
RESEARCH PAPER

A locally conservative finite element framework for the simulation
of coupled flow and reservoir geomechanics

Birendra Jha Æ Ruben Juanes

Received: 30 October 2006 / Accepted: 21 May 2007 / Published online: 11 July 2007

� Springer-Verlag 2007

Abstract In this paper, we present a computational

framework for the simulation of coupled flow and reservoir

geomechanics. The physical model is restricted to Biot’s

theory of single-phase flow and linear poroelasticity, but is

sufficiently general to be extended to multiphase flow

problems and inelastic behavior. The distinctive technical

aspects of our approach are: (1) the space discretization of

the equations. The unknown variables are the pressure, the

fluid velocity, and the rock displacements. We recognize

that these variables are of very different nature, and need to

be discretized differently. We propose a mixed finite

element space discretization, which is stable, convergent,

locally mass conservative, and employs a single compu-

tational grid. To ensure stability and robustness, we per-

form an implicit time integration of the fluid flow

equations. (2) The strategies for the solution of the coupled

system. We compare different solution strategies, including

the fully coupled approach, the usual (conditionally stable)

iteratively coupled approach, and a less common uncon-

ditionally stable sequential scheme. We show that the latter

scheme corresponds to a modified block Jacobi method,

which also enjoys improved convergence properties. This

computational model has been implemented in an object-

oriented reservoir simulator, whose modular design allows

for further extensions and enhancements. We show several

representative numerical simulations that illustrate the

effectiveness of the approach.

Keywords Geomechanics � Iteratively coupled �
Local mass conservation � Mixed finite elements �
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1 Introduction

Reservoir geomechanics is concerned with the simulta-

neous study of fluid flow and the mechanical response of

the reservoir. Quantification of the state of deformation and

stress of the reservoir is essential for the correct prediction

of a number of processes of enormous economic impact,

such as primary compaction drive, waterflooding, surface

subsidence, seal integrity, hydrofracturing, sand production

and well failure.

The strong interaction between multiphase flow and

deformation of the reservoir is evidenced by a number of

notable case histories. For example, the Wilmington field,

located in Long Beach (California), experienced a maxi-

mum subsidence of about 9 m as a result of oil production

for over 20 years. Associated with surface subsidence,

maximum horizontal displacements as large as 3.7 m were

recorded [2]. Another well-known case is the Ekofisk field,

in the Norwegian sector of the North Sea. A subsidence

bowl was discovered in 1984 and, by 1989, subsidence had

reached a maximum value of over 4 m. The cost of raising

platforms and protecting storage facilities exceeded

$400 million [17]. Another dramatic consequence of the

coupling between fluid flow and rock deformation is well
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failure. The severity of wellbore instability can be over-

whelming: at the Belridge diatomite field, located 45 miles

west of Bakersfield (California), nearly 1,000 wells have

experienced serious casing damage during the past

20 years of production [14]. Another illustrative case his-

tory is that of the Matagorda Island 623 field in the Gulf of

Mexico, where all 17 wells have experienced some form of

well failure [23]. Overall, it is estimated that the cost

associated with wellbore instability is at least one billion

dollars per year worldwide [1].

Theoretical and practical difficulties have prevented

coupled geomechanical models from being used routinely

in oil and gas reservoir simulation studies. Some of these

challenges are the complex mechanical behavior of ge-

omaterials, the strong coupling between the mechanical

and fluid flow problems, and the fact that the reservoir

models become very computationally intensive.

Over the past decade, however, reservoir geomechanics

has emerged as a necessary integral part of reservoir sim-

ulation studies [30, 31], recognizing that the usual treat-

ment of mechanical deformation by means of the rock

compressibility is far from adequate. Simulation models

include: (1) finite difference and finite volume procedures,

limited to elastic response or explicit treatment of plasticity

[27, 32, 34, 35]; (2) finite element procedures for the

mechanics without coupling with the flow field [16, 25]; (3)

finite elements for the mechanics problem and finite vol-

umes for the flow problem, limited to poroelastic behavior

[13, 15]; and (4) fully coupled, finite element models for

flow and mechanics [11, 21, 22, 24, 39, 40]. All of these

models are based on the displacement formulation of the

linear momentum balance equation.

A topic that has drawn significant attention is that of

coupling strategies for the solution of the flow and

mechanics problems [13]. They range from one-way cou-

pling [14] to loose or explicit coupling [26], iterative

coupling [18, 31, 37, 38, 42] and fully coupled approaches

[11, 21].

In this paper we develop a computational model for the

simulation of coupled flow and geomechanics [19]. The

physical model is restricted to Biot’s theory of single-phase

flow and linear poroelasticity [7], but is sufficiently general

to be extended to multiphase flow problems and inelastic

behavior. The proposed scheme employs a finite element

method for the mechanical problem and a mixed finite

element method for the flow problem. This scheme gives

rise to a natural and elegant discretization of the equations.

The practical benefit of this formulation is that only one

simulation grid needs to be defined. Moreover, the grid can

be unstructured and consist of both hexahedra and tetra-

hedra. The proposed spatial discretization leads to a

scheme that is locally mass conservative and provides an

accurate calculation of fluid velocities.

