side relative to the negative side

ðu12u2Þ2d50 on Cf ; (32)

where u1 and u2 are the displacements on the two sides of the fault surface, denoted by Cf, and d is the
fault slip vector. Fault slip is governed by the effective traction on the fault, which is a function of the effec-
tive stress tensors on both sides of the fault, the fault normal direction, and the fault constitutive law. We
impose the effective traction on the fault by introducing a Lagrange multiplier, l, which is a force per unit
area required to satisfy the equilibrium equation for a given relative displacement, d, across the fault. The
magnitude of the effective normal traction on the fault is

r
0
n5l � n: (33)

A positive value of r
0
n indicates that a tensile effective stress is transmitted across the fault surface. The

Kuhn-Tucker conditions of contact mechanics are obeyed such that no penetration occurs and the effective
normal traction stays compressive at the contact surface. The shear traction vector is, by definition, tangent
to the fault surface and its magnitude is

s5jl2r
0
nnj: (34)

2.4.1. Models of Fault Strength
Shear tractions on the fault are limited by fault friction, or fault strength. A fault constitutive model is used
to compute the frictional stress sf on the fault as

sf 5
sc2lf r

0
n; r

0
n < 0;

sc; r
0
n � 0;

(
(35)

where sc is the cohesive strength of the fault and lf is the coefficient of friction. Note, again, that we use

Figure 1. Schematic of a 2-D fault surface in a 3-D domain. Discontinuity in the displace-
ment across the fault is illustrated through the slip vector, d, on the fault. Here slip is
assumed to be in the fault plane with no opening. The fault normal vector n, strike angle
w, dip angle d, and slip rake angle c are defined in the global coordinate system. The fault
coordinate system is defined in terms of tangential and normal motion on the fault with
positive values associated with left-lateral, reverse, and opening motions.
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the convention that tensile stress is positive. The coefficient of friction lf is modeled as a function of dis-
placement evolution on the fault. Commonly used fault friction models are:

1. Static friction model, where lf is a constant.

2. Slip-weakening model, where lf is a function of the slip magnitude jdj, and drops linearly from its static
value, ls, to its dynamic value, ld, over a critical slip distance dc

lf 5
ls2ðls2ldÞ

jdj
dc
; jdj � dc;

ld; jdj > dc:

8><
>: (36)

3. Rate- and state-dependent friction model [Dieterich, 1979, 1981; Ruina, 1983; Scholz, 1989; Marone, 1998],

lf 5l01A ln
V
V0

� �
1B ln

V0h
dc

� �
;

dh
dt

512
hV
dc
;

(37)

where V5jdd=dtj is the slip rate magnitude, l0 is the steady state friction coefficient at the reference slip
rate V0, A and B are empirical dimensionless constants, and h is the macroscopic variable characterizing
state of the surface.

In the rate- and state-dependent friction model, which is based on laboratory experiments of frictional slid-
ing on rock surfaces and fault gouges, the evolution of the coefficient of friction is determined from the
combined effect of the evolution of the state variable, h, and the slip rate or velocity, V. Here h may be
understood as the frictional contact time [Dieterich, 1979], or the average maturity of contact asperities
between the sliding surfaces [Rice, 1993]. The evolution of h is assumed to be independent of changes in
the normal traction, r

0
n, that can accompany the fault slip due to changes in fluid pressure. The model

accounts for the decrease in friction (slip-weakening) as the slip increases, and the increase in friction (heal-
ing) as the time of contact or slip velocity increases (Figure 2). The two effects act together such that A> B
leads to strengthening of the fault, stable sliding, and creeping motion, and A< B leads to weakening of
the fault, frictional instability, and accelerating slip. In this way, the model is capable of capturing repetitive
stick-slip behavior of faults and the resulting seismic cycle [Dieterich, 1981; Scholz, 1989].

We use the Mohr-Coulomb theory to define the stability criterion for the fault [Jaeger and Cook, 1979].
When the shear traction on the fault is below the friction stress, s� sf, the fault does not slip. When the
shear traction is larger than the friction stress, s> sf, the contact problem is solved to determine the
Lagrange multipliers and slip on the fault, such that the Lagrange multipliers are compatible with the fric-
tional stress.

2.4.2. Fault Pressure in the Failure Criterion
Traditionally, in the Andersonian faulting theory [Anderson, 1951], fault slip is modeled in a ‘‘dry environ-
ment,’’ that is, in the absence of fluids. While, in some cases, the presence of fluid has been recognized
through the effective stress concept, the dynamics of flow was not included for reasons of conceptual and
computational simplicity, as well as for the belief that fluid flow played a secondary role in the release of
tectonic stresses [Hubbert and Rubey, 1959; Reasenberg and Simpson, 1992]. The effect of pore pressure was
accounted for by modifying the coefficient of fault friction lf [Harris and Simpson, 1992; Harris et al., 1995],
an approach later suggested to be ‘‘unwise’’ [Beeler et al., 2000]. In the case of mature faults, the fault core
permeability can be low due to comminution of grains while the damaged host rock permeability can be
high due to fractures [Sibson, 1977, 1986; Chester et al., 1993; Caine and Forster, 1999]. In addition, the per-
meability can vary substantially across the fault during the seismic cycle [Sibson, 1981, 1990]. As a result,
pore pressures can be significantly different across the fault [Sibson, 1994; Rice, 1992; Chester et al., 1993].

A difference in fluid pressure across the fault leads to a pressure jump ½½p��Cf
5p12p2 , where p1 and p– are

the equivalent multiphase pressures (equation (19)) on the ‘‘positive’’ and the ‘‘negative’’ side of the fault.
One of the key features of the 2-D representation of faults is the ability to reproduce a finite jump in the
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pressure, ½½p��Cf
, across the fault. This pressure jump leads to a discontinuity in the effective stress across the

fault, such that the total stress is continuous

r02 � n2bp2n 5 r01 � n2bp1n; (38)

a requirement for momentum balance on the fault. This gives rise to the question of how to incorporate in
the formulation the pressure jump across a fault. This is important because it determines the stability of the
fault.

Fault stability can be assessed by evaluating the stability criterion on both sides of the fault separately. The
side of the fault where the criterion is met first determines the fault stability. Equivalently, this can be
achieved by defining a fault pressure that is a function of the pressures on the two sides, p1 and p–. Intro-
ducing the fault pressure allows us to uniquely define the effective normal traction on the fault, r

0
n, and

determine the fault friction sf (equation (35)). Since the stability criterion, s< sf, is first violated with the
larger pressure, we define the fault pressure, pf, as

pf 5max ðp2; p1Þ: (39)

Our definition of fault pressure is a natural result of our fault representation, rather than a conservative
assumption. Note that estimating the fault pressure as the arithmetic average of the pressures on the two
sides, as proposed in the case of tensile fractures [Segura and Carol, 2004, 2008a, 2008b], may incorrectly
delay the onset of shear failure. By univocally defining the pressure at the fault (equation (39)), we also uni-
vocally define the effective traction at the fault (the Lagrange multiplier l), something that is required to
evaluate the fault stability criterion.

2.5. Boundary and Initial Conditions
The mathematical model requires that initial and boundary conditions be defined for both the fluid flow
and mechanical problems. We consider one pressure, pa, and nphase 21 saturations, fSb;8b 6¼ ag, as the pri-
mary variables of the multiphase flow problem, where a is one of the fluid phases. Pressures of the remain-
ing nphase 21 phases can be uniquely determined from the nphase 21 capillary pressure relations (equation
(20)). Saturation Sa is determined from the constraint that the sum of all saturations is identically equal to 1.

Geologic reservoirs are located at depth, while the effect of coupled flow and deformation, such as subsi-
dence and earthquakes, is observed at the ground surface. The weight of the overburden rock plays an
important role in determining the ground subsidence even when it is not part of the flow domain. The flow
domain could also be laterally confined due to sedimentary or stratigraphic features such as pinch-outs,
sealing faults, or other types of hydraulic barriers. As a result, the boundaries of the flow domain and the
mechanical domain may not coincide. The mechanical domain is usually extended such that it encapsulates
the flow domain [Settari and Mourits, 1998]. This extended mechanics domain is needed for reducing spuri-
ous boundary effects, especially because the stress conditions at depth are rarely known with certainty.

