
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS
Int. J. Numer. Anal. Meth. Geomech. 2015; 39:1619–1638
Published online 26 August 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nag.2427

Reservoir characterization in an underground gas storage field
using joint inversion of flow and geodetic data

B. Jha1,2, F. Bottazzi3, R. Wojcik1, M. Coccia2, N. Bechor2, D. McLaughlin1,
T. Herring2, B. H. Hager2, S. Mantica3 and R. Juanes1,2,*,†

1Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, U.S.A
2Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, U.S.A.

3Divisione E&P, Eni S.p.A., San Donato Milanese, Italy

SUMMARY

Characterization of reservoir properties like porosity and permeability in reservoir models typically relies
on history matching of production data, well pressure data, and possibly other fluid-dynamical data. Cali-
brated (history-matched) reservoir models are then used for forecasting production and designing effective
strategies for improved oil and gas recovery. Here, we perform assimilation of both flow and deformation
data for joint inversion of reservoir properties. Given the coupled nature of subsurface flow and deforma-
tion processes, joint inversion requires efficient simulation tools of coupled reservoir flow and mechanical
deformation. We apply our coupled simulation tool to a real underground gas storage field in Italy. We sim-
ulate the initial gas production period and several decades of seasonal natural gas storage and production.
We perform a probabilistic estimation of rock properties by joint inversion of ground deformation data from
geodetic measurements and fluid flow data from wells. Using an efficient implementation of the ensem-
ble smoother as the estimator and our coupled multiphase flow and geomechanics simulator as the forward
model, we show that incorporating deformation data leads to a significant reduction of uncertainty in the
prior distributions of rock properties such as porosity, permeability, and pore compressibility. Copyright ©
2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Reservoir characterization refers to the estimation of spatial distributions of rock and fluid proper-
ties in the reservoir, such as porosity, permeability, and compressibility. These properties control the
changes in the state of the reservoir—fluid saturations, pore pressures, displacements, and stress—
due to production and injection through wells. Dynamic reservoir simulation models are utilized
to evaluate such changes in the reservoir. Reservoir characterization is an important step during
the construction of a dynamic reservoir model and its subsequent refinement by integration of data
recorded during the development of the field. While the initial characterization of reservoir prop-
erties like porosity and permeability is based on well log data and assumed inter-well statistics
of these properties, history matching with well rate and pressure data during reservoir simulation
further constrains the porosity and permeability distributions in the reservoir [1]. History-matched
reservoir flow models, which are traditionally uncoupled from mechanical deformation of the reser-
voir, are then used for forecasting production and designing effective strategies for improved oil and
gas recovery. However, history matching is often non-unique [1–3]. Other than nonlinearity of the
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dynamic model, one of the reasons for this non-uniqueness is that the number of unknown reservoir
parameters in the model is typically much greater than the number of informative measurements at
the wells. In addition, the flow response of a reservoir depends on both fluid flow and mechanical
deformation, which are coupled processes in the subsurface. This suggests that by acquiring and
assimilating geodetic data, in addition to flow data at the wells, it might be possible to reduce the
uncertainty in reservoir parameters.

As the amount and type of data available during the field development increase, there is a need for
novel techniques that can incorporate the newly available data in the characterization process. For
example, with the advent of time-lapse seismic monitoring [4], joint inversion of flow and seismic
data has emerged as a viable reservoir characterization technique aimed at reducing uncertainty in
rock physics models [5–8]. Recently, it has been shown that ground deformation data available from
geodetic measurements, such as Global Positioning System (GPS) and interferometric synthetic
aperture radar (InSAR), can be used as a valuable diagnostic to study reservoir compaction and
subsidence due to groundwater withdrawal [9, 10], geologic storage of carbon dioxide [11], and
seasonal ground motion due to storage and withdrawal of gas from depleted gas reservoirs [12].
In the study of natural and induced earthquakes, ground deformation data are also being used to
estimate the location and sense of slip on earthquake-inducing faults [13]. Using a joint inversion
analysis, surface deformation data have been used in conjunction with well pressure and/or flow rate
data to estimate subsurface properties such as permeability fields [14–17], bulk compressibility [18],
and fault transmissibilities [19].

In this paper, we perform joint inversion of flow and surface deformation data for statistical esti-
mation of rock properties in a real underground gas storage (UGS) field with complex geology and
production history, pseudo-named as the beta reservoir. We show that it is possible to reduce uncer-
tainty in estimates of these properties by assimilating both sources of data in a one-way coupled
flow and geomechanics formulation. The coupled formulation, which is described elsewhere [20],
provides the forward model for the inversion.