The numerical model described above leads to a system

of nonlinear algebraic equations that needs to be solved at

every time step. The solution of the coupled flow-defor-

mation system can be attempted using explicitly coupled,

iteratively coupled, or fully coupled approaches. We

investigate the use of an unconditionally stable, iteratively

coupled method [3, 4, 28, 42], whose obvious benefit is that

the time step size is only limited by accuracy consider-

ations, and not stability. We compare the performance of

this unconditionally stable scheme with a fully coupled

approach and the standard sequential scheme (which is

only conditionally stable).

An outline of the paper is as follows. In Sect. 2, we

describe the physical and mathematical model of single-

phase flow and geomechanics. In Sect. 3 we formulate the

mixed finite element discretization of the governing

equations that leads to the fully discrete coupled system.

We then describe, in Sect. 4, different solution procedures

for the coupled system, with special attention to staggered

(or sequential) solution schemes. We apply the proposed

formulation to a number of representative numerical sim-

ulations in Sect. 5. Finally, in Sect. 6, we gather the main

conclusions of this investigation.

2 Physical and mathematical model

As in all macroscopic models of porous media, we adopt

a continuum representation, in which fluid and solid are

viewed as overlapping continua [12]. We restrict the

physical model to Biot’s self-consistent theory of poro-

elasticity [7, 12, 41]. In particular, our model is limited by

the following assumptions: (1) single-phase flow; (2)

slightly compressible fluid; (3) small deformations; (4)

linear elastic and isotropic material behavior; (5) no stress

dependence of flow properties like porosity and perme-

ability; (6) isothermal system. In what follows we pose

the balance laws and constitutive relations. We also ex-

press the governing equations in weak form, which will

provide the starting point for the mixed finite element

discretization.

2.1 Balance laws

The equations governing the coupled pore fluid–solid

system in a porous medium are balance laws expressing

conservation of fluid mass and balance of linear momen-

tum.

2.1.1 Balance of fluid mass

Let X be the domain of interest, the governing equation for

fluid mass reads:
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om

ot
þr � F ¼ qflf in X: ð1Þ

In the equation above m is the fluid mass content (fluid

mass per unit volume of porous medium), F = qflv is the

mass flux (fluid mass flow rate per unit area and time), qfl is

the fluid density, v is the Darcy velocity, and f is a source

term.

It will be useful to define the fluid content variation f:

f :¼ dm

qfl;0

; ð2Þ

where dm = m – m0 is the increment in fluid mass content

with respect to the initial reference state, and qfl,0 is the

reference fluid density.

2.1.2 Balance of linear momentum

In the quasi-static limit of interest, the local equation of

mechanical equilibrium of the solid–fluid system reads:

r � rþ qg ¼ 0; ð3Þ

where r is the total (Cauchy) stress tensor, g is the

gravitational acceleration, and q is the bulk density defined

in terms of the mixture constituents by:

q ¼ /qfl þ ð1� /Þqs; ð4Þ

where qs is the density of the solid phase and / is the

porosity.

2.2 Constitutive relations

The poromechanical behavior of the system considered in

this paper is described by Darcy’s law and the Biot equa-

tions of poroelasticity.

2.2.1 Darcy’s law

The Darcy velocity v is linked to the fluid pressure p by:

v ¼ � k

l
ðrp� qflgÞ; ð5Þ

where k is the absolute permeability and l is the fluid

viscosity.

2.2.2 Biot’s equations of poroelasticity

The self-consistent theory of poroelastic behavior proposed

by Biot [7] links the changes in total stress and fluid

pressure with changes in strain and fluid content. We write

these expressions in the following (mixed stiffness) incre-

mental form [41]:

dr ¼ C : e� bdp1; ð6Þ

f ¼ beV þM�1dp: ð7Þ

In the equations above, C is the (drained) rank-4 elasticity

tensor, and b and M are the Biot coefficient and the Biot

modulus, respectively. e is the linearized strain tensor,

defined as the symmetric gradient of the displacement u:

e ¼ rsu ¼ 1

2
ruþrtuð Þ: ð8Þ

The (rank-2) strain tensor can be expressed as a sum of its

volumetric and deviatoric parts:

e ¼ 1

3
eV 1þ e; ð9Þ

where eV ¼ tracee is the volumetric strain, 1 is the rank-2

identity tensor, and e is the deviatoric part of the strain

tensor. A thorough explanation of the physical meaning of

the Biot equations and the parameters involved is given

elsewhere [12, 41].

We note that, using the volumetric–deviatoric decom-

position of the strain tensor, Eq. (6) takes the form:

dr ¼ ðKeV 1þ 2GeÞ � bdp1; ð10Þ

where K is the drained bulk modulus, and G is the shear

modulus. Using Eq. (7), the equation above may be written

in the following form:

dr ¼ ðKueV 1þ 2GeÞ � bMf1; ð11Þ

where Ku = K + b2M is the undrained bulk modulus. The

terms drained and undrained refer to processes under which

dp = 0 (constant pressure) and f = 0 (constant fluid vol-

ume), respectively. Such distinction will be essential when

defining the sequential solution strategies of the coupled

system.

