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Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities

that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different

viscosities, or viscous fingering, provides a powerful mechanism to increase fluid-fluid interfacial area and

enhance mixing. Here we describe the dissipative structure of miscible viscous fingering, and propose a

two-equation model for the scalar variance and its dissipation rate. Our analysis predicts the optimum

range of viscosity contrasts that, for a given Péclet number, maximizes interfacial area and minimizes

mixing time. In the spirit of turbulence modeling, the proposed two-equation model permits upscaling

dissipation due to fingering at unresolved scales.
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Fluid mixing controls many natural and engineered
processes, from the ocean biochemistry [1] to population
genetics [2] to chemical and biological synthesis in micro-
fluidic devices [3]. Turbulent flows are effective mixers
because of the chaotic nature of the velocity field and the
aggressive energy cascade spanning a wide range of length
scales [4]. Turbulence, however, does not set in at low
Reynolds numbers, when inertial effects are negligible.
Mixing at low Reynolds numbers, especially in the context
of microfluidic applications, has generated a great deal of
interest in recent years. Many methods have been proposed
to achieve fast mixing in small devices [3], including
grooved walls [5], bubble capillary flows [6], pulse injec-
tion [7], and acoustic stimulation [8].

All the strategies above assume that the fluids to bemixed
have the same viscosity. Here, we investigate how viscosity
contrast affects fluid mixing. It is well known that when a
less viscous fluid displaces a more viscous fluid, the dis-
placement front is unstable and leads to the formation of a
pattern known as viscous fingering [9]. Here we are con-
cerned with the viscous instability of fully-miscible fluids
(Fig. 1). The miscible viscous fingering phenomenon has
been studied extensively through lab experiments [10,11]
and numerical simulations [12–15], yet it is not known how
the degree of mixing evolves under viscous fingering and
whether optimum mixing can be achieved by varying the
viscosity contrast and the flow rate.

Viscous fingering is important in technological applica-
tions such as chromatographic separation and enhanced oil
recovery from underground reservoirs, in which a low-
viscosity fluid is injected to mix with the oil and mobilize
it [16]. Recently, it has been shown both theoretically [17]
and experimentally [18] that active suspensions of swim-
ming microorganisms may lead to several-fold reduction in
fluid viscosity, thereby posing the question of whether
biological systems might be naturally exploiting viscous
fingering to either promote [19] or arrest [20] mixing.

In this Letter, we characterize the evolution of the degree
of mixing between two fluids of different viscosity. We
show that viscous fingering leads to two competing effects.
On one hand, it enhancesmixing by inducing disorder in the
velocity field, and increasing the interfacial area between
the fluids. On the other, it causes channeling of the low-
viscosity fluid, which bypasses large areas of the flow
domain—these regions remain unswept thereby reducing
the overall mixing efficiency. This competition between
creation of fluid-fluid interfacial area and channeling re-
sults in nontrivial mixing behavior. We develop a two-
equation dynamic model for concentration variance and
mean dissipation rate to quantify the degree of mixing in
a viscously unstable displacement. The model reproduces
accurately the evolution of these two quantities as observed
in high-resolution numerical simulations. We then use our
analysis to predict the range of viscosity contrast that max-
imizes mixing.
We consider two-dimensional Darcy flow of a binary

mixture. The physical model describes flow in a porous

FIG. 1 (color online). Snapshot of the concentration field dur-
ing the unstable displacement of a more viscous fluid (dark) by a
fully-miscible, less viscous fluid (light). The formation, splitting,
and nonlinear interaction of viscous fingers induce disorder in
the velocity field that affects the mixing rate between the fluids.
The displacement corresponds to a viscosity ratio M ¼
expð3:5Þ � 33 and Péclet number Pe ¼ 104. See video 1 [26].

PRL 106, 194502 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
13 MAY 2011

0031-9007=11=106(19)=194502(4) 194502-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.194502


medium or Hele-Shaw cell—a thin gap between two par-
allel plates. We assume that the porosity � (volume of
voids per unit volume of porous medium) and permeability
k (coefficient relating flow velocity and pressure gradient)
are constant. The two fluids, which are assumed to be first-
contact miscible, neutrally buoyant and incompressible,
have different viscosity (�1 <�2). The diffusivity D be-
tween the fluids is assumed to be constant, isotropic, and
independent of concentration. We do not distinguish be-
tween longitudinal and transverse diffusivity although it is
known that they are different due to hydrodynamic disper-
sion effects [13]. The length and width of the domain are L
and W, while the mean velocity is U. The behavior of the
system is governed by two nondimensional groups: the
Péclet number Pe ¼ UW=D and the viscosity ratio M ¼
�2=�1. A displacement of the high viscosity fluid by the
low-viscosity fluid for high mobility ratio and high Péclet
number leads to aggressive viscous fingering (Fig. 1) [21].
The governing equations in dimensionless form are

@tcþr �
�
uc� 1

Pe
rc

�
¼ 0; u ¼ � 1

�ðcÞ rp;
r � u ¼ 0;