Since the flow equation (equation (30)) is a statement of balance of fluid fluxes with fluid accumulation, the
most natural boundary condition for the flow problem is a flux boundary condition. It is a common practice
to define the flow domain such that it can be modeled as a closed system, in which case the normal compo-
nent of the fluid flux of each phase a across the boundary is zero

va � n50 on Cv ; (40)

where n is the outward unit normal to the boundary Cv. Nonzero boundary fluxes can similarly be pre-
scribed. When the flow domain is in communication with an external system with known pressure (such as
an aquifer of known capacity), it is possible to prescribe a mixed boundary condition, where a linear combi-
nation of pressure and normal pressure gradient across the boundary, for a given phase, is expressed in
terms of the pressure outside the boundary
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C1
@pa

@n
1pa5�p on Cp; (41)

where C1 is a constant related to
the boundary transmissibility and
�p is the known external pressure
[Carter and Tracy, 1960; Fetkovich,
1971]. The parts of the boundary
with prescribed external pressure
and flux must be nonoverlapping
and cover the entire boundary,
i.e., Cp \ Cv5;; Cp [ Cv5@X.

For the mechanical problem, dis-
placements are the primary varia-
bles. The boundary condition can
be prescribed either in terms of
the displacements or the trac-
tions or a suitable combination of
both along the boundary

u5u on Cu; r � n5t on Cr; (42)

where u is a prescribed displace-
ment and t is a prescribed traction. Cu and Cr boundaries may overlap because a node can have a pre-
scribed displacement in one direction and prescribed tractions in other directions. However, they must
satisfy Cu [ Cr5@X.

Initialization of a coupled multiphase poromechanics problem is not trivial. The common practice is to initi-
alize the problem under the assumption of flow and mechanical equilibrium. Pressures and saturations in
the multiphase flow problem can be initialized using the concept of Vertical Equilibrium [Dake, 1978], which
assumes that the fluids are distributed vertically satisfying capillary-gravity equilibrium. Since initialization is
performed at a time before any well starts to flow, this is usually a good assumption. Initial pressures are cal-
culated based on hydrostatics, using prescribed fluid contacts and a datum pressure in the flow domain. Ini-
tial saturations are calculated from the initial capillary pressures, and they also honor the fluid contacts.
Since hydrostatic pressures depend on fluid densities, which in turn depend on fluid compressibilities,
which further depend on pressures, initialization is done iteratively; two to three iterations are sufficient for
most problems.

We initialize the mechanical problem with a zero-displacement field. Therefore, initial stresses are pre-
scribed such that they balance body forces and boundary tractions.

3. Numerical Formulation

In this section, we discuss the numerical formulation and discretization of the coupled multiphase flow and
geomechanics problem. We first present the space discretization, followed by the time discretization and,
finally, the fully discrete system of algebraic equations.

3.1. Space Discretization
We use the finite volume method for the discretization of the flow problem [Aziz and Settari, 1979] and the
nodal-based finite element method for the discretization of the mechanics problem [Hughes, 1987; Zienkie-
wicz and Taylor, 2005]. We use a single, unstructured computational grid for both flow and mechanics prob-
lems. The pressures and saturations degrees of freedom are located at the element center, and the
displacement vector degrees of freedom are located at the element nodes (Figure 3). This space discretiza-
tion is locally mass conservative at the element level and enjoys excellent stability properties [Jha and
Juanes, 2007; Phillips and Wheeler, 2007a, 2007b; Kim et al., 2011c].

Figure 2. Rate- and state-dependent friction model. The coefficient of friction on the
fault, lf, evolves with the slip rate or velocity, V, and the state variable, h (equation (37)).
For a sudden increase in the slip velocity from V1 to V2, the coefficient of friction first
increases sharply due to a sudden increase in resistance from contact asperities and then
declines slowly due to slip-weakening. The final steady state value of the coefficient of
friction can be lower than the initial steady state value if A – B< 0, as shown above.
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Elements with nodes on the fault
surface deserve special considera-
tion. Each node on the fault is tri-
plicated to create a ‘‘1’’ node on
the positive side, a ‘‘–’’ node on
the negative side, and a Lagrange
node in the middle. The side
nodes store the positive side dis-
placement u1 and the negative
side displacement u2, respec-
tively. The Lagrange node stores
the Lagrange multiplier l and the
fault slip d. All three nodes are
physically collocated in the initial
grid, so elements representing
the fault are zero-thickness ele-
ments. Slip on the fault is related
to the positive and the negative
side displacement fields through
equation (32). The Lagrange mul-
tipliers are the effective fault trac-
tions required to satisfy both the
equilibrium equation (equation
(43)), and the stability criterion

s� sf with sf from equation (35). We define a fault coordinate system to relate the quantities commonly
used in describing the fault motion (reverse or normal slip, and left-lateral or right-lateral slip; see Figure 1)
to the global displacements. In three dimensions, the fault coordinate system is defined with along-strike
(lateral), along-dip (reverse or normal), and normal-to-fault (opening) directions (Figure 1). In the fault coor-
dinate system, the fault normal vector in 3-D is nf 5½0; 0; 1�T , where superscript T indicates transpose.

3.1.1. Mechanics Problem
Using standard arguments from functional analysis [Brezis, 2011], that is, multiplying by the test functions
(which act as weighting functions in the integral form of the differential equation, and satisfy essential
boundary conditions), integrating over the domain, applying the divergence theorem, inserting the essen-
tial and natural boundary conditions, and exploiting symmetry of the stress tensor, we arrive at the weak
form of the governing equations for the mechanics problem: Find ðu; lÞ belonging to appropriate functional
spaces satisfying the essential boundary conditions ðu5u on CuÞ such that

ð
X
rsg : ðr02bpE 1ÞdX1

ð
Cf1

g � ðl2bpf nÞdC2

ð
Cf2

g � ðl2bpf nÞdC2

ð
X
g � qbgdX2

ð
Cr

g � tdC50; (43)

ð
Cf1

g � u1dC2

ð
Cf2

g � u2dC2

ð
Cf

g � ddC50; (44)

for all test functions g (ndim 3 1 vector) belonging to the appropriate functional space satisfying g 5 0 on Cu.
Here we used the multiphase effective stress equation (equation (21)), pE is the equivalent pressure (equation
(19)), pf is the fault pressure (equation (39)), and qb is the bulk density, all of which depend on the phase pres-
sures and saturations, and, therefore, on the solution of the flow problem.

Let the domain be partitioned into nonoverlapping elements (grid blocks), X5 [
nelem

j51
Xj , where nelem is the

number of volumetric elements. A fault is treated as an interior boundary with its domain, Cf, partitioned

into nonoverlapping fault elements, Cf 5 [
nf ;elem

j51
Cf ;j , where the subscript f indicates variables associated with a

fault. The displacement, the Lagrange multiplier, and the slip fields are approximated as follows:

Figure 3. Exploded view of our computational representation of a fault, illustrating differ-
ent node types, locations of different variables, and the zero-thickness fault element.
Fluid pressures pi and saturations Si are located at the element centers as they are discre-
tized using the finite volume method. Displacements and Lagrange multipliers at the
fault are discretized using the nodal-based finite element method. There are two types of
nodes in the domain: the displacement nodes and the Lagrange nodes. The displace-
ment nodes carry the displacements Ubr at the regular nodes, the displacements Ub1

on
the positive side of the fault, and the displacements Ub2

on the negative side of the fault.
The Lagrange nodes carry two types of fault variables: the Lagrange multipliers L�b

(related to fault tractions) and the fault slip D�b . The displacement nodes on the positive
and negative sides and the Lagrange nodes are collocated in the initial grid.
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u � uh5
Xnnode

b51

gbUb; (45)

l � lh5
Xnf ;node

�b51

g�b L�b ; (46)

d � dh5
Xnf ;node

�b51

g�b D�b ; (47)

where subscript h indicates the finite element approximation, nnode is the number of displacement nodes
(including the duplicated nodes at the fault elements; see Figure 3), and nf,node is the number of Lagrange
nodes. Ub is the ndim 3 1 vector of nodal displacements for node b in the domain coordinate system,
Ub5ðUb;x ;Ub;y ;Ub;zÞ. L�b and D�b are the ndim 3 1 Lagrange multiplier and slip vectors at Lagrange node �b
of the fault, and they are in the fault coordinate system (left-lateral, reverse, and opening, respectively; see
Figure 1): L�b 5ðL�b;1; L�b;2; L�b ;3Þ and D�b 5ðD�b ;1;D�b ;2;D�b ;3Þ.