2.3 Boundary and initial conditions

The mathematical model requires that initial and boundary

conditions be defined for both the fluid flow and mechan-

ical problems. We consider the following boundary con-

ditions for the flow problem:

p ¼ �p on Cp; v � n ¼ �v on Cv; ð12Þ

where �p is a prescribed pressure, and �v is a prescribed

volumetric flux, and n is the outward unit normal to the
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boundary ¶W. The parts of the boundary with prescribed

pressure and flux must be non-overlapping and cover the

entire boundary, that is,

Cp \ Cv ¼ ;; Cp [ Cv ¼ oX: ð13Þ

Similarly, we consider the following boundary conditions

for the equilibrium equations:

u ¼ �u on Cu; r � n ¼ �t on Cr; ð14Þ

where �u is a prescribed displacement, and �t is a prescribed

traction. Again, Gu and Gr must satisfy:

Cu \ Cr ¼ ;; Cu [ Cr ¼ oX: ð15Þ

The poroelasticity problem must be initialized with a

pressure field, pjt¼0 ¼ p0, and initial stresses rjt¼0 ¼ r0

(the initial displacements are assumed to be zero). We

should mention that, in practice, initialization of coupled

geomechanical models is a thorny issue. The prescribed

initial stresses prior to reservoir recovery have a significant

impact on the numerical results [14]. Vertical stresses are

often known with reasonable accuracy, based on gravita-

tional loading. On the other hand, horizontal stresses are

much more uncertain [43].

2.4 Weak form of the equations

Let us give a summary of the governing equations of the

coupled poroelasticity problem described above:

ðk=lÞ�1vþrp ¼ qflg (Darcy’s law); ð16Þ

of
ot
þr � v ¼ f (fluid mass balance); ð17Þ

r � r ¼ �qg (momentum balance): ð18Þ

We have assumed, for simplicity, that the mass flux is

evaluated using the reference density qfl,0.

The starting point for the finite element model presented

in the next section is the weak (variational) form of the

problem, which we now discuss. The governing equations

(together with the initial and boundary conditions) are

solved for the Darcy velocity v, pressure p and displace-

ment u. The regularity requirements for each of these

variables is different. The pressure must belong to the

space L2(W) of square integrable functions in W:

L2ðXÞ ¼ p :

Z
X
jpj2 dX\þ1

� �
: ð19Þ

The displacement must satisfy stricter regularity

conditions. Each component of the displacement and its

first derivatives must belong to L2, and therefore,

u2(H1(W))d, where d is the number of space dimensions

and:

H1ðXÞ ¼ u : u 2 L2ðXÞ;Du 2 L2ðXÞ
� �

: ð20Þ

The velocity must admit well-defined (continuous) normal

traces. Physically, the integral of the normal trace of the

velocity field along a boundary is precisely the volumetric

flux across this boundary. The space with the proper

regularity for the velocity is:

Hðdiv;XÞ ¼ v : v 2 ðL2ðXÞÞd;r � v 2 L2ðXÞ
n o

: ð21Þ

Let us now define the following solution function spaces

for the velocity and displacement (satisfying the essential

boundary conditions):

V ¼ v : v 2 Hðdiv;XÞ; v � n ¼ �v on Cvf g; ð22Þ

U ¼ u : u 2 ðH1ðXÞÞd; u ¼ �u on Cu

n o
; ð23Þ

and the corresponding test function spaces (satisfying the

homogenous counterpart of the essential boundary

conditions):

V0 ¼ v : v 2 Hðdiv;XÞ; v � n ¼ 0 on Cvf g; ð24Þ

U0 ¼ u : u 2 ðH1ðXÞÞd; u ¼ 0 on Cu

n o
: ð25Þ

We also define the pressure function space Q ¼ L2ðXÞ:
Using standard arguments (that is, multiplying by the

test functions, integrating over the domain, applying the

divergence theorem, inserting the essential and natural

boundary conditions, and exploiting symmetry of the stress

tensor), we arrive at the weak form of the problem:

At each time t > 0, find ðv; p; uÞ 2 V �Q � U such that:

Z
X

w � ðk=lÞ�1vdX�
Z

X
r � wpdX

¼
Z

X
w � qflgdX�

Z
Cp

w � n�pdC; ð26Þ

Z
X

u
of
ot

dXþ
Z

X
ur � vdX ¼

Z
X

uf dX; ð27Þ

Z
X
rsg : rdX ¼

Z
X

g � qgdXþ
Z

Cr

g ��tdC; ð28Þ

for all w 2 V0;u 2 Q and g 2 U0: The problem (26–28),

together with appropriate initial conditions, admits a un-

ique solution.
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3 Numerical model: discretization

In this section we discuss the numerical discretization of

the coupled flow and geomechanics problem. We first

present the space discretization, followed by the time dis-

cretization and, finally, the fully discrete system of alge-

braic equations.

3.1 Space discretization

The essential observation is that the pressure, velocity and

displacements have very different regularity requirements

and, therefore, must be discretized differently. This feature

sets our numerical model apart from traditional reservoir

simulators—where virtually all variables are assumed to be

constant over each gridblock—and from most numerical

models in geotechnical engineering—which use a nodal-

based finite element discretization for all the unknowns.

The design conditions (and main benefits) of our space

discretization are the following: (1) local mass conserva-

tion at the element level; (2) continuous displacement field,

which permits to track the actual deformation of the porous

medium; (3) stable, convergent approximation with the

lowest-order discretization; and (4) single, unstructured

computational grid.

The proposed scheme employs a mixed finite element

method based on the weak form of the problem (26–28).