2. THE BETA RESERVOIR DATASET

The analysis described in the present paper has been conducted on a real gas storage field, which
will be referred to as the beta field. The beta field is composed of three units, named beta-1, beta-2,
and beta-3, located at three different depths. In the present work, only the main reservoir, Beta-
3, has been considered for the analysis, because the three units are hydraulically separated, and it
has been verified that the contributions of beta-1 and beta-2 are minimal compared with those of
beta-3 in terms of induced displacement at the ground surface level. Beta-3 is located at around
1300-m depth and is composed of sandy layers. It is connected with a large and strong aquifer
in the southwest direction. The field produced for a few years before the UGS project started, in
which methane is injected into the reservoir from April to October and produced from November
to March. Ground surface motion above the reservoir follows this seasonal cycle of storage and
withdrawal. During the injection months, the surface is uplifted vertically with expansion in the east-
west and north-south directions away from the points of injection. During the production months,
the ground surface subsides vertically with contraction in the horizontal directions. The datasets
for the beta field inversion are the well bottomhole pressure (WBHP) for all producing/injecting
wells and the line-of-sight (LOS) surface displacements over the field as measured by SAR sensors
on the Envisat satellite. The spatial coverage and temporal coverage of the two types of data are
different. Moreover, the pressure dataset covers two types of flow regimes: a depletion regime during
pre-UGS period when the pressure declines monotonically and the subsequent pseudo steady-state
regime during the UGS period when the pressure fluctuates in response to injection and production.
The InSAR data contain phase changes associated with ground deformation in the LOS direction of
the radar beam (Figure 1). To translate to displacements, we multiply the phase changes by �=4� ,
where � is the wavelength of the radar beam [21]. We process the raw InSAR images using the
persistent scatterer (PS) approach [22]. Next, we remove small-scale random noise and large-scale
signals that are not due to UGS-induced reservoir deformation, such as signals due to atmospheric
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Figure 1. Schematic of interferometric synthetic aperture radar data acquisition using an earth-orbiting satel-
lite equipped with synthetic aperture radar sensors. The angles between the satellite’s line of sight and
the 3D co-ordinate directions—east, north, and upward—are used to convert displacement vectors from a
3D geomechanical simulation into line-of-sight displacement values. Image courtesy of Tele-Rilevamento

Europe [23].

features, orbital errors, regional geological events, and regional subsidence. Removal of small-scale
noise reduces the computational cost of inversion by reducing the number of assimilation points.

2.1. Interferometric synthetic aperture radar data processing

Satellite-based radar interferograms contain spatially correlated signals, mostly related to atmo-
spheric and ionospheric structures that are commonly coherent over length scales of tens to hundreds
of kilometers [24–26]. Correlation between range change and topography results from the varia-
tion of the refractivity of the atmosphere along the vertical due to changes in pressure, temperature,
humidity, and water vapor content in the lowermost atmosphere between two SAR acquisitions [26].
For a vertically stratified troposphere model, if elevation changes across the scene, propagation
delays vary at different elevations with a rate increasing with water vapor content and the pressure–
temperature ratio [27]. We characterize these large-scale signals in our InSAR images with a
covariance analysis.

Assuming that the noise is spatially stationary and isotropic, the covariance between any two
points x D .x; y/ and xCr depends only on the distance r D jrj between them, that is, Cov.x;xC
r/ D Cov.r/. We calculate experimental covariance of the PS, using all the data that do not contain
deformation, that is, outside the gas reservoir area. We subtract the best-fitting phase plane to remove
a potential error ramp caused by inaccurate orbital information. We calculate a sample covariance
function for the interferogram images as follows. For each distance r in an image at timestep t , we
select many random locations .xi ; yi / and directions �i within the image and compare the value at
.xi ; yi / and .xi C r cos �i ; yi C r sin �i / to calculate the sample covariance curve of the image. We
fit a normalized Gaussian covariance function, 1

La;t
p
2�

exp .�r2=2L2a;t /, to the sample covariance
curve, where La;t is the correlation length in the large-scale signal at timestep t . The value of La;t
is approximately 10 to 50 km. We calculate average displacements on a 2D grid with a grid cell size
based onLa;t , and we subtract the average from the image to remove the large-scale signal. Next, we
apply a 2D Gaussian smoothing filter in each grid cell based on the average and standard deviation
of displacements within the cell. The filter removes the high-frequency noise by setting each point’s
displacement to a weighted average of displacements in that point’s neighborhood. This reduces the
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number of assimilation points in the inversion. Finally, we calculate the covariance of the filtered
images and estimate new correlation lengths, Lc;t , which are representative of the UGS-induced
deformation. In our dataset, Lc;t varies from 2 to 10 km.

3. THE JOINT INVERSION MODEL

In this study, inversion is the process of estimating unknown subsurface parameters such as porosity,
permeability, and rock compressibility by assimilating measurements of ground displacements, well
rates, and pressures with predictions from a forward model. The forward model in our case is a
one-way coupled flow and geomechanics model, which we simulate using our coupled flow and
geomechanics simulator, PYLITH-GPRS [20].

We use an ensemble-based data assimilation method for statistical estimation. Data assimilation
methods offer the following advantages over optimization-based approaches [28, 29]: (i) they are
based on a Bayesian framework to capture uncertainty propagation and, hence, can generate many
history-matched models simultaneously; (ii) they do not require derivation of gradient operators
or adjoint equations with backward-in-time integration and, hence, are independent of the forward
model simulator; and (iii) they allow sequential and forward-in-time update of history-matched
models with sequentially available measurements and, hence, avoid calibration to the entire history
every time a new measurement becomes available.

Usually, the measurements are available at different points in space and time, whereas the rock
parameters are assumed to vary only in space. Assimilating measurements from multiple points
in space and time provides robustness to the inversion process and increases confidence in the
estimates [14]. Uncertainty in physically related parameters is often modeled as a multi-Gaussian
random process defined with the parameter mean and covariance, although non-Gaussian contribu-
tions arising from nonlinear dynamics have also been considered [30, 31]. The Gaussian assumption
provides analytical tractability and uniqueness to the solution of the inversion problem, albeit at the
cost of accuracy in the representation of non-Gaussian variations in the parameters.