The interpolation functions, gb and g�b , are the usual C0-continuous isoparametric functions, such that they
take a value of 1 at the respective nodes, and 0 at all other nodes [Hughes, 1987]. In a Galerkin method, the
test functions are chosen to be equal to the interpolation functions.

After substitution of the finite element approximations into the weak form of the problem (equations (43)
and (44)), we obtain the discrete equations in residual form at all displacement nodes a and all Lagrange
nodes �a :

05

ð
X

BT
aðr

0
h2bpE;h1ÞdX 1

ð
Cf1

gT
aðlh2bpf ;hnÞdC2

ð
Cf2

gT
aðlh2bpf ;hnÞdC

2

ð
X
gT

aqb;hgdX2

ð
Cr

gT
a tdC 8a51; . . . ; nnode ;

(48)

05

ð
Cf1

gT
�a uh1

dC2

ð
Cf2

gT
�a uh2

dC2

ð
Cf

gT
�a dhdC 8�a51; . . . ; nf ;node ; (49)

where we have defined the nodal matrices for the shape function

ga5

ga 0 0

0 ga 0

0 0 ga

2
664

3
775 (50)

and its symmetric gradient

Ba5

@xga 0 0

0 @yga 0

0 0 @zga

@yga @xga 0

0 @zga @yga

@zga 0 @xga

2
666666666664

3
777777777775
; (51)

corresponding to the compact engineering notation for stress and strain inside an element, r
0
h5

½r0h;xx ;r
0
h;yy ; r

0
h;zz;r

0
h;xy ; r

0
h;yz; r

0
h;xz�T and eh5½eh;xx ; eh;yy ; eh;zz; 2eh;xy ; 2eh;yz; 2eh;xz�T , respectively [Hughes,

1987]. The identity tensor in compact notation is 15½1; 1; 1; 0; 0; 0�T .

Equation (48) results in ndim nnode equations, and equation (49) results in ndim nf ;node equations. We solve
equations (48) and (49) subject to the stability criterion, which yields the slip constraint at each Lagrange
node �a:
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dD�a 5
0; s�a � sf ;�a ;

fðuh; lh; sf ;�aÞ; s�a > sf ;�a ;
8�a51; . . . ; nf ;node ;

(
(52)

where dD�a is the slip increment and s and sf are from equations (34) and (35), respectively. In 3-D, the mag-
nitude of the shear stress is computed from the left-lateral and reverse components of the effective stress
at the fault, s�a 5ðL2

�a;11L2
�a ;2Þ

1=2. fð�Þ is a vector function of displacements, fault tractions, and fault friction
that determines the slip on the fault, and it is determined implicitly during the solution of the
contact problem (section 4.1).

3.1.2. Multiphase Flow Problem
The flow problem is discretized using the finite volume method on the same grid defined for the mechani-

cal domain, X5 [
nelem

i51
Xi . For simplicity, let us consider two fluid phases, water and gas. Note that in each ele-

ment, Sw1Sg � 1. We integrate the fluid phase mass conservation equation (30), for each phase over each
element i. For the water phase, this yields

@

@t

ð
Xi

qw Nww1Nwg1
bbw

Kdr

� �
pg2 Nww1

b2
w

Kdr

� �
Pwg

� �
dX

1
1

Kdr

@

@t

ð
Xi

qw bwrv dX2

ð
@Xi

ww � nidC5

ð
Xi

qw fw dX;

(53)

where we used the capillary pressure relation, Pwg5pg2pw , to eliminate the water phase pressure, the Biot
coefficient relation, bg1bw5b, and integration by parts for the mass flux term to express it as a surface inte-
gral. ni is the outward normal to the boundary of element i. Similarly, we have a mass balance equation for
the gas phase:

@

@t

ð
Xi

qg Nwg1Ngg1
bbg

Kdr

� �
pg2 Nwg1

bgbw

Kdr

� �
Pwg

� �
dX

1
1

Kdr

@

@t

ð
Xi

qgbgrv dX2

ð
@Xi

wg � nidC5

ð
Xi

qgfgdX:

(54)

We approximate both the pressure and the saturation fields with a piecewise constant interpolation func-
tion, u, such that ui takes a constant value of 1 over element i and 0 at all other elements. Phase pressures
and saturations are approximated as

pa � pa;h5
Xnelem

i51

ui pa;i ; (55)

Sa � Sa;h5
Xnelem

i51

ui Sa;i ; (56)

where the discrete pressures, pa,i, and phase saturations, Sa,i, are located at the center of element i (Figure 2).

We can further express the mass flux term as a sum of integral fluxes between element i and its adjacent
elements j:

ð
@Xi

ww � nidC5
Xnface ;i

j51

ð
Cij

ww � nij dC5
Xnface ;i

j51

Ww;ij; (57)

where nface,i is the number of faces of element i, and nij is the outward normal at the face Cij. The interele-
ment flux of water, Ww,ij, can be evaluated from Darcy’s law (equation (31)) as a function of the rock and
fluid properties, pressures, and saturations of element i and its adjacent elements j, using either a two-point
or a multipoint flux approximation [LeVeque, 2002; Gunasekera et al., 1998; Aavatsmark, 2002]. The two-
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point flux approximation method uses the flow potentials, Uw;i5pw;i2qw;i gzi and Uw;j5pw;j2qw;j gzj , to
approximate the flux through interface ij between two neighboring elements as follows:

Ww;ij5Tijkw;ij Uw;i2Uw;j
� �

; (58)

where zi and zj are the centroid depths of the elements (with z axis pointing downward), kw,ij is the water
phase mobility, and Tij is the geometric transmissibility of the interface Cij. The phase mobility is calculated
from upstream cells

kw;ij5
qw;ik

r
w;i=lw;i ; if Uw;i > Uw;j;

qw;jk
r
w;j=lw;j ; otherwise :

(
(59)

The geometric transmissibility is estimated from the harmonic average of the respective element permeabil-
ities and element sizes, Tij5Aij=ð‘i=ki1‘j=kjÞ, where Aij is the area of the interface, ‘i and ‘j are the distances
between the centroid of the interface and the centroid of the respective adjacent elements, and ki and kj

are the element permeabilities, assumed isotropic.

After substitution, the semidiscrete water phase mass balance equation is

05
@

@t
Vb;iqw;i Nww1Nwg1

bbw

Kdr

� �
i
pg;i2 Nww1

b2
w

Kdr

� �
i
Pwg;i

� �� 	

1
@

@t
qw;i

bwrv

Kdr

� �
i

Vb;i

� �
2
Xnface ;i

j51

Ww;ij2qw;i fw;i Vb;i ; 8i51; . . . ; nelem ;

(60)

where subscript i refers to the value at element i. Similarly, we could write the semidiscrete equation for the
gas phase:

05
@

@t
Vb;iqg;i Ngw1Ngg1

bbg

Kdr

� �
i
pg;i2 Ngw1

bgbw

Kdr

� �
i
Pwg;i

� �� 	

1
@

@t
qg;i

bgrv

Kdr

� �
i

Vb;i

� �
2
Xnface ;i

j51

Wg;ij2qg;i fg;i Vb;i ; 8i51; . . . ; nelem :

(61)

3.2. Time Discretization
In quasi-static poromechanics, the time derivative appears only in the accumulation term of the fluid mass
balance equation (first two terms in equations (60) and (61)) which we approximate using a simple finite dif-
ference scheme:

@ma

@t
� dt ma5

mn11
a 2mn

a

dt
; (62)

where superscript n denotes the time level, and dt is the time step. We adopt a fully implicit Backward Euler
time integration scheme, that is, we evaluate the flux and source/sink terms in equations (60) and (61) at
time level n11.

3.3. Fully Discrete Coupled System
Introducing the time discretization in the semidiscrete finite element equations (equations (48) and (49)),
we arrive at the following coupled system of algebraic equations:
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Rn11
u;a 5

ð
X

BT
aðr

0n11
h 2bpn11

E;h 1ÞdX 1

ð
Cf1

gT
aðln11

h 2bpn11
f ;h nÞdC2

ð
Cf2

gT
aðln11

h 2bpn11
f ;h nÞdC

2

ð
X
gT

aqn11
b;h gdX2

ð
Cr

gT
a tdC50 8a51; . . . ; nnode ;

(63)

Rn11
l;�a 5

ð
Cf1

gT
�a un11

h1
dC2

ð
Cf2

gT
�a un11

h2
dC2

ð
Cf

gT
�a dn11

h dC50 8�a51; . . . ; nf ;node : (64)

The global residual vectors are obtained by assembly of the nodal residual vectors:
Ru5½Ru;1; . . . ;Ru;nnode �

T ;Rl5½Rl;1; . . . ;Rl;nf;node �
T . In vector form, the system of ðndim nnode 1ndim nf ;node Þ alge-

braic equations of the mechanical problem reads

Ru

Rl

" #n11

5
0

0

" #
; (65)

which needs to be solved for the displacements Un115½Un11
1 ; . . . ;Un11

nnode
�T at the displacement nodes, and

the Lagrange multipliers Ln115½Ln11
1 ; . . . ; Ln11

nf;node
�T at the Lagrange nodes, subject to the constraint dDn115

½dDn11
1 ; . . . ; dDn11

nf;node
�T 50 (equation (52)) at every time step.