More specifically, we choose a conforming mixed finite

element method. Let T h be a partition of the domain into

nonoverlapping elements or gridblocks Ej, such that

X ¼
Snelem

j¼1 Ej: On this grid, we shall define the spaces

Vh;Qh and Uh as finite-dimensional subspaces of V;Q and

U; respectively, and the corresponding test function spaces

Vh;0 and Uh;0: The discrete mixed finite element approxi-

mation of the continuum problem (26–28) reads:

At each time t > 0, find ðvh; ph; uhÞ 2 Vh �Qh � Uh

such that:

Z
X

wh � ðk=lÞ
�1vhdX�

Z
X
r � whphdX

¼
Z

X
wh � qflgdX�

Z
Cp

wh � n�pdC; ð29Þ

Z
X

uh

ofh

ot
dXþ

Z
X

uhr � vhdX ¼
Z

X
uhf dX; ð30Þ

Z
X
rsgh : rhdX ¼

Z
X

gh � qgdXþ
Z

Cr

gh ��tdC; ð31Þ

for all wh 2 Vh;0;uh 2 Qh and gh 2 Uh;0:

This finite-dimensional spaces cannot be chosen inde-

pendently. To obtain a convergent approximation, they

must satisfy two conditions [8, 10]: a standard coercivity

condition, and the discrete inf-sup condition [6, 9]. In this

work, we employ the lowest-order continuous finite ele-

ment spaces for the displacement, the lowest-order Ravi-

art–Thomas [29] space for the velocity (RT0), and the space

of piecewise constants for the pressure. As a result, the

velocity, pressure and displacement fields are interpolated

as follows:

vh ¼
Xnface

l¼1

wlVl; ð32Þ

ph ¼
Xnelem

j¼1

ujPj; ð33Þ

uh ¼
Xnnode

b¼1

gbUb; ð34Þ

where Vl are the volumetric fluxes through element faces,

Pj are the element pressures, and Ub are the displacements

at the element nodes (vertices). The location of the degrees

of freedom is shown in Fig. 1 for three-dimensional tetra-

hedral and hexahedral elements.

The displacement interpolation functions gb are the

usual finite element hat functions, which take a value of

1 at node b, and 0 at all other nodes. The pressure inter-

polation functions uj are discontinuous functions that take

a constant value of 1 at element j, and 0 at all other ele-

ments. The velocity interpolation functions wl are vector

functions that satisfy the following condition: they produce

a unit flux through face l and 0 through all other faces. In

Fig. 2 we plot the RT0 shape function for one of the edges

on triangular and quadrilateral reference elements.

The semi-discrete finite element equations are obtained

by inserting the interpolation (32–34) and testing Eqs. (29–

31) against each individual shape function. In residual

form, the semi-discrete finite element equations read:

0 ¼
Z

X
wk � qflgdX�

Z
Cp

wk � n�pdC

�
Z

X
wk � ðk=lÞ

�1vhdXþ
Z

X
r � wkphdX; ð35Þ

displacement

velocity

pressure,
saturations

Fig. 1 Location of the different unknowns (displacements, fluid

velocity, fluid pressure and fluid saturations) on tetrahedral and

hexahedral grid blocks
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0 ¼
Z

X
uif dX�

Z
X

uir � vhdX�
Z

X
ui

ofh

ot
dX; ð36Þ

0 ¼
Z

X
gaqgdXþ

Z
Cr

ga
�tdC�

Z
X

Bt
arhdX; ð37Þ

for all k = 1,nedge, i = 1,nelem and a = 1,nnode.

Equations (35–37) must be supplemented with the

velocity and displacement essential boundary conditions.

The matrix Ba is the linearized strain operator

Ba ¼
oxga 0

0 oyga

oyga oxga

2
4

3
5 ð38Þ

and the strain and stress tensors are expressed in compact

engineering notation:

e ¼
exx

eyy

exy þ eyx

2
4

3
5; r ¼

rxx

ryy

rxy;

2
4

3
5; ð39Þ

for, e.g., the 2D case (d = 2). With this notation, the

elasticity matrix takes the following form for plane strain:

D ¼ Eð1� mÞ
ð1þ mÞð1� 2mÞ

1 m
1�m 0

m
1�m 1 0

0 0 1�2m
2ð1�mÞ

2
4

3
5; ð40Þ

where E is the Young modulus and m is the Poisson ratio.

3.2 Time discretization

Equations (35–37) are a set of differential–algebraic

equations. One can obtain a fully discrete system by further

discretizing in time the term:

ofh

ot
� dtfh ¼

fnþ1
h � fn

h

dt

¼ M�1 pnþ1
h � pn

h

dt
þ b

enþ1
V;h � en

V ;h

dt
;

ð41Þ

and evaluating all other time-dependent terms at some

intermediate time tn+h with h 2 [0,1]. In practice, we have

chosen a fully implicit time discretization (backward Euler,

h = 1).