The Kalman filter is a linear unbiased estimator to update prior estimates of the model param-
eters of a dynamical model by assimilating predictions and measurements of the model state
variables sequentially at different timesteps [32–34]. It is the optimal least square estimator under
the assumptions of linear dynamics, unbiased and Gaussian prior statistics, Gaussian measurement
error, and no correlation between the error in the prior ensemble and the measurement error. The
ensemble Kalman filter (EnKF) is a Monte Carlo approximation of the Kalman filter suitable for
large-scale, possibly nonlinear, problems with many unknowns such as the ones encountered in geo-
physical applications [28, 29, 35–38] (see Figure 2 for a general idea). Similar to many ensemble
methods, it only uses the first two statistical moments, mean and covariance, of the prior distribu-
tions of the model parameters and errors to update the prior ensemble. It requires the ensemble

Figure 2. A generic flow chart for joint inversion using ensemble Kalman methods. �f and kf are
the first-guess or prior values of porosity and permeability, respectively. �a and ka are the analyzed
or posterior values of porosity and permeability, respectively. p and u are the predicted pore pressure
and displacement vector, respectively. pwell and uLOS are the measured well pressure and line-of-sight

displacement, respectively.
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covariance matrix of the prior distributions, measurements of the state variables and their error
covariance matrix, a forward model to generate predictions of the measurements, and a mapping of
the predictions to measurement locations. Simplification in the EnKF comes from the assumption
that the true covariance matrix of the model parameters can be substituted with the ensemble covari-
ance matrix when the ensemble is a large enough sample drawn from the prior distributions of the
parameters.

3.1. Ensemble smoother

In a sequential data assimilation method such as EnKF, updating of the model parameters due to
assimilation at a timestep requires stopping and restarting of the forward model time integration at
each assimilation step for each realization. This is either carried out manually or requires coding of
the data assimilation routine inside the forward model simulator. To avoid multiple restarts of the for-
ward model every time measurements are available, an alternative method, the ensemble smoother
(ES), is utilized [39, 40]. The ES method approximates the EnKF by assimilating all the past mea-
surements in one update step. Because all timesteps are considered at once, the computational cost
of the ES update is larger than that of a single update in EnKF. However, ES offers an advantage in
the implementation cost of the assimilation process because it can be performed outside the forward
model simulator, as a post-processing step. The disadvantage is that integration of a nonlinear model
over a long time window, unconstrained by measurements, introduces non-Gaussian contributions
in the statistics [28]. These contributions are not captured in the Kalman methods and, therefore,
can lead to error in the estimates. ES is a useful method to estimate the state parameters when these
parameters do not change with time during the assimilation period. Recently, ES has been proposed
as an efficient history-matching method for oil and gas reservoirs because of the diffusive nature of
the solution [40].

We use the ES [40, 41] for estimation and uncertainty reduction of model parameters in the beta
field. We choose the model parameters in our study based on the following criteria: importance of
a parameter in determining the surface displacement due to UGS operations, effect of assimilating
two types of data (well pressure and InSAR displacements) in reducing uncertainty in a parameter,
and prior uncertainty in a parameter in the beta field. Here, we provide a brief introduction to the
ES method. Let n be the number of model parameters, q be the number of state variables or model
output variables, m be the number of measurements, and N be the number of members in the
ensemble. Neglecting the uncertainty in the forward model, which is assumed to be deterministic,
we have updated the ensemble of the model parameters as follows [41, 42]:

˛a D ˛f C C ˛d .C dd C C ��/
�1.d � df /; (1)

where ˛f 2 Rn�N is the first-guess or prior ensemble, ˛a 2 Rn�N is the updated or pos-
terior ensemble of the model parameters, d 2 Rm�N is the measurement matrix containing
perturbed measurements of the state variables, df 2 Rm�N is the predicted measurements,
C �� 2 Rm�m is the ensemble covariance matrix of measurement errors, C dd 2 Rm�m is the
ensemble covariance matrix of the model predicted measurements, and C ˛d 2 Rn�m is the
cross-covariance matrix between the prior model parameters and the predicted measurements. The
perturbed measurement matrix d is assumed to be Gaussian and created by applying the standard
Gaussian perturbation to the measurement vector dm 2 Rm. We estimate the prediction covari-

ance matrix as C dd D
�
df � df

� �
df � df

�T
= .N � 1/ and the cross-covariance matrix as

C ˛d D
�
˛f � ˛f

� �
df � df

�T
= .N�1/. Measurements are predicted using the forward model,

df DMŒG .˛f /�, whereG is the nonlinear forward model operator,G .˛f / 2 Rq�N is the model
prediction of the state variables, and M is the measurement functional that projects model pre-
diction onto measurement locations where dm is sampled, such that MŒG .˛f /� 2 Rm�N is the
projected prediction.

It follows from Equation (1) that the model parameters are updated based on the weighted mis-
match between measurements and predictions of state variables at prescribed locations. The weights,
which are derived from the inverse of the error covariances or confidence in the measurements, are
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contained in the prefactorC ˛d .C ddCC ��/�1, also known as the Kalman gain matrix. Reduction in
uncertainty of a parameter depends on the sensitivity of the state variables, such as pressure and dis-
placement, to that parameter. Different parameters may experience different degrees of uncertainty
reduction. These sensitivities are included in the forward model through the governing equations
of the physical system. In the ES framework, uncertainty reduction due to ensemble update in
Equation (1) can be expressed through the covariance update equation [28],

C a˛˛ D C
f
˛˛ � C ˛d .C dd C C ��/

�1C T˛d ; (2)

where the Kalman gain captures the sensitivity inherent in the forward model. One of the advantages
of using ensemble methods such as ES is to replace the costly calculation of the sensitivity of
state variables, which are needed in gradient-based parameter estimation methods, with a simpler
algorithm to calculate the Kalman gain.