For the water-gas multiphase flow problem, we have

Rn11
g;i 5dt Vbqg Ngw1Ngg1

bbg

Kdr

� �
pg2 Ngw1

bgbw

Kdr

� �
Pwg

� �� 	
i

1dt qg
bg

Kdr
rv Vb

� 	
i
2
Xnface ;i

j51

Wn11
g;ij 2 qn11

g f n11
g Vb

h i
i

i51; . . . ; nelem ;

(66)

Rn11
w;i 5dt Vbqw Nww1Nwg1

bbw

Kdr

� �
pg2 Nww1

b2
w

Kdr

� �
Pwg

� �� 	
i

1dt qw
bw

Kdr
rv Vb

� 	
i
2
Xnface ;i

j51

Wn11
w;ij 2 qn11

w f n11
w Vb


 �
i i51; . . . ; nelem :

(67)

The global residual vectors are obtained by assembly of the element residual vectors:
Rg5½Rg;1; . . . ; Rg;nelem �

T ;Rw5½Rw;1; . . . ; Rw;nelem �
T . In vector form, the system of nphase nelem algebraic equations

of the flow problem reads

Rg

Rw

" #n11

5
0

0

" #
; (68)

which must be solved at every time step for the vector of element gas-phase pressures
Pn11

g 5½pn11
g;1 ; . . . ; pn11

g;nelem
�T , and the vector of element water-phase saturations Sn11

w 5½Sn11
w;1 ; . . . ; Sn11

w;nelem
�T . The

water phase pressure is determined with the help of the capillary pressure relation (equation (20)), and the
gas saturation is determined from the constraint Sg1Sw � 1.

The mechanics problem (65) and the flow problem (68) are coupled through the inverse Biot modulus N,
the drained bulk modulus Kdr, the Biot coefficient b, and the bulk density qb. Further, N, b, and qb are them-
selves functions of fluid pressures, saturations, and solid displacements.

4. Solution Strategy

In this section, we discuss our scheme for solving the coupled system (equations (65–68)). We use a
sequential-implicit solution scheme [Park, 1983; Zienkiewicz et al., 1988; Armero and Simo, 1992; Armero,
1999; Jha and Juanes, 2007; Kim et al., 2011c] to solve the coupled multiphase and geomechanics prob-
lem. In this scheme, the two subproblems of multiphase flow and mechanics are solved in sequence
such that each subproblem is solved using implicit time discretization. An outer iteration is performed
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over the two subproblems to ensure full convergence of the solution at every time step. As opposed to
the simultaneous solution approach [Lewis and Sukirman, 1993; Wan et al., 2003; Jeannin et al., 2007; Jha
and Juanes, 2007], where all the unknowns (displacements, pressures, and saturations) are solved for
simultaneously at each time step, the sequential iterative approach [Park, 1983; Zienkiewicz et al., 1988;
Armero and Simo, 1992; Armero, 1999; Jha and Juanes, 2007; Kim et al., 2011c] solves the system sepa-
rately for the mechanics (displacements, Lagrange multipliers) and the flow (pressures, saturations).

4.1. Mechanics Subproblem
We solve the linear systems of equations of the mechanical problem using Newton’s method. Given an
approximation ½Un11; Ln11�ðkÞ to the solution at tn11, an improved solution is obtained as
½Un11; Ln11�ðk11Þ

5½Un11; Ln11�ðkÞ1½dUn11; dLn11�ðkÞ, where the correction vector is the solution to the sys-
tem of linear equations (removing the explicit reference to the time level n 1 1):

K CT

C 0

" #ðkÞ
dU

dL

" #ðkÞ
52

Ru

Rl

" #ðkÞ
; (69)

where the block matrices are obtained via element-by-element assembly of the individual nodal contribu-
tions to the Jacobian:

K ab5
@Ru;a

@Ub
5

ð
X

BT
a DBbdX; (70)

CT
a�b 5

@Ru;a

@L�b
5

ð
Cf1

gT
ag�b dC2

ð
Cf2

gT
ag�b dC: (71)

Above, K is the stiffness matrix, which is symmetric positive definite; for linear elasticity in 3-D,

D5
E

ð11mÞð122mÞ

12m m m 0 0 0

m 12m m 0 0 0

m m 12m 0 0 0

0 0 0
1
2
ð122mÞ 0 0

0 0 0 0
1
2
ð122mÞ 0

0 0 0 0 0
1
2
ð122mÞ

2
6666666666666664

3
7777777777777775

; (72)

where E is the Young modulus and m is the Poisson ratio.

Matrix C is the part of the Jacobian associated with the slip constraint (equation (49)) and consists of direction cosine
matrices to convert from the global coordinate system to the fault coordinate system (vice versa for CT ). Note that for a
linear elastic material with time-independent material properties and boundary conditions, the Jacobian matrix does
not change with time, although the residuals may change due to coupling with the flow and due to fault slip.

To visualize the fault contribution to the linear system, we can write equation (69) as

K rr K r1 K r2 0

K1r K11 0 CT
1

K2r 0 K22 2CT
2

0 C1 2C2 0

2
666664

3
777775

ðkÞ dUr

dU1

dU2

dL

2
666664

3
777775

ðkÞ

52

Ru;r

Ru;1

Ru;2

Rl

2
666664

3
777775

ðkÞ

; (73)

where the top row corresponds to displacement nodes excluding the fault positive and negative side
nodes, and the individual entries of the rotation matrices are
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Ca1
�b 5

ð
Cf1

gT
ag�b dC; (74)

Ca2
�b 5

ð
Cf2

gT
ag�b dC: (75)

The fault slip global vector D is either prescribed as part of the fault definition, or if a constitutive model for
fault friction is given, it is computed dynamically from equation (52). In the latter case, the mechanics problem
is nonlinear because fault slip is a function of the fault tractions (the Lagrange multipliers), which are limited
by the fault constitutive model and depend on the slip. Hence, an iterative scheme is employed to solve the
mechanics problem in the case of dynamic slip evolution. The algorithm is as follows [Aagaard et al., 2013]:

1. Solve equation (73) to determine the Lagrange multipliers, LðkÞ, and the displacements, UðkÞr ;UðkÞ1 , and
UðkÞ2 , corresponding to the current estimate of slip, DðkÞ. Compute tractions on the fault. If s> sf, or if
s< sf but the iteration has not converged due to overshoot in slip from the previous iteration, compute
the perturbation in the Lagrange multipliers, dLðk	Þ, necessary to satisfy the fault constitutive model for
the current estimate of slip as follows:

dLðk	Þ�a ;i 5ð12di;ndim ÞL
ðkÞ
�a;i

sðkÞf ;�a 2sðkÞ�a

sðkÞ�a

 !
;

1 � i � ndim ; 8�a51; . . . ; nf ;node ;

(76)

where (k*) denotes perturbation to the kth iteration, and di,ndim
is the Kronecker’s delta function ensuring

that only the shear components of the Lagrange multiplier are perturbed.

2. Compute the displacement increments on the fault positive and negative sides, dUðk	Þ1 and dUðk	Þ2 , corre-
sponding to the perturbation dLðk	Þ, while assuming that the deformation due to slip is localized to the
fault positive and negative side nodes only, i.e., dUðk	Þr 50. This is accomplished by solving two linear sub-
systems, extracted from equation (73), for the respective side nodes,

K11dUðk	Þ1 52CT
1dLðk	Þ;

K22dUðk	Þ2 5CT
2dLðk	Þ;

(77)

where the bulk deformation term, the body weight term, and the boundary traction term from equation (63)
do not appear because they are assumed fixed during this step.