3.3 Fully discrete coupled system

Introducing the time discretization in the semi-discrete

mixed finite element Eqs (35–37), one arrives at the fol-

lowing coupled system of algebraic equations:

Rv
k ¼

Z
X

wk � qflgdX�
Z

Cp

wk � n�pdC

�
Z

X
wk � ðk=lÞ

�1vnþ1
h dXþ

Z
X
r � wkpnþ1

h dX;

ð42Þ

Rp
i ¼

Z
X

uif dX�
Z

X
uir � vnþ1

h dX�
Z

X
uidtfhdX; ð43Þ

Ru
a ¼

Z
X

gaqgdXþ
Z

Cr

ga
�tdC�

Z
X

Bt
ar

nþ1
h dX; ð44Þ

to be solved at every time step for the face fluid fluxes

{Vl
n+1}, element pressures {Pj

n+1} and nodal displacements

{Ub
n+1} such that the residuals above are zero. In vector

form, the system of nface + nelem + d · nnode algebraic

equations can be expressed as follows:

Rv

Rp

Ru

2
4

3
5 ¼

0
0
0

2
4
3
5: ð45Þ

4 Solution strategies

In this section we review different schemes for the solution

of the coupled system (45). They vary in the degree of

coupling, ranging from a fully coupled approach to a

sequential non-iterative approach. We will pay special

attention to the choice of the operator split for the

sequential solution methods. Even though our model

problem is linear, we shall discuss the solution strategies in

the more general nonlinear case.

4.1 Fully coupled approach

In the fully coupled approach, the fluxes, pressures and

displacements [V n+1,Pn+1,Un+1] are sought for simulta-

neously, using Newton’s method. Given an approximation

[V n+1,Pn+1,Un+1](k) to the solution at tn+1, an improved

solution is obtained as

0 1

0

1

x

y

−1 0 1

−1

0

1

x

y
Fig. 2 RT0 shape function for one of the edges on the triangular and

quadrilateral reference elements
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Vnþ1

Pnþ1

Unþ1

" #ðkþ1Þ

¼
Vnþ1

Pnþ1

Unþ1

" #ðkÞ
þ

dVnþ1

dPnþ1

dUnþ1

" #ðkÞ
; ð46Þ

where the correction is the solution to the system of linear

equations:

Svv Svp 0
Spv Spp Spu

0 Sup Suu

" #ðkÞ dVnþ1

dPnþ1

dUnþ1

2
4

3
5
ðkÞ

¼
Rv

Rp

Ru

" #ðkÞ
: ð47Þ

The matrix of the system is (minus) the Jacobian matrix.

The individual entries of the blocks of this matrix take the

following expressions:

Svv
kl ¼

Z
X

wk � ðk=lÞ
�1

wldX; ð48Þ

Svp
kj ¼ �

Z
X
r � wkujdX; ð49Þ

Spv
il ¼

Z
X

uir � wldX; ð50Þ

Spp
ij ¼

1

dt

Z
X

uiM
�1ujdX; ð51Þ

Spu
ib ¼

1

dt

Z
X

uibðrgbÞ
t
dX; ð52Þ

Sup
aj ¼ �

Z
X
rgabujdX; ð53Þ

Suu
ab ¼

Z
X

BaDBbdX: ð54Þ

The system can be easily symmetrized by multiplying the

second block of equations (pressure unknowns) by –1 and

the third block of equations (displacement unknowns) by

1/dt. The fully coupled approach is unconditionally stable.

Moreover, since the system of equations is linear, New-

ton’s method converges in one iteration.

The flow problem consists in solving for fluxes and

pressures simultaneously. For conceptual clarity, we can

eliminate the flux unknowns from the first block of

Eq. (47):

dVðkÞ ¼ Svvð Þ�1 Rv � SvpdPðkÞ
� �

ð55Þ

to arrive at the equivalent 2 · 2 block system:

~Spp Spu

Sup Suu

� �
dP
dU

� �ðkÞ
¼

~Rp

Ru

� �ðkÞ
; ð56Þ

where

~Spp ¼ Spp � Spv Svvð Þ�1Svp; ð57Þ

~Rp ¼ Rp � Spv Svvð Þ�1Rv: ð58Þ

The numerical discretization leading to Eq. (56) may be

interpreted as a finite volume method for flow (to be solved

for cell-centered pressures), and a finite element method for

mechanics (to be solved for nodal displacements). This

form of the problem is not used in practice because the

matrix ~Spp is a full matrix, but it simplifies the exposition of

the sequential solution schemes.

4.2 Sequential iterative approach (SIA)

As opposed to the fully coupled approach, the iteratively

coupled approach solves the system (45) separately for the

mechanics (displacements) and flow (fluxes and pressures).

An outer iteration is performed to ensure full convergence

of the solution at every time step, see Fig. 3.

4.2.1 Drained split

The most obvious operator split for the system (56) is to

freeze the pressures during the mechanics solution, and

freeze the displacements during the flow solution. This

choice of the operator split is sketched graphically in

Fig. 4.

As a result, at every outer iteration, one solves the

modified system:

~Spp 0
0 Suu

� �
dP
dU

� �ðkÞ
¼

~Rp

Ru

� �ðkÞ
: ð59Þ

The drained split is therefore equivalent to a block Jacobi

iterative method on the full system [5]. The flow and

mechanics problems are effectively decoupled at each

New time step

Outer iteration

Mechanics

Flow

Converged ?

No
Yes

Fig. 3 Flow chart of the sequential iterative approach
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iteration. Alternatively, one could use the updated

displacements when solving the flow problem, which

amounts to solving

~Spp Spu

0 Suu

� �
dP
dU

� �ðkÞ
¼

~Rp

Ru

� �ðkÞ
; ð60Þ

equivalent to a block Gauss–Seidel iteration [5]. Since ~Spp

and Suu are symmetric positive definite matrices, the exact

solution is a fixed point and, therefore, if the drained split

converges, it converges to the fully coupled solution.