The standard ensemble Kalman analysis scheme requires random perturbations of measurements
dm to generate the ensemble measurement error covariance matrix C �� . It has been shown that this
step can lead to sampling errors in the ensemble variance update equation, Equation (2), because of
a finite ensemble size, and thus should be avoided in favor of other techniques such as the square
root analysis scheme [42, 43]. Here, we use the square root analysis scheme to avoid random per-
turbations to the measurement and invert C dd C C �� using a fast reduced-rank approximation to
singular value decomposition based on random matrix theory [44].

4. THE FORWARD MODEL

A forward model generates a prediction of quantities of interest for a given realization of the model
parameters. In this study, the forward model is a one-way coupled flow and geomechanics model
of the beta field. The model construction is divided into three stages: construction of the geo-
logical model, construction of the flow model, and construction of the geomechanical model. A
geological model provides the basic architecture of the study area in terms of its structural (faults,
folds, pinch-outs, etc.) and stratigraphic (sand-shale layering, lithology, etc.) features. Some of these
features may act as barriers/conduits to flow and may have load-bearing capacity or deformation
mode (such as elastic versus plastic) significantly different from the surrounding medium. In this
way, a geological model provides an essential input during the construction of flow and geome-
chanical models. A geological model of the beta field is built from stratigraphic maps prepared
from a 3D seismic survey and borehole logs available in the field. Later, we describe the flow and
geomechanical models.

4.1. Flow model

The flow model has three main components: the gas reservoir, the aquifer, and the wells. The flow
model is extended horizontally more than 20 km in the southwest direction to include the aquifer
connected to the gas reservoir (Figure 3). This ensures that propagation of well-induced pressure

Figure 3. Top view (left) and a cross-section view along the dotted line (right) of the flow model grid. Left:
the size of grid cells increases continuously from a small value in the gas reservoir to a large value in the
aquifer. Right: initial gas saturation is plotted with red color indicating the maximum gas saturation. Gas
accumulates near the top of the reservoir because of buoyancy. Wells (not shown in the image) are drilled

into the gas reservoir.
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Table I. Model parameters used in the beta field inversion study.

Parameter Distribution Mean Std. Dev. Min Max

Reservoir porosity, � Normal 0.292 0.011 0.264 0.327
Poisson’s ratio, � Normal 0.300 0.006 0.286 0.316
Compressibility intercept a in Equation (3) Normal �1.863 0.230 �2.434 �1.331
Reservoir horizontal permeability, log khr Normal 2.596 0.029 2.534 2.676
Vertical-to-horizontal permeability ratio, kvr=khr Uniform 0.902 0.055 0.804 1.000
Aquifer-to-reservoir permeability ratio, ka=kr Uniform 0.543 0.255 0.114 1.000

All parameters are dimensionless except the log of horizontal permeability, which has the unit of log(millidarcy).
Std. Dev., standard deviation.

perturbations through the reservoir and the surrounding region is correctly captured during the flow
simulation. The areal extension of the model, covering both the gas-bearing region and the aquifer
region, is 56 � 54 km2. We discretize the flow domain with 10 layers in the vertical direction such
that the average element thickness varies from 8 to 5 m in the gas-bearing region up to 25 m in
the far aquifer region. The average dimension of elements in the lateral direction varies from 50 m
in the gas-bearing region to 2 km in the aquifer region far from the wells, where pressure changes
are expected to be small. The finite volume flow grid is composed of 139 � 82 � 10 elements
in a logically Cartesian grid, with directions roughly corresponding to east-west, north-south, and
vertical, respectively.

The flow model is initialized with the following petrophysical and fluid properties: fluid
properties (density, viscosity, and compressibility as functions of pressure), porosity, horizon-
tal and vertical reservoir permeability, horizontal and vertical aquifer permeability, net-to-gross
ratio (hydrocarbon-bearing fraction of the total vertical thickness), pore compressibility, relative
permeability curves, gas–water contact depth, initial equilibrium pressure, and irreducible water sat-
urations. The total compressibility that determines the transient response of the flow model combines
both the pore compressibility and the fluid compressibility. Homogeneity is assumed for poros-
ity, horizontal and vertical reservoir permeability, and horizontal and vertical aquifer permeability.
Pore compressibility is assumed to be depth dependent. We keep these properties fixed during
the simulation.

There is a relatively large uncertainty in the pressure support received from the aquifer during
pressure fluctuations within the gas reservoir. This uncertainty stems from lack of fluid-dynamical
and petrophysical data in the aquifer region, which has no wells. Aquifer pore volume and aquifer
permeability are the two main parameters that determine the strength of the aquifer. In this study,
we consider porosity, horizontal reservoir permeability, vertical-to-horizontal reservoir permeability
ratio, and aquifer-to-reservoir permeability ratio as uncertain parameters in the flow model (Table I).