3. Update the fault slip

dDðkÞ5CðdUðk	Þ1 2dUðk	Þ2 Þ: (78)

Since the change in slip may lead to a change in the friction stress at the slipping nodes (e.g., in slip-
weakening and rate- and state-dependent models), the perturbation calculation above can be further opti-
mized by iterating over equations (76–78) in an inner loop [Aagaard et al., 2013]. The slip vector for the next
iteration is Dðk11Þ5DðkÞ1dDðkÞ.

4.2. Multiphase Flow Subproblem
We solve the linear system of equations of the multiphase flow problem using Newton’s method. The cor-
rection vector is the solution of the linear system of equations:

@Rg

@Pg

@Rg

@Sw

@Rw

@Pg

@Rw

@Sw

2
6664

3
7775
ðkÞ

dPg

dSw

" #ðkÞ
52

Rg

Rw

" #ðkÞ
; (79)

where the partial derivatives of the residuals are evaluated using the constitutive equations (equations (29)
and (31)) that relate rock and fluid properties to the fluid pressures and saturations.
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4.3. Fixed-Stress Sequential Method
In this work, we use the fixed-stress sequential iterative method [Kim et al., 2011b] to solve the coupled mul-
tiphase geomechanics problem. In this method, the flow subproblem is solved first keeping the rate of the
volumetric total stress fixed, then the mechanics subproblem is solved keeping the fluid pressures and the
saturations fixed:

Un

Ln

Pn
g

Sn
w

2
666664

3
777775���!
Aflow

U	

L	

Pn11
g

Sn11
w

2
666664

3
777775���!
Amech

Un11

Ln11

Pn11
g

Sn11
w

2
666664

3
777775; (80)

where Aflow : Rw50;Rg50; dtrv5prescribed , is the multiphase flow subproblem with fixed rate of volu-
metric total stress, and Amech : Ru50;Rl50;Pg; Sw5prescribed , is the mechanics subproblem with fixed
flow variables. Superscript * indicates intermediate solution. The volumetric total stress, rv, appears in the
accumulation term of the multiphase flow equations (equations (66) and (67)). To keep the rate of rv fixed
during the flow solve, this term is evaluated explicitly using the value of dtrv from the previous sequential
iteration.

This sequential procedure is iterated at each time step until convergence of the full solution. Recently, it has
been shown that the fixed-stress operator split is unconditionally stable, and it enjoys excellent conver-
gence properties compared with the other unconditionally stable sequential iterative method (the
undrained split) [Kim et al., 2011b, 2011c, 2013].

5. Implementation

We developed a coupled multiphase flow and geomechanical simulator by coupling Stanford’s General Pur-
pose Research Simulator (GPRS) [Cao, 2002; Pan and Cao, 2010] as the flow simulator, and PyLith [Aagaard
et al., 2012, 2013] as the mechanics simulator. Below we describe the major steps in the development of
this coupled simulator.

5.1. The Flow Simulator
GPRS is a general purpose, object-oriented, reservoir simulator for multiphase/multicomponent subsurface
flows. It treats element connections through a general connection list, which allows for both structured and
unstructured grids. GPRS is capable of handling complex production and injection scenarios in the field,
such as wells perforated at multiple depths and flowing under variable rate and pressure controls. The origi-
nal simulator [Cao, 2002; Pan and Cao, 2010] does not account for coupling with the mechanical deforma-
tion, and it models the mechanical behavior of the system through a user-provided rock compressibility [Aziz
and Settari, 1979]. We modified and extended the original code to implement the coupling with the
mechanics simulator. In particular, we implemented the functionality to compute the modified accumula-
tion term in the fluid phase mass balance equations (equations (66) and (67)). We also modified the setup
of the linear system to implement the flow step of the fixed-stress sequential solution scheme (equation
(80)).

5.2. The Mechanics Simulator
PyLith is a finite element code for the simulation of static and dynamic large-scale deformation problems
[Aagaard et al., 2012, 2013]. Much of its development has been motivated by the modeling of earthquake
physics; however, its applicability extends to problems at any other scale, such as the reservoir scale or the
laboratory scale. Some of the advantages of PyLith are (1) it is an open-source code and can be modified for
specific purposes; (2) it is written using C11 and Python languages and is extendable; (3) it is suitable for
parallel computing; (4) it allows localized deformation along discrete features, such as faults; and (5) it is
well integrated with meshing codes, such as LaGriT for tetrahedral meshes [LaGriT, 2013] and CUBIT for
both tetrahedral and hexahedral meshes [CUBIT, 2013]. PyLith uses an implicit formulation to solve quasi-
static problems and an explicit formulation to solve dynamic rupture problems. Originally, PyLith is not
coupled to any fluid flow model. We modified the code of PyLith version 1.8.0 and coupled it with the flow
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simulator, GPRS. In particular, we implemented a C11 class, iGPRS, to allow communication between the
flow and the mechanics simulators. iGPRS provides the functionality required for exchanging information
(pressures, saturations, and volumetric total stress) between the two simulators.

PyLith supports distributed memory parallelization (Message Passing Interface or MPI) whereas GPRS’s par-
allelization is based on the shared memory architecture (Multiprocessing or OpenMP). We integrated the
two such that we can run the coupled simulator on a cluster with multiple compute nodes (distributed
memory) where individual nodes have multiple cores or processors (shared memory).

5.3. Grid
We use a single grid for both GPRS and PyLith. The grid is generated using CUBIT [CUBIT, 2013] or LaGriT
[LaGriT, 2013] mesh generation software. We define geologic surfaces, material regions, faults, and
pinch-outs during the geometry creation stage. Then we mesh the domain with hexahedral elements
using a fine mesh in the reservoir domain and an increasingly coarse mesh in the overburden, under-
burden, and sideburden regions. We export the grid in a finite element format such as the Exodus-II for-
mat [CUBIT, 2013] for PyLith. We process the grid file using a MATLAB script to generate the equivalent
finite volume grid in the domain with element centroid coordinates, element bulk volumes, and face
transmissibilities in the Corner Point Geometry format [Schlumberger, 2009]. Any grid elements lying
outside the flow region of interest (e.g., in overburden and underburden; see section 2.5) are deacti-
vated for the solution of the flow problem. GPRS uses the finite volume grid for simulating flow in the
region of interest. The two simulators exchange pressures, saturations, and volumetric stress informa-
tion inside this region.

5.4. Implementation of Faults
To support relative motion across fault surfaces, PyLith modifies the grid topology to create zero-thickness
fault elements and adds additional degrees of freedom to hold the Lagrange multipliers and fault slip vec-
tors at the Lagrange nodes [Aagaard et al., 2012, 2013] (Figures 1 and 2). PyLith solves the contact problem
iteratively in two steps (section 4.1). In the first step, the elasticity problem is solved over the entire domain
to update the displacements and the fault tractions (Lagrange multipliers) corresponding to the current
estimate of the slip (equation (73)). The Lagrange multipliers are compared with the friction stress on the
fault and are adjusted to be compatible with the fault constitutive model. In the second step, the fault slip
is updated corresponding to the adjustment in the Lagrange multipliers while assuming that the deforma-
tion due to slip is localized to the elements adjacent to the fault, that is, that displacements at nonfault
nodes do not change from their values at the current Newton iteration (equation (77)). If the fault slips over
the entire domain, such that the assumption of deformation being limited to the adjacent elements is not
met, the convergence of the iterative scheme is poor. Also, if the fault friction coefficient changes signifi-
cantly with slip (e.g., in rate- and state-dependent models; equation (37)), it leads to large changes in sf ;�a

(equation (76)) at every iteration and convergence may degrade. To improve convergence, a line-search
routine is used as part of the iterative scheme to find the optimum perturbation in the Lagrange multipliers
that minimizes the combined mismatch between the fault friction and the fault shear traction at all the fault
nodes [Aagaard et al., 2013]. We modified PyLith’s original line-search routine such that the inequality con-
straint, s� sf, is always honored.

5.5. Initialization
The flow simulation is initialized under the assumption of vertical equilibrium (section 2.5) with the ini-
tial pressure and saturation fields calculated using the rock and fluid properties (depth, fluid density,
capillary pressure, and fluid contacts). PyLith is initialized with the initial displacement field obtained
from an elastic prestep calculation using initial and boundary displacements and stresses. Initial stresses
and boundary tractions are total stresses calculated with bulk densities that account for any fluid con-
tact in the flow domain.