As it turns out, however, this staggered scheme does not

preserve the dissipation properties of the coupled system,

and renders a solution strategy that is only conditionally

stable [3, 4, 42].

4.2.2 Undrained split

An alternative operator split for the system (45) is based on

the following physical concept: rather than freezing the

pressure during the mechanical step, one can freeze the

fluid content. In this way, the mechanical problem is solved

while imposing that dm = 0 for all gridblocks, see Fig. 5.

The relevant constitutive equation is then Eq. (11) (with

f = 0) instead of Eq. (10) (with dp = 0).

Algebraically, the undrained condition means that

dV = 0 during the mechanical step. Instead of setting

dP = 0, the pressure must vary (locally from element to

element), such that

dP ¼ �dP�; ð61Þ

where dP* ensures the undrained condition on the second

block of Eq. (47):

SpvdV|fflffl{zfflffl}
¼0

þSppdP� þ SpudU ¼ 0: ð62Þ

Substituting this condition into the second block of

Eq. (56), we obtain the system of equations for the

mechanical step of the undrained split:

Suu þ Sup Sppð Þ�1Spu
� �

dU ¼ Ru: ð63Þ

The flow step is performed in the same fashion as in the

drained split, using either the previous or updated dis-

placement field, which leads to a modified block Jacobi or

a modified block Gauss–Seidel iteration, respectively.

This sequential scheme amounts to solving the system of

equations (59) or (60) but with a modified stiffness matrix

~Suu ¼ Suu þ Sup Sppð Þ�1Spu: ð64Þ

Since this matrix is also symmetric and positive definite,

the undrained split (if it converges) converges to the fully

coupled solution.

The benefit of this formulation is that it is compatible

with the dissipation properties of the physical system and,

as a result, it is unconditionally stable [3, 4, 42].

4.3 Sequential non-iterative approach (SNIA)

A non-iterative approach refers to a staggered solution

scheme, in which no outer iterations are performed to en-

sure convergence of the solution at every time step. The

solution is advanced by computing one single mechanical

solve and one single flow solve per time step. As before,

one can use both operator splits described above: the

drained and undrained splits.

fix P = P(k)

U (k), P (k) U (k+1), P (k) U(k+1), P(k+1)
fix U = U (k+1)

U (k+1), P (k+1)

fluid escapes

Fig. 4 Schematic representation of the drained split

set δ m = 0

U (k), P (k) U (k+1), P
undrained U(k+1), P(k+1)

fix U = U(k+1)

U (k+1), P (k+1)

fluid does not escape and P
undrained

 is computed locally

Fig. 5 Schematic representation of the undrained split
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5 Representative numerical simulations

The objective of this section is to illustrate the applicability

of the formulation to a number of test cases, from valida-

tion exercises to more realistic scenarios. The numerical

model was implemented in Diffpack, a C++ programming

environment for simulator development in an object-ori-

ented framework [20].

5.1 Uniaxial compaction test

Our first example is a uniaxial compaction test, simulated

under both drained and undrained conditions. The terms

drained and undrained conditions refer to whether the fluid

is allowed to escape from the sample upon compaction, and

are unrelated to the drained and undrained numerical splits

(that is, one can simulate an undrained test with a drained

sequential scheme, and vice versa).

The model problem is a laterally-constrained specimen,

subjected to a uniform compressive traction that is applied

suddenly at the top surface. This is the classical Terzaghi

problem of consolidation of a finite layer [36]. Since the

vertical stress is independent of time, the pore pressure is

uncoupled from the stress and satisfies a homogeneous

diffusion equation [41]. The solution to the undrained case

is very simple: the applied compressive traction will induce

an instantaneous pressure build-up and an instantaneous

displacement field. These instantaneous changes provide

the initial conditions for the drained case, in which pressure

and displacement will vary during the pore pressure dif-

fusion phase [41].

Our simulation model is defined in terms of dimen-

sionless quantities, and a sketch of the model is shown in

Fig. 6. The dimension of the domain is 0.5 · 1, discretized

with a grid of 100 triangular elements. The lateral dis-

placement is zero along the side boundaries, and so is the

vertical displacement at the bottom boundary. A normal

compressive traction equal to one is imposed at the top

boundary. In the undrained test all boundaries are imper-

vious, whereas in the drained test the top boundary is set at

a pressure of –5. This open boundary is modeled by a set of

constant-pressure wells at the top row of elements. The

material parameters are given in Table 1.

The pressure and displacement fields at steady-state are

shown in Figs. 7, 8 for the drained and undrained tests,

respectively. The solution agrees with the expected

behavior of the system (in fact, with the analytical solution

to the problem). In both cases, the maximum deflection

occurs at the top boundary, and the pressure field is

hydrostatic. The average pressures are of course different

in response to the different boundary conditions. The

pressure boundary condition in the drained test is such that

fluid escapes from the sample, therefore making the system

more compressible overall. This explains the larger vertical

displacements of the drained test. In Fig. 9 we compare the

Producer node

Normal Stress = -1

Observation node

Gravity

Fig. 6 Definition of the uniaxial compaction test

Table 1 Material parameters for the uniaxial compaction test

Parameter Symbol Value

Young modulus E 100

Poisson ratio m 0.35

Fluid viscosity l 10

Biot coefficient b 0.9

Biot modulus M 100

Fluid density qfl 0.8

Total bulk density q 2.2

Permeability k 1

Porosity / 0.25

0 0.5
0

0.5

1

−5

−4

−3

−2

−1

0

1

2

0 0.5
0

0.5

1 0

Fig. 7 Pressure (left) and displacement (right) solution at steady-

state for the drained uniaxial compaction test
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evolution of the pressure at the observation point. As ex-

pected, the undrained test reaches steady-state almost

instantaneously, while the drained test reflects the pressure

transient characteristic of fluid withdrawal. In both cases,

the agreement with the analytical solution of the problem

[41] is excellent.