All the boundaries of the reservoir are designated as no-flow boundaries. The flow simulation is
driven with gas production and injection rates available as measurements at wellheads (Figure 4).
The flow simulation is conducted using the software general purpose research simulator (GPRS),
which is a finite volume, multiphase, multicomponent petroleum reservoir simulation tool [20, 45].
The two key output quantities obtained from the flow simulation are the pressure field over the entire
reservoir and the bottomhole pressure in each well at each timestep.

4.2. Geomechanical model

Starting from the fluid-dynamical model described earlier, a geomechanical model is built to sim-
ulate the surface displacement induced by reservoir exploitation and the UGS program. The flow
model is extended both vertically and horizontally to account for overburden, underburden, and
sideburden during reservoir deformation. The model is extended upwards to the ground surface,
downwards to a depth of 5000 m, and laterally for 20 km in both east-west and north-south direc-
tions. A geomechanical model larger than the flow model also allows us to correctly apply the
boundary conditions of zero horizontal displacement on the four lateral boundaries, zero displace-
ment on the bottom boundary, and a traction-free condition on the top boundary. The dimension of
the geomechanical model is 90 � 90 � 5 km3. The overburden and the underburden are discretized
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Figure 4. Gas production (positive) and injection (negative) rates of wells in the forward model. Four typical
wells are shown. Production volumes are higher than injection volumes.

Figure 5. Geomechanical simulation grid (right) and a magnified view of the flow simulation grid (left). The
grids are exaggerated by a factor of 7 in the vertical direction. The flow domain appears sandwiched between
the overburden and the underburden. The flow domain has two parts, active and inactive, indicated by red
and blue colors, respectively. Fluid flow is assumed to occur only in the active part, which is composed of

the gas reservoir and the aquifer. Wells are drilled into the gas reservoir.

into 10 and 15 layers, respectively. The finite element grid after discretization is composed of
149�92�35 elements in the east-west, north-south, and vertical directions, respectively (Figure 5).
The geomechanical grid exactly overlaps the flow grid in the flow domain. This allows us to map
the pressure data between the two models directly.
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We perform the geomechanical simulation using the software PYLITH, which is a finite ele-
ment simulator for crustal deformation [20, 46]. We assume a linear-elastic behavior of the porous
medium defined with Young’s modulus E and Poisson’s ratio �. We use a uniform value of Pois-
son’s ratio and a depth-dependent distribution of Young’s modulus computed as E D 3.1�2�/.1C
�/=cm.1 � �/, where cm is the uniaxial rock compressibility. There is a relatively large uncertainty
in the rock compressibility parameter of the beta field. We use the following relationship to calculate
the uniaxial rock compressibility as a function of the vertical stress [47, 48]:

log cm D aC b log � 0vert; (3)

where cm is in bar�1, � 0vert is the effective vertical stress in bar, and a and b are two empirical
constants. � 0vert is calculated from the total vertical stress �vert and the pore pressure p using the
principle of effective stress, � 0vert D �vert � ˇp, with a Biot coefficient ˇ D 1. Here, compressive
stresses are positive. We calculate �vert as a function of depth from a site-specific empirical equation
that is based on density logs available as measurements along wells. We calculate p from a hydro-
static pressure profile assumed along the reservoir. Note that we use a pore compressibility in the
flow model, cp D cm=3�, which is consistent with the uniaxial compressibility in the geomechani-
cal model [49]. We consider a and � as uncertain parameters in the geomechanical model (Table I)
and fix the value of the slope, b D �1:164, which is believed to be better constrained than the
intercept a [48].

5. INVERSION METHODOLOGY

The ensemble-based inversion approach requires a large number of forward model simulations
corresponding to different possible realizations of the parameters. In this study, we perform 100
forward model simulations corresponding to 100 realizations. We ran ES for N D 25; 50; 75; 100
(not shown here), and we find that at N D 100, the posterior distributions are robust with respect
to the ensemble size. We run these simulations over the period of interest of 26 years with an aver-
age timestep size of 1 month. The actual timestep size varies with the fluctuating schedule of the
imposed well flow rates and convergence requirements within the flow solver. We use the one-way
coupled approach [50–55]. In the one-way coupled approach, we first run flow simulations for each
realization of porosity, permeability, and pore compressibility using GPRS, followed by poroelastic
simulations in PYLITH using pressure fields from the flow simulation and realizations of a and �. The
coupling between flow and mechanics is provided by the pore pressure, which changes the effec-
tive stress in the solution of the momentum balance equation in PYLITH. In this one-way coupled
approach, there is no feedback from the mechanics simulation to the flow simulation. This approach
is justified for gas reservoirs, where mechanics-to-flow coupling is weak because gas compressibil-
ity is usually much larger than rock compressibility [56, 57]. Pressure response of such reservoirs
is dominated by gas compressibility, porosity, and permeability in the reservoir and surrounding
aquifer and well flow rates.

We list all the inversion parameters of the study in Table I, along with the values used to generate
their prior distributions. These values reflect prior information about the parameters obtained from
sources such as regional geology, information about the initial state of the system such as initial
pressure and saturation, information available in analogous fields, physical constraints, values from
literature, and expert opinion. To satisfy the requirements of Gaussian prior statistics for optimality
of the Kalman filter-based solution, we transform the uniformly distributed kvr=khr and ka=kr into
normally distributed ‰�1.kvr=khr/ and ‰�1.ka=kr/ parameters, where ‰�1 denotes the inverse
of the cumulative normal distribution function with mean and variance of the respective parameter
from Table I. We generate an ensemble of 100 realizations by randomly drawing from these prior
distributions (Figure 6). We run forward model simulations for each of these realizations to generate
the ensemble of prior predictions. It is important for the prediction ensemble to encompass the
measurements, and we consider this aspect during the selection of the prior ensemble of parameters.