5.6. Linear Solver
The mechanics problem (equation (69)) leads to a saddle-point problem due to the use of Lagrange multi-
pliers to implement the fault slip constraint. Custom preconditioners are required to solve the linear system
efficiently. We solve equation (69) using the Portable, Extensible Toolkit for Scientific Computation (PETSc)
[Balay et al., 1997] multigrid preconditioner for the elasticity submatrix in conjunction with a custom fault
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preconditioner for the Lagrange
multiplier submatrix [Aagaard
et al., 2013, 2012]. We solve the
flow problem (equation (79))
using the SAMG multigrid pre-
conditioner [SAMG, 2010; Pan
and Cao, 2010].

6. Representative
Numerical Simulations

We illustrate the validity and
applicability of our modeling
approach through a number of
representative simulations. Some

are verification problems and others are more realistic scenarios. We conduct these simulations using our
coupled simulator. The 2-D numerical example simulations are conducted with a 2-D implementation in
plane strain. Note that both GPRS and PyLith have been tested previously on respective benchmark prob-
lems, i.e., validation on flow-only problems for GPRS [Cao, 2002] and mechanics-only problems for PyLith
[Aagaard et al., 2012]. Fault implementation in PyLith has been validated by comparison with analytical sol-
utions from elastic dislocation theory [Okada, 1992].

6.1. The Terzaghi Problem
Our first example is a uniaxial compaction test under drained conditions, also known as Terzaghi’s problem
[Terzaghi et al., 1996; Wang, 2000]. The purpose of Terzaghi’s problem is to test the accuracy of the numeri-
cal code for fluid-to-solid coupling. The model problem is a laterally constrained specimen, subjected to a
uniform compressive traction applied suddenly at the top surface (Figure 4a). All sides of the specimen are
no-flux boundaries except the top surface, which is open to flow. At t 5 01, the specimen compacts and the
pore pressure rises to its undrained value because of the sudden application of the load, also known as the
Skempton effect [Skempton, 1954]. The undrained values of pressure and total stress serve as the initial con-
dition for the drained part of the consolidation process. As time increases, the specimen consolidates verti-
cally as the fluid leaks out from the top permeable surface. It is a one-dimensional problem with a constant
total stress. Under these conditions, diffusion of pore pressure decouples from stress and satisfies a homo-
geneous diffusion equation with known analytical solution [Wang, 2000]. Strain due to compaction is pro-
portional to the pressure drop.

We used the following values of the relevant parameters: length of 50 m, compression of 2.125 MPa,
Young modulus of 120 MPa, drained Poisson ratio of 0.3, Biot coefficient of 1.0, porosity of 0.2, and
hydraulic diffusivity of 1.9 3 1026 m2/s. Our numerical simulation agrees well with the analytical solution
(Figure 4b).

6.2. The Mandel Problem
Mandel’s problem [Mandel, 1953; Abousleiman et al., 1996] has been used as a benchmark problem for
testing the validity of numerical codes of coupled poroelasticity. Its main feature, the Mandel-Cryer

effect, is that the pore pressure at the
center of a loaded specimen rises
above its initial value because of the
two-way coupling between fluid flow
and solid deformation. Mandel’s prob-
lem involves a long specimen of rec-
tangular cross section pressed on one
side with an impermeable plate that
applies a constant compressive stress
r0 and fixed on two sides using imper-
meable roller boundaries (Figure 5).

Figure 4. Terzaghi’s uniaxial compaction problem. (left) Model with boundary conditions.
(right) Comparison of pressure evolutions from the numerical simulation and the analyti-
cal solution. The dimensionless pressure is plotted against dimensionless distance at four
different times.

Figure 5. Mandel’s problem. The model dimensions are Lx 3 Ly 3 Lz 5 50 3 10 3

0.5 m, discretized with 100 3 20 3 1 hexahedral cells. A uniform and constant
compression of 1 MPa is applied on the left boundary while the right and bottom
boundaries are fixed in the normal direction. The top boundary is traction-free. For
the flow model, the top boundary is a drained boundary with constant pressure
p 5 0, and the other three boundaries are no-flow boundaries.
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The fourth side of the cross section
is free from normal and shear
stresses (traction-free boundary)
and is open to the atmosphere
(constant pressure boundary). The
porous medium is saturated with a
slightly compressible fluid, water,
with initial pressure set at the ref-
erence value, p0 5 0. Since the
specimen is long, we assume plane
strain conditions, namely, that the
displacement and fluid flux vanish
in the z direction (perpendicular to
the 2-D domain).

With these boundary conditions, the
three-dimensional equations of
poroelasticity reduce to one-
dimensional equations for rxx(y,t)
and p(y,t), which can be solved ana-
lytically [Mandel, 1953; Abousleiman

et al., 1996]. At t 5 01, a uniform undrained pressure is generated by the Skempton effect, along with uni-
form stress rxx52r0. The specimen expands toward the top boundary due to the Poisson effect. As time
progresses, the pressure near the top boundary decreases because of fluid drainage, which makes the spec-
imen more compliant there. If the hydraulic diffusivity is small, the effect of drainage is not observed imme-
diately near the no-flux bottom boundary. This results into load transfer of compressive total stress toward
the bottom boundary, in response to which the pressure there continues to rise above its undrained value.
At long times, all excess pressure vanishes and a uniform horizontal stress, rxx52r0, returns. Hence, the
pressure evolution at points away from the drained boundary is nonmonotonic, a phenomenon not
observed in a purely diffusive process such as that modeled by the Terzaghi theory, where the pressure is
uncoupled from the solid deformation.

For our example, we choose a Young modulus of 18 GPa, drained Poisson ratio of 0.25, undrained Poisson
ratio of 0.49, reference porosity of 0.05, and hydraulic diffusivity of 2.2 3 1027 m2/s. Figure 6 compares the
pressure from the analytical solution and the numerical simulation along the width of the specimen near
the right boundary at different times. Notice the increase in pressure near y 5 0 at early times, which illus-
trates the Mandel-Cryer effect.

6.3. Effect of Groundwater Pumping
on Fault Stability
This example illustrates the role of cou-
pling between flow and deformation in
determining the stability of faults. We
model groundwater pumping from an
unconfined aquifer, resulting in a drop
in the water table and accompanying
changes in poroelastic stresses in and
around the aquifer. The stability of a
nearby fault is affected due to changes
in stress resulting from unloading of
the crust in a poroelastic medium. We
model this problem in a 2-D plane
strain domain with a reverse fault and
an aquifer (Figure 7). The aquifer is
500 m thick and 7.5 km wide. The fault
dips at 45
 and strikes at a distance of

Figure 6. Comparison of the pressure evolution from the analytical solution and from the
numerical simulation for the Mandel problem. The pressure is plotted along the AA

0
line

shown in Figure 5. Pressure is nondimensionalized with the applied compressive stress,
and distance is nondimensionalized with the width Ly. Note that, near y 5 0, the pressure
increases at early times in accordance with the Mandel-Cryer effect before beginning to
decrease.

Figure 7. Plane strain model with an aquifer and a fault to investigate the effect
of groundwater pumping on fault stability. A lithostatic overburden and a lateral
compression at twice the lithostatic gradient create reverse faulting conditions.
Permeability is high in the aquifer and very low in the basement rock. The
domain is discretized with a finer mesh near the surface to simulate a drop in
water table.
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500 m from the aquifer. To produce a uniform drop in water table and a confined unloading of the
crust, we assume that permeability is low everywhere except in the aquifer. The fault is located in the
low-permeability region and is impermeable. We simulate the problem using both coupled and
uncoupled approaches to highlight the role of poroelastic coupling. In the coupled approach, we simu-
late a drop in water table due to pumping from the aquifer over a period of 50 years. Pressure depletion
in the aquifer also results in compaction of the aquifer and subsidence at the ground surface. In the
uncoupled approach, the mechanics problem is solved independently of the flow with an instantane-
ous load corresponding to the mass of water removed from groundwater pumping. We simulate this
unloading by decreasing the aquifer bulk density from qb5/qw1ð12/Þqs to qb5/qg1ð12/Þqs in the
layers known to be depleted from the coupled simulation. We use initial values of porosity and density
to calculate qb in the uncoupled simulation. The uncoupled approach treats the poroelastic medium as
an equivalent purely elastic medium.