5.2 Consolidation problem in 1D

Our second example is designed to complement the uni-

axial compaction test simulation. The objective is to

evaluate the convergence properties of the drained and

undrained splits on a simple test case. We use a 1D grid

consisting of just four elements, to simulate a consolidation

problem. A sketch of the problem is shown in Fig. 10. We

impose zero displacement and flux at the bottom boundary.

At the top boundary, a prescribed pressure and total stress

are imposed. The column is assumed to be in hydrostatic

equilibrium initially. The relevant material properties are

listed in Table 2.

Since the top-boundary pressure is prescribed, the fluid

is allowed to escape from the system upon application of

the point force at the top, and the setup is that of a drained

consolidation problem. The question is whether the con-

vergence of the undrained split degrades as the perme-

ability of the medium increases—which makes the

poromechanical conditions locally drained.

In Table 3 we report the number of iterations for con-

vergence at time t = 104 s, using a drained split and an

undrained split solution strategy. The convergence criterion

is that the L2-norm of the difference between the solution

vectors at successive iterations be less than 10–6. As ex-

pected, the number of iterations of the drained split de-

creases with increasing permeability. We also confirm that

the same behavior applies to the undrained split which,

moreover, displays accelerated convergence with respect to

the drained split—it converges in approximately half the

0 0.5
0

0.5

1

1

2

3

4

5

6

7

8

0 0.5
0

0.5

1 0

Fig. 8 Pressure (left) and displacement (right) solution at steady-

state for the undrained uniaxial compaction test
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Fig. 9 Evolution of pressure at the observation point for drained and

undrained uniaxial compaction tests. Comparison between numerical

and analytical solutions

g

10
0 

m

Zero-flux boundary

Prescribed pressure = 2.0E+6 N/m2

Prescribed displacement = 0 m

Point force = 2.5E+6 N/m3

Fig. 10 Sketch of the problem setup for the 1D consolidation

problem

Table 2 Material parameters for the 1D consolidation problem

Parameter Symbol Value

Overburden stress 2.5 MPa

Top boundary pressure 2.0 MPa

Young modulus E 1.5 GPa

Poisson ratio m 0.30

Fluid viscosity l 1.0 cP

Biot coefficient b 0.7

Biot modulus M 2.5 GPa

Fluid density qfl 1,000 kg/m3

Total bulk density q 2,400 kg/m3

Permeability k 10–1,000 md
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number of iterations. In Fig. 11 we plot the evolution of the

error for both iterative schemes, for a permeability of

10 md (1 md = 10–15 m2). The undrained split converges

monotonically, and twice as fast as the drained split.

5.3 Well to well flow pattern

In this example we simulate flow from an injection to a

production well, and illustrate the performance of the dif-

ferent solution strategies discussed, with particular

emphasis on the behavior of the drained and undrained

splits for sequential non-iterative solutions.

The model problem and the boundary conditions are

shown in Fig. 12. The domain is a unit square, discretized

into 200 triangular elements. All boundaries are impervi-

ous, and prescribed-pressure injection (pinj = 10) and pro-

duction (pprod = –10) wells are placed at the bottom–left

and top–right elements, respectively. The material param-

eters are given in Table 4.

In Figs. 13, 14 we show the pressure field and the

velocity field, respectively, for runs with and without

gravity. In this case, the pressure field is dominated by the

well-to-well flow, and the influence of gravity is relatively

minor. The results in these two figures have been computed

with the fully coupled approach.

To analyze the effect of different coupling strategies we

compare the results from the sequential non-iterative ap-

proach using drained and undrained splits with the fully

coupled solution. The evolution of pressure and vertical

displacement at the observation node computed with the

different solution schemes is shown in Figs. 15, 16,

respectively. We make the following observations:

1. Stability of the drained and undrained splits. It is clear

that with a time step of dt = 0.1, the non-iterative

undrained split solution is stable and virtually identical

to the fully coupled solution. In this particular case, the

computational cost of the sequential solution was

about five times less than the fully coupled solution. In

contrast, and for the same time step, the drained split

results in wild oscillations during the initial transient,

both in pressure and displacement. Refining the time

step removes the oscillatory behavior (at the cost, of

course, of much longer simulation time). Although

oscillations could also arise from the use of a low-

dissipation time stepping technique such as the Crank-

Nicolson method, the oscillatory behavior observed

Table 3 Number of iterations of the drained and undrained splits for

the 1D consolidation problem

Permeability (md) Drained split Undrained split

10 88 19

50 68 23

100 53 24

200 39 24

1,000 22 25

0 20 40 60 80 100
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−6
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−2