The inputs to ES are the prior distributions of the inversion parameters, predicted WBHP (bottom-
hole pressure) for all producing/injecting wells at 200 equally spaced discrete timesteps from all the
GPRS runs, and predicted LOS displacements at 2436 ground locations (PSs) at 18 timesteps from
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Figure 6. Prior probability density functions of the model parameters generated from values in Table I.‰�1

denotes the inverse of the cumulative normal distribution function with mean and variance of the respective
parameter from Table I.

all the PYLITH runs, measured WBHP and LOS displacements, and the error covariance matrix for
all the measurements. In this study, we use WBHP from a history-matched (calibrated to historical
measurements) model of the field as our measurement of WBHP in wells. We obtain the predicted
LOS displacements from the PYLITH output in three steps: (1) find the PYLITH grid node loca-
tions closest to the locations of the PS in the InSAR data; (2) find the PYLITH simulation timesteps
closest to the InSAR dates; and (3) convert the PYLITH displacement vectors at these nodes and
timesteps into LOS displacements by multiplying with the direction cosines of the ascending track
of Envisat: Œ�0:3836;�0:1017; 0:9179� (Figure 1). We used the shortest distance criterion in Step 1
to find the PYLITH node nearest to a PS. The minimum and maximum distance between neighbors
thus assigned are 4 and 861 m, respectively.

For inversion using ES, we need to estimate the error covariance of the measurements, C ��
(Equation (1)). Assuming independence of the individual pressure measurements, we use an identity
matrix for the error covariance of the pressure data with a variance of 1 bar2. For the error covari-
ance of the processed InSAR data, we use a Gaussian covariance model that is uncorrelated in time,
where we assume that the error covariance decays exponentially over the correlation length Lc;t of
the image at a timestep t . That is, the .i; j / element of the displacement part of the error covariance
matrix C �� in Equation (1) is �2t exp

�
�r2ij =L

2
c;t

�
, where rij is the distance between the i th and

j th measurement locations and �2t is the variance of processed LOS displacements at time t . This
results in a block-diagonal error covariance matrix, where blocks are the 2436 � 2436 covariance
matrices at each of the 18 timesteps.

The output of the ES is the posterior ensemble of the model parameters, which is used to obtain
the updated ensemble mean and variance of each model parameter. Using a Gaussian kernel, we
construct the continuous versions of posterior distributions from the posterior ensemble. A narrower
posterior distribution indicates a reduction in the uncertainty associated with that particular param-
eter. We run one-way coupled flow and geomechanical simulations with the posterior or updated
values of the parameters to assess the agreement between the predicted and measured values of
WBHPs and LOS displacements.
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6. RESU LTS

The quality of the ensemble Kalman solution depends on the rank and conditioning of the prior
ensemble matrix [42]. In our case, when the WBHP and LOS displacements predicted from the
prior simulations have trends that are similar to those observed in the respective measurements
and the spread in predictions captures the measurements, we expect a high-quality solution from
ES that reduces the uncertainty in model parameters. Figure 7 shows that the measured WBHP is
captured by the spread in the prior model predictions, and during the pre-UGS period, the predicted
pressures overlap the measured pressure. The fluctuations in WBHP during injection or production
steps (difference between peak and trough values in Figure 7) are, in general, lower in the prior
predictions compared with those in the measurement (Figure 8). Because the flow rates are the same
between the predictions and the measurement, this difference in 	WBHP between predictions and
measurement may suggest that the reservoir permeability, porosity, and/or pore compressibility in
the prior ensemble is/are higher than the respective true values.

Figure 9 shows the comparison of the LOS displacement time series from the prior simulations
and InSAR measurements at four locations around the gas reservoir, where we have well pressures.
In Figure 10, we compare LOS displacements as predicted by one of the prior simulations with the
measurements. Prediction and measurement are compared side by side over the area recorded by
the satellite. Negative displacement (blue color) means subsidence, which is maximum at the end of
winter when most of the gas is produced. Positive displacement (red color) means uplift, which is
usually observed at the end of injection during summer months. The discrepancy between predicted
and measured displacements is relatively large compared with that in the WBHP data. Most of the
discrepancy is observed in the aquifer region outside the gas reservoir. Other than the uncertainty
in the model parameters, this discrepancy can be attributed to two sources: (1) noise in the satellite
measurements, such as those due to the effect of the atmosphere, and (2) deformation signal in the
satellite measurements due to physical features and mechanisms that are not included in the sim-
ulation model, such as lateral heterogeneity in petrophysical properties, inelastic deformation, and
background deformation from sources outside the study area, like UGS operations in nearby fields
or regional subsidence due to groundwater pumping from shallow aquifers. InSAR data processing

Figure 7. Comparison of the well bottomhole pressure (WBHP) time series from the prior ensemble (blue
lines) and from the measurement (black line with circles). Four wells are shown. There are 100 prediction
curves corresponding to 100 members of the ensemble. The oscillatory behavior of pressure follows from

the seasonal nature of the underground storage program.
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Figure 8. Comparison of the fluctuations in well bottomhole pressure (WBHP) between the prior predictions
(blue lines) and the measurement (black line with circles) for four wells. The smaller values of the predicted
fluctuations compared with those of the measured fluctuation may suggest a higher value of permeability,

porosity, or compressibility in the prior ensemble compared with their true values.

algorithms correct for some of the systematic errors such as the ones due to atmosphere, vegetation,
and topography [25, 58, 59]. However, these algorithms have limitations [26, 60].