Initially, the stress distribution is lithostatic, and the pressure distribution is hydrostatic corresponding to a
water saturated medium. Compression at twice the lithostatic gradient is applied on the x 5 0 boundary,
the top boundary is traction-free, and normal displacement at the other two boundaries are fixed to zero. A
no-flow boundary condition is imposed on all four boundaries. The unconfined behavior of the aquifer is
modeled by placing ‘‘air injectors’’ in the top row of cells in the aquifer, which maintain a constant pressure
equal to atmospheric in these cells by injecting air as water is withdrawn.

The rock and fluid properties are as follows: the Young modulus increases linearly with depth from 100 MPa
at z 5 1 m to 64 GPa at z 5 8 km, the Poisson ratio is 0.25, the Biot coefficient is 1, and the porosity is uniform
and equal to 0.1. The permeability in the aquifer decreases exponentially with depth as kðzÞ5kmax exp ð2azÞ,
where we choose kmax 5 5000 md and a 5 0.015 m21. The permeability outside the aquifer is 0.0001 md.
The relative permeabilities are modeled using Corey-type relations [Lomeland et al., 2005] as
krw5SLw

n =ðSLw
n 1Ewð12SnÞTw Þ; krg5ð12SnÞLg=ðð12SnÞLg 1EgSTg

n Þ, where the normalized water saturation is
Sn5ðSw2SwlÞ=ð12Swl2SglÞ. We choose the irreducible water saturation Swl 5 0.001 and the residual gas satu-
ration Sgl 5 0. We choose the empirical constants as Lw 5 0.8, Ew 5 3, Tw 5 4, and Lg 5 1.9, Eg 5 4, Tg 5 1.1. We

fix the capillary pressure to zero. The rock
density is qs 5 2600 kg/m3. At surface
conditions, fluid densities are qw 5 1000
kg/m3 and qg 5 1.2 kg/m3, and dynamic
viscosities are lw 5 1 cp and lg 5 0.001
cp. Water compressibility is assumed to
be constant, cw58:6431025MPa 21.
Note that the air pressure is always close
to atmospheric because of the uncon-
fined nature of the aquifer. The water
withdrawal rate is fixed at 0.0957 kg/s/m
equally distributed among eight

Figure 8. Vertical displacement field from (left) coupled and (right) uncoupled simulations. The displacement field magnified by a factor of 1000.

Figure 9. Evolution of water table and surface subsidence from the coupled simu-
lation. The values are averaged over the aquifer area.
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producers. The fault friction coeffi-
cient is lf 5 0.5, and it stays constant
because we do not induce slip for
the prescribed properties and
amount of water withdrawal. Instead,
we evaluate the impact of ground-
water pumping on fault stability by
computing the change in the Cou-
lomb Failure Function,
DCFF5Djsj1lf Dr

0
n, on the fault

[Reasenberg and Simpson, 1992].

Displacements are very small every-
where except in the aquifer, where
the effects of elastic loading are sub-
stantial: compaction in the coupled
simulation, and expansion the

uncoupled simulation (Figure 8). In the coupled simulation, the water table in the aquifer drops to 240 m
(averaged over the aquifer), and the accompanying subsidence is 0.38 m (Figure 9). In terms of fault stabil-
ity, up-dip shear on the fault decreases up to a depth z � 1.8 km because of contraction of the aquifer, and
it increases below that depth due to expansion of the basement rock, which is being unloaded. As a result,
DCFF is negative in the depth interval 90 m< z< 2.3 km, with a minimum at the base of the aquifer, below
which it increases monotonically with depth (Figure 10). DCFF becomes positive below z 5 2.3 km, suggest-
ing stabilization of the fault above this depth, and destabilization of the fault below this depth, due to
pumping.

In the uncoupled simulation, loading is confined to the top 300 m of the aquifer, which is the region corre-
sponding to a decrease in the bulk density due to the drop in the water table. Compression and shear on
the fault increase in this interval such that the fault is stabilized marginally (DCFF< 0). Below z 5 300 m,
DCFF is positive reaching a maximum of 4200 Pa at z 5 4.2 km. However, these values are an order of mag-
nitude smaller than those in the coupled case.

Our results show that groundwater pumping can favor fault slip at depth and that stability of the fault can-
not be assessed if poroelastic effects are ignored.

6.4. Faulting Due to CO2 Injection: Plane Strain
This is an example of CO2 injection in a deep confined aquifer for the purpose of geologic carbon sequestra-
tion [Cappa and Rutqvist, 2011a]. The aquifer is hydraulically compartmentalized with a sealing fault that

cuts across it. The storage capacity
of the aquifer is limited by overpres-
surization and slip on the fault. As
described in Cappa and Rutqvist
[2011a], we consider a two-
dimensional plane strain model with
the fault under normal faulting con-
ditions, that is, the vertical principal
stress due to gravity is the largest
among the three principal stresses
(Figure 11). We choose a value of 0.7
for the ratio of horizontal to vertical
initial total stress.

CO2 is injected at a depth of 1500 m
in the confined aquifer at a constant
rate of 0.01 kg/s/m. We use a slip-
weakening model for the fault (equa-
tion (36)) in which the coefficient of

Figure 10. Depth profiles of the change in Coulomb Failure Function DCFF and the
change in effective normal traction Dr

0
n on the fault from both the coupled and

uncoupled simulations. Changes are due to groundwater pumping from the aquifer.

Figure 11. Model of the CO2 injection plane strain case (adapted from Cappa and Rutqv-
ist [2011a]). The lateral compression is 0.7 times the overburden, and both increase with
the lithostatic gradient. CO2 is injected in the confined aquifer at a depth of 1500 m. The
aquifer is bounded on the top and bottom by a low-permeability caprock, and the fault is
impermeable to flow.
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friction drops linearly from 0.6 to 0.2 over a critical
slip distance of 5 mm [Cappa and Rutqvist, 2011a].
The fault cohesion strength is 0 MPa. Permeability
and porosity are as follows: 100 md and 0.1 (aqui-
fer), 0.0001 md and 0.01 (caprock), and 10 md and
0.1 (otherwise). The Young modulus and Poisson
ratio are 10 GPa and 0.25, respectively. We use a
van Genuchten capillary pressure function [van
Genuchten, 1980], Pwg5pg2pw5PoðŜ

21=m
21Þ12m;

Ŝ5ðSw2SwlcÞ=ð12Swlc2SglÞ, where Swlc 5 0.1Swl,
and Po is the capillary modulus. We choose the irreducible water saturation Swl 5 0.12 and the residual gas satu-
ration Sgl 5 0.001. We set Po 5 5.2 kPa and m 5 0.4. We use Corey-type relative permeability functions [Brooks
and Corey, 1964], krw5SL

n; krg5ð12SnÞL , where Sn is the normalized water saturation defined earlier. We choose
an exponent L 5 2. We have used fluid properties that are representative of water and CO2 at reservoir condi-
tions [McCain, 1990; Garcia, 2003; Juanes et al., 2006]. The phase behavior of the system is simplified by the
assumption that the two fluids are immiscible. We used a value qw;ref 51000kg m23 for the density of water at
standard conditions, and a constant water compressibility cw58:6431025MPa 21. We assumed a constant
dynamic viscosity of water lw51:031023kg m21s21. We relied on the compilation and analysis of [Garcia,
2003, chap. 2] for the determination of appropriate CO2 properties at reservoir conditions. In Table 1, we list the
density and dynamic viscosity of CO2 at 40
C as a function of pressure. Linear interpolation between the table
values was used in the simulations.

After 20 days of injection, pressure in the aquifer increases approximately uniformly by 3.6 MPa (Figure 12).
Overpressure causes volumetric expansion of the aquifer (Figure 13). This, in turn, results in an increase in
the effective normal tractions throughout the aquifer, and an increase in the magnitude of shear tractions
at the top and bottom boundaries of the aquifer, namely, at depths of 1450 and 1550 m (Figure 14). There
are two interesting observations:

1. The stress evolution (Figure 15a) is such that the bottom of the aquifer at 1550 m reaches the failure
line (ls 5 0.6) first because of the applied traction boundary conditions, which favors normal faulting.
Downward slip at the 1550 m depth pulls the 1450 m point down such that the direction of change in
the shear traction at 1450 m depth slowly reverses until it also fails by reaching the ls 5 0.6 failure
line.

2. The complete rupture sequence (Figure 15b) is a combination of both seismic and aseismic slips along
the fault, with multiple seismic events observed at the bottom boundary of the aquifer.