10
0

10
2

10
4

10
6

Iteration number

E
rr

or

Drained split
Undrained split

Fig. 11 Evolution of the error for the drained split and the undrained

split iterative schemes in the 1D consolidation problem

Producer node

Overburden Stress = -1

Observation node

L
ateral Stress =

 -1

Gravity

Injector node

Fig. 12 Sketch of the model problem for the well to well flow

example

Table 4 Material parameters for the well to well flow example

Parameter Symbol Value

Young modulus E 100

Poisson ratio m 0.35

Fluid viscosity l 1.0

Biot coefficient b 0.9

Biot modulus M 10

Fluid density qfl 1.0

Total bulk density q 2.2

Permeability k 1

Porosity / 0.25
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here is related to the conditional stability of the drained

split—indeed, the fully coupled solution does not show

oscillations. The reason why the drained split does not

yield divergent results is that, in this example, the most

challenging time step (that tests stability) is the first

time step, because flow is driven by a sudden change in

well pressure at t = 0. In fact, we observe that if the

time step dt is larger than some critical value, the

drained split does not converge for the first time step.

Imposing the well flow rate instead of the well pressure

would result in a system that is disturbed continuously,

and divergence would occur later in the simulation.

2. Mandel–Cryer effect. An interesting feature of the

system is the presence of a hump in the time evolution

of the pressure. This non-monotonic behavior of the

pressure, known as the Mandel–Cryer effect, is char-

acteristic of the coupled poromechanics problem, and

cannot be reproduced in flow simulations that ignore

the two-way coupling with the mechanical response of

the porous medium.

5.4 Application to a synthetic reservoir

We now present a slightly more realistic case, modeling a

cross section of a synthetic reservoir. The model problem is

shown in Fig. 17. The problem dimensions and material

parameters now have units and realistic values. The size of

the domain is 3,000 · 800 m. The logarithm of the per-

meability field is shown in Fig. 18. It has a layered struc-

ture and varies over three orders of magnitude. Wells have

multi-block completions with the injector having a fixed

bottom hole pressure control and the producer having a

fixed rate control. The injector is open to 10 gridblocks

near the bottom of the reservoir, whereas the producer is

open to 5 blocks roughly in the middle of the reservoir. The

material properties and other parameters of the simulation

are compiled in Table 5.

The pressure and velocity fields after 20 days of simu-

lation time are shown in Figs. 19, 20, respectively. From

these plots it is apparent that most of the fluid flows

through a rather narrow high-permeability region con-

necting injector and producer.

In Fig. 21 we plot the stress ratio (the ratio of the

equivalent von Mises effective stress to mean normal

effective stress) on the deformed grid (exaggerated for
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Fig. 13 Pressure field for horizontal and vertical cases
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Fig. 15 Comparison of evolution of pressure at observation point for

drained and undrained splits
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Fig. 16 Comparison of evolution of vertical displacement at

observation point for drained and undrained splits
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visual contrast). In this case, the zone with the highest

equivalent stress is the area around the injector. In real

scenarios, this type of analysis could give a zeroth-order

indicator of potential problems of wellbore collapse, sand

production, or fracturing of geologic layers.

6 Conclusions

We have presented a new approach for the simulation of

coupled reservoir geomechanics. The technical aspects that

make our approach unique are:

1. The space discretization of the equations. The unknown

variables are the pressure, the fluid velocity, and the

rock displacements. We recognize that these variables

are of very different nature, and need to be discretized

differently. We propose a mixed finite element space

discretization, which is stable, convergent, locally mass

conservative, and employs a single computational grid.

To ensure stability and robustness, we perform an im-

plicit time integration of fluid flow equations.

2. The strategies for the solution of the coupled system.

We compare different solution strategies, including the

fully coupled approach, the usual (conditionally stable)

iteratively coupled approach based on a drained split,

and a less standard sequential scheme based on an

Injector (fixed BHP) Producer (fixed rate)
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Fig. 17 Problem setting for the synthetic reservoir model
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Table 5 Material parameters for the synthetic reservoir model

Parameter Symbol Value

Initial stress r0 10 MPa

Overburden stress 10 MPa

Young modulus E 10 MPa

Poisson ratio m 0.35

Fluid viscosity l 1.0 cP

Biot coefficient b 0.9

Biot modulus M 10 MPa

Fluid density qfl 800 kg/m3

Total bulk density q 2,200 kg/m3

Permeability k 1–1,000 md

Porosity / 0.25

Injector BHP 50 MPa

Producer rate 100 m3/day
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Fig. 19 Pressure field for the synthetic reservoir model
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Fig. 20 Velocity field for the synthetic reservoir model
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undrained split, which is unconditionally stable. The

examples in this paper illustrate the benefit of the

undrained-split sequential solution scheme.

3. The implementation in a reservoir simulator. The

numerical model was implemented in an object ori-

ented fashion using the Diffpack computational envi-

ronment, making it amenable to extensions.

The scope of this paper was limited to single-phase

linear poroelasticity. Clearly, this is insufficient for the

simulation and prediction of many reservoir and near-well

geomechanical processes, which will require the following

extensions: (1) 3D problems; (2) inelastic deformations,

through efficient return-mapping algorithms [33]; (3)

multiphase flow, to be discretized using a finite volume

scheme and through a sequential solution method; (4)

coupling with micromechanical approaches for modeling

post-failure (often softening) behavior.
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