Once we have generated the prior ensemble of predictions, we perform inversion using ES as
described in Section 5 discussed earlier. We consider two assimilation scenarios: (1) assimilation
of well pressure data and (2) assimilation of both surface displacement and well pressure data. In
this way, we can evaluate the benefit of combining surface displacement and well pressure data on
parameter estimation and uncertainty reduction.

6.1. Assimilation of well pressure data

We use measurement and predictions of the WBHPs to update the model parameters using the
ES. The update is conditioned to data in the gas reservoir only because there are no wells in
the aquifer. As shown in Figure 7, bottomhole pressures in the prior ensemble are smaller than
the measured bottomhole pressure. Given our confidence in the measurement, we expect the updated
model parameters to result in a posterior ensemble of bottomhole pressures that is closer to the
measurement. Because the well flow rates and gas compressibility are prescribed in the flow simu-
lations, variations in well pressure result from variations in porosity, pore compressibility, reservoir
permeability, and aquifer permeability. The first two parameters determine the transient response
of the flow domain during fluid storage or drainage of the pores. The last two parameters deter-
mine the flux of gas and water through the gas reservoir and the aquifer. The ES can capture these
correlations between the parameters and the state variables (C ˛d in Equation (1)) to generate pos-
terior distributions of the parameters (Figure 11) that will result in predicted pressures closer to the
measured pressure.
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Figure 9. Comparison of the line-of-sight (LOS) displacement time series from the prior ensemble (blue
lines) and the interferometric synthetic aperture radar data (white circles) at four locations: P1, P2, P3, and
P4. The locations are marked on the map in the inset. P1 and P2 record higher displacements because they

are closer to the wells and the center of the subsidence bowl.

The uncertainty in porosity, compressibility, and reservoir and aquifer permeability is reduced.
Poisson’s ratio is a parameter in the mechanical model and, therefore, experiences almost no change
in its distribution by assimilation of the well pressure data in a one-way coupled forward model. The
pore compressibility in the flow model depends on porosity and the rock compressibility parame-
ter a, which is a poroelastic coupling parameter influencing both the flow and mechanical response
of the system. A higher value of a in the posterior ensemble suggests a higher pore compress-
ibility resulting in a smaller net pressure drop due to net production in the field (Figure 4) and
hence higher wellbore pressures. This improves the agreement between the measured pressures and
the predicted pressures. Mean porosity decreases in the posterior distribution to honor larger well
pressure fluctuations during pre-UGS and UGS periods.

We observe a reduction in the reservoir permeability and an increase in the aquifer–reservoir
permeability ratio. The aquifer permeability, which is the product of kr and ka=kr , also decreases
compared with its prior. This result can be explained as follows. A smaller magnitude of fluctuations
in the WBHP prior compared with the measurements (Figure 8) may result from too high reservoir
permeability, aquifer permeability, porosity, or pore compressibility in the prior ensemble. The effect
of aquifer permeability on the predicted WBHP is weaker than that of the reservoir permeability
because the wells are located within the reservoir. Therefore, to honor the measured j	WBHPj,
the posterior permeabilities are smaller than the prior. However, an interesting result is obtained
because of the lack of conditioning in the aquifer. An aquifer permeability higher than the reservoir
permeability, ka=kr > 1, is not consistent with the prior knowledge about the beta field. In the
following, we see that conditioning to the surface displacement data, which includes the aquifer
region, gives us a result that is consistent with the prior knowledge.
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Figure 10. Comparison of the line-of-sight displacement between one member of the prior ensemble (left
columns) and the interferometric synthetic aperture radar data (right columns) at 18 successive timesteps.
The ensemble member is chosen randomly (it is the 50th realization from the ensemble of 100 realizations).
Left and right figures in each pair are separated by the timestep value given in month–day format. The
timesteps increase from left to right and then top to bottom. The gaps in the interferometric synthetic aperture
radar map correspond to missing data at those locations. Presence of a blue-colored subsidence bowl above

the gas reservoir during gas production periods is evident.

6.2. Assimilation of interferometric synthetic aperture radar and well data

We use both the InSAR displacement data and the well pressure data to update the model parameters
using ES. As shown in Figure 10, measured displacements are, in general, higher than the predicted
displacements, especially outside the gas reservoir where the model lacks information about the
petrophysical properties (model parameters) and any extraneous sources of deformation, if present.
The surface displacements from the mechanical model are determined by pressure fluctuations in
the reservoir and elastic properties of the medium, that is, the rock compressibility and Poisson’s
ratio. An improved agreement between the measured and predicted displacements requires larger
pressure fluctuations, whereas an improved agreement between the measured and predicted well
pressures requires larger pressure fluctuations and higher absolute pressures in the system. The
posterior distributions of the model parameters (Figure 11) reflect this balance between the two
physical mechanisms of the coupled system, mechanical deformation and fluid flow, because of
conditioning to the two types of measurements, displacement and pressure.