6.5. Faulting Due to CO2 Injection: 3-D
This example is similar to the previous one, but here we consider a 4 3 4 3 2 km three-dimensional domain
with a 200 m thick anticlinal aquifer (Figure 16), and we use the rate and state-dependent friction model
(equation (37)) for the fault friction. The rate and state constitutive parameters are A 5 0.002, B 5 0.08,
dc 5 1 cm, l0 5 0.4, and sc 5 0. These values strongly favor unstable sliding on the fault. Rock and fluid

Table 1. CO2 Properties at 40
C

Pressure (MPa)
Density

(kg m23)
Viscosity

(31023 kg m21 s21)

0.1 1.8 0.0001
8 234 0.0325
10 447 0.0525
12 632 0.0625
16 747 0.0725
20 803 0.0800
30 883 0.0950

Figure 12. CO2 injection in the plane strain case. (left) Overpressure and (right) water saturation at t 5 21 days.
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Figure 13. CO2 injection in the plane strain case. Displacement fields in the horizontal and vertical directions (top row and bottom row,
respectively) at two different times: t 5 20 days (left) and t 5 60 days (right). Notice the discontinuity in the displacement field across the
fault at t 5 60 days as a result of slip. The rupture propagates along the fault, asymmetrically away from the nucleation point at 1550 m,
with the longer part below the nucleation point due to the imposed normal faulting condition. After 60 days, the rupture span along the
fault is approximately 400 m.

Figure 14. Profiles of overpressure, fault slip, and change in fault tractions plotted along the fault at three different times: day 20 is just before the first slip, and days 27 and 33 are after
two other seismic events noted in Figure 15. The overpressure profile nicely outlines the boundaries of the aquifer. The shear traction drops inside the aquifer and increases outside the
aquifer, due to slip events near the 1550 m boundary. As points on the fault slip, there is an increase in shear traction at the neighboring nonslipping points, which leads to downward
(respectively, upward) movement of the spike in the shear traction below (respectively, above) the aquifer.
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properties are identical to the plane strain case above. CO2 is injected at a rate of 30 million standard cubic
feet per day (17.64 kg/s) leading to overpressurization of the aquifer (Figure 17). The anticline is off-
centered in y, leading to asymmetry in the overpressure field. Rupture nucleates at the base of the aquifer
at (x, y, z) 5 (2808, 2850, 1590 m) after 202 days of injection and propagates on the fault along the bottom
boundary of the aquifer. After approximately 2 months, a second rupture sequence begins along the layer
just above the base of the aquifer. At t 5 320 days, the underburden rock layer below the aquifer reaches
the failure criterion and slips, and the rupture subsequently propagates in both up-dip and down-dip direc-
tions on the fault with higher slip velocity in the down-dip direction (Figure 18). Downward slip is favored
due to the imposed normal faulting condition. In Figure 19, we show the evolution of slip and traction on
the fault at three points directly under the anticline: base of the aquifer, top of the aquifer, and below the
aquifer in the underburden rock. The slip velocity at the base is small and initially constant, resulting in sta-
ble sliding; then, it increases sharply due to slip-weakening before decreasing again back to a new stable
sliding value that is higher than the earlier one.

Figure 15. Evolution of (a) stress state and (b) slip on the fault at three depths: bottom of the aquifer (1550 m, blue circles), top of the aquifer (1450 m, red crosses), and below the aqui-
fer in the rupture zone (1652 m, black triangles). At t 5 21 days, the fault rupture nucleates just underneath the aquifer at 1550 m depth, which reaches the failure criterion (ls 5 0.6 line)
before any other point on the fault. This leads to an increase in shear stresses at points adjacent to 1550 m, which fail in succession. The point at 1652 m depth fails at t 5 38 days. There
is a very small change in the effective normal traction at 1652 m point because there is no overpressure below the aquifer. The top boundary at 1450 m ruptures at t 5 45 days and
relaxes quickly to almost zero shear traction. The three seismic events labeled ‘‘coseismic’’ are analyzed in Figure 14.

Figure 16. CO2 injection in a 3-D anticlinal aquifer. (left) The geomechanical domain, shown with the traction boundary conditions on the top and on the right boundaries. The lateral
compression is 0.7 times the overburden, and both increase with the lithostatic gradient. Zero-normal displacement is imposed on all other boundaries. A no-flow boundary condition is
imposed on all the boundaries. The flow domain is composed of the four layers marked as aquifer, and the injector is located near the center of the anticline. (top right) Plan view and
(bottom right) cross-section view of the aquifer. Depth contours are marked in the plan view. The cross-section view is exaggerated in the vertical direction.
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Since the fault is represented as a two-dimensional surface, we can estimate the magnitude of the
earthquake from the actual rupture area. Note that since this is a quasi-static simulation with very
small slip velocities, earthquake here refers to the seismic event producing an equivalent amount of

slip. The earthquake magnitude is given by the expression Mw5 2
3 log 10M026:0, where the seismic

moment is M05

ð
Cf

GjdjdC; jdj is the magnitude of the final slip vector at the end of the earthquake,

and G is the shear modulus [Hanks and Kanamori, 1979]. Assigning the total slip at t 5 400 days from
our simulation to a single seismic event, we obtain an upper bound estimate of Mw 5 3.4 for the earth-
quake magnitude.

Figure 17. CO2 injection in a 3-D anticlinal aquifer. (left) Overpressure and (right) water saturation in the aquifer layers at t 5 202 days, when fault slip starts.

Figure 18. CO2 injection in a 3-D anticlinal aquifer. Snapshots of (left) slip magnitude and (right) slip velocity on the fault plane at three different times: t 5 202, 345, and 400 days. The
rupture initiates at the bottom of the aquifer and progresses both downward and upward with faster slip velocity downward. The rupture front adopts an ellipsoidal shape following the
profile of the aquifer, which is being pressurized. A video that shows the dynamics of fault rupture from the coupled flow-geomechanics simulation is included in the supporting
information.
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7. Conclusions

We have presented a new computational model to simulate the coupling between multiphase flow
and poromechanics of faults and developed a two-way coupled simulator that interlaces a geomechanics
simulator (PyLith) with a multiphase flow simulator (GPRS). Our approach enjoys the following features:

1. It is computationally efficient because it relies on a sequential solution of the two-way coupled problem.

2. It is unconditionally stable, due to the use of the fixed-stress sequential split between multiphase flow
and deformation. The model accounts rigorously for multiphase flow effects through a fully nonlinear poro-
mechanics formulation.

3. It represents faults as surfaces embedded in a three-dimensional domain, therefore allowing for a discon-
tinuous displacement field across the fault (fault slip). Our approach elucidates the role of the pressure dis-
continuity across the fault on the stability of the fault through the definition of a ‘‘fault pressure.’’

4. It incorporates realistic fault constitutive behavior, such as the rate- and state-dependent friction model,
capable of simulating runaway fault slip typical of earthquakes.

We assume quasi-static mechanical deformation by neglecting the inertial term in the solid momentum bal-
ance equation, and we use an implicit time-marching scheme for the coupled simulation. While this is an
excellent approximation prior to fault rupture, during fault slip the inertial term is not negligible due to
propagation of seismic waves. We are currently extending the capabilities of our simulation tool to imple-
ment a dynamic implicit-explicit time-marching scheme that can take small time steps required to resolve
the propagation of rupture on the fault, while taking orders of magnitude larger time steps during aseismic
periods.

In order to model leakage from geologic formations, we are implementing flow along faults. We are also
investigating the stability and convergence properties of the fixed-stress sequential solution scheme in the
presence of faults, especially with slip-weakening.

Figure 19. CO2 injection in a 3-D anticlinal aquifer. Evolution of slip and state of stress on the fault at three depths under the anticline: 1585 m (bottom of the aquifer), 1443 m (top layer
of the aquifer), and 1681 m (below the aquifer in the underburden). Slip, slip velocity, and shear traction are in the down-dip direction along the fault.
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Our framework allows us to investigate fault slip and induced seismicity in underground reservoirs due to
the coupled processes of fluid flow and mechanical deformation, such as those encountered during
groundwater withdrawal and geologic CO2 storage. In this work, we have demonstrated the effectiveness
and applicability of our approach through a few synthetic, but realistic, examples. We are currently applying
our computational model for the study of ground deformations detected from geodetic measurements via
GPS and InSAR [Hager et al., 1991; Feigl et al., 1993; Teatini et al., 2011] and for the post mortem analysis of
natural or induced earthquakes [Gonzalez et al., 2012; van der Elst et al., 2013; Keranen et al., 2013; Brodsky
and Lajoie, 2013].
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