We observe a reduction in the uncertainty of the aquifer–reservoir permeability ratio ka=kr , com-
pressibility parameter a, and porosity �. More importantly, assimilation of both the InSAR and the
well data results into posterior distributions of these parameters, which are more reliable than those
obtained by assimilation of the pressure data alone. For example, assimilation of the InSAR and
well data results in ka=kr < 1, which agrees with the expected behavior in the field, and mean
of a closer to its prior mean compared with the scenario when only the pressure data are assimi-
lated. The posterior distribution of ka=kr is narrower and centered near the upper bound in its prior.
A higher aquifer permeability is necessary to transmit the reservoir pressure fluctuations into the
aquifer and thereby honor the large displacements observed in the InSAR data outside the gas reser-
voir (Figure 10). The reservoir permeabilities (kvr ; khr ) are similar to their prior values because of
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Figure 11. Comparison of the prior (solid lines) and posterior distributions of the model parameters with
inversion performed using only the well pressure data (thin dash lines) and using both the interferomet-
ric synthetic aperture radar data and the well pressure data (thick dash lines). Posterior distributions are

approximated from the posterior ensemble of the parameters using a Gaussian kernel.

Figure 12. Excellent agreement between the well bottomhole pressure (WBHP) time series from the poste-
rior ensemble (blue lines) and from the measurement (black line with circles). Four wells are shown. There

are 100 prediction curves, overlapped on each other, corresponding to 100 members of the ensemble.

the balancing effects of the displacement and pressure data. Also, the prior uncertainty in the reser-
voir permeability is already small. Mean porosity decreases to honor larger pressure fluctuations in
the measurement. We conclude that joint inversion using both surface deformation and well data
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reduces the uncertainty in two relatively unknown parameters in the beta field: the strength of the
aquifer and the rock compressibility.

We assess the performance of the ES by comparing the posterior predictions of WBHP and LOS
displacements with their respective measurements. We generate the predictions by performing one-
way coupled flow and geomechanical simulations with 100 members of the posterior ensemble.
Figure 12 shows that the posterior prediction of the WBHP has, indeed, improved drastically, as
all the prediction curves cluster together around the measurement curve. This result illustrates the
robustness of the inversion methodology, given that the prior ensemble of WBHP had a tendency
to underpredict the measured WBHP (Figure 7). Similarly, we see a reduction in the spread of the
predicted displacement curves in Figure 13 compared with the prior ensemble in Figure 9. Because
the surface displacement is proportional to the product of the pressure perturbation, rock compress-
ibility, and Poisson’s ratio, the uncertainty in predicted displacement combines the uncertainty in
the pressure and the elastic properties. Therefore, we observe a larger spread in the displacement
ensemble compared with that in the pressure ensemble. Note that, in the one-way coupled approach
followed here, pressure is not a function of displacement. Comparing Figure 14 with Figure 10, we
also observe that the posterior displacements are larger in magnitude than the prior displacements.
This results from larger InSAR displacements recorded in the region outside the gas reservoir, for
example in the aquifer.

Figure 13. Comparison of the line-of-sight (LOS) displacement time series from the posterior ensemble
(blue lines) and the interferometric synthetic aperture radar data (white circles) at four locations. The vari-
ability in the posterior ensemble (spread of the blue curves) has decreased compared with that in the prior
ensemble (Figure 9). To honor the large displacements in the interferometric synthetic aperture radar data
outside the gas reservoir (Figure 10), ES updates the model parameters such that the posterior displacements

are larger in magnitude than the prior displacements.
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Figure 14. Comparison of the line-of-sight displacement between one member of the posterior ensemble (left
columns) and the interferometric synthetic aperture radar data (right columns) at 18 successive timesteps.
The ensemble member is chosen randomly (it is the 50th realization from the ensemble of 100 realizations).

Left and right figures in each pair are separated by the timestep value given in month–day format.

7. DISCUSSION AND CONCLUSIONS

We perform a probabilistic estimation of rock properties by joint inversion of ground deformation
data from geodetic measurements and fluid flow data from wells. Using an efficient implementa-
tion of the ES as the estimator and our coupled multiphase flow and geomechanics simulator as
the forward model, we conclude that assimilation of flow and deformation data leads to reduction
of uncertainty in the prior distributions of rock properties such as porosity, permeability, and com-
pressibility. We show that our method can reduce uncertainty over both the reservoir region, where
prior information is available from wells, and the aquifer region, where there are no wells. This is
an important result in the case of the beta field.

It may be possible to further improve the impact of ground deformation data on uncertainty reduc-
tion by improving the InSAR data processing. In this study, we used data from the ascending tracks
of Envisat. We can assess the impact of merging both the ascending and descending track datasets
on uncertainty reduction [12]. Further, the error covariance analysis and smoothing of the InSAR
data can be improved to increase the weight (inverse of the error covariance matrix) of the ground
deformation data in the Kalman gain matrix of ES.

We are also interested in improving the coverage of the displacement data by enriching the spa-
tially continuous (but noisy) InSAR dataset with temporally continuous GPS measurements. This is
particularly useful for the area above the aquifer because InSAR data currently show higher noise
in this area. GPS data complement the InSAR data because these can act as a source of independent
measurement that is time continuous, absolute, and three-dimensional instead of being restricted to
the LOS direction [61, 62]. GPS data can also be used to estimate the atmospheric contribution to
the InSAR signal, which is usually a large source of uncertainty during InSAR processing [24, 63].

We used a history-matched flow simulation as our source of pressure measurements. In a subse-
quent study, we will investigate the issue of any bias introduced by the history-matching process,
and we will account for such bias by modifying the measurement error covariance matrix of the
pressure data.
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