(1)

in x 2 ½0; L=W� and y 2 ½0; 1�. The first equation above is
a linear advection-diffusion transport equation (ADE) for
cðx; tÞ, the concentration, which is 0 for the more viscous
fluid and 1 for the less viscous fluid. The second equation is
the dimensionless form of Darcy’s law, defining the veloc-
ity of the mixture, which satisfies the incompressibility
constraint. The viscosity of the mixture, �ðcÞ, is assumed

to be an exponential function of concentration, �ðcÞ ¼
eRð1�cÞ, where R ¼ logM. Equations are nondimensional-
ized using characteristic quantities,W, U, P and �2 ¼ eR,
for length, velocity, pressure, and viscosity, respectively.
The characteristic time and velocity are given by T ¼
�W=U and U ¼ kP=�2W, respectively. In this way, po-
rosity and permeability are absorbed in the definitions of
characteristic quantities.

We use the variance of the concentration field to define
the degree of mixing, �, as �ðtÞ ¼ 1� �2ðtÞ=�2

max, where
�2 � hc2i � hci2 and h�i denotes spatial averaging over the
domain. The maximum variance, �2

max, corresponds to a
perfectly segregated state. In a perfectly mixed state,
�2 ¼ 0 and � ¼ 1. Since viscous fingering instabilities
are caused by viscosity contrasts, and therefore by concen-
tration gradients, the decay of �2 as mixing progresses is
closely linked to the decay of the flow disorder due to
fingering. Indeed, a natural way to characterize the inter-
play of mixing and viscous instabilities is to understand the
decay of a fully developed fingered flow away from the
boundaries. We simulate this flow scenario by considering
the mixing of two fluids driven by a constant flow rate in a
periodic domain. Initially, the fluids are segregated as a set
of irregularly shaped blobs of the more viscous fluid sur-
rounded by the connected, less viscous fluid (Fig. 2).

This flow setup is analogous to that used to study scalar
fields in decaying grid turbulence [22]. After a short initial
transient, the onset of fingering leads to a highly heteroge-
neous flow and intense mixing. At later times, the system
evolves towards a more homogeneous, synchronous decay
of concentration gradients and velocity fluctuations.
In the initial stages of a rectilinear displacement, under a

quasi-steady-state approximation (QSSA) of the base state,
linear stability analysis predicts the wave number and
growth factor of the most unstable mode [23]. In the non-
linear regime, the length scale of viscous fingers arises
from diffusion and nonlinear interactions, including chan-
neling, tip-splitting, merging, fading, and shielding [9,13].
The dissipation scale, also referred to as Taylor microscale
for the scalar fluctuations [24], is defined in terms of

dimensionless quantities as s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=�Pe

p
, where � �

hjgj2i=Pe is the dimensionless mean scalar dissipation
rate, and g ¼ rc. The scalar dissipation length s is a
transverse length scale in the problem. It is related to the
diffusion of scalar gradients across the flow [25], and can
be interpreted as the thickness of the interface on which the
scalar gradients are localized. The Taylor microscale for

mechanical energy is defined as � ¼ ð�u2=�uÞ1=2, where �
and �u are the kinematic viscosity and the mean kinetic
energy dissipation rate, respectively. At later times, we find

the scalings �� t�2, �2 � t�1, and s� t1=2.
Our fundamental insight is the central role played by the

scalar dissipation rate, �. Multiplying the advection-
diffusion equation by c, averaging over the domain, and
using periodicity and incompressibility, we arrive at the
evolution equation for the scalar variance [25],

FIG. 2 (color online). Decay of miscible viscous fingering. A
binary mixture of initially segregated fluids is driven at constant
flow rate in a periodic domain. The variance of concentration, �2

(red), a proxy for the degree of mixing, decreases monotonically
with time. The mean scalar dissipation rate, � (blue), increases at
early times due to the onset of fingering, and decays monotoni-
cally at later times. The simulation parameters are R ¼ 2,
Pe ¼ 104. See video 2 [26].
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d�2

dt
¼ �2�; (2)

which identifies degree of mixing as cumulative dissipa-
tion. Physically, � can be interpreted as a mixing rate or,
equivalently, as a rate at which scalar fluctuations are
destroyed. Through interface stretching and tip splitting,
viscous fingering increases the scalar dissipation rate and
enhances mixing. Since lower viscosity implies higher
mobility, fingering also causes channeling of the low-
viscosity fluid, which reduces the overall mixing effi-
ciency. The competition between fingering-induced
stretching and diffusive forces yields a nonmonotonic evo-
lution of the dissipation rate in time (Fig. 2). The �� t
curve has a hump at early times, which is a signature of
vigorous fingering, and decays monotonically at later
times. Heterogeneity and disorder induced by viscous fin-
gering leads to flow fields with statistical properties that
resemble those of decaying turbulence (Fig. 3).

We obtain an evolution equation for � by taking the
gradient of the ADE, performing a dot product with g
and averaging over the domain (similar to the derivation
of k-epsilon models in turbulence). Using periodicity
(valid in fully developed fingering flow) and incompressi-
bility, we arrive at

d�

dt
þ 2

Pe
hru: g � gi ¼ � 2

Pe2
hrg: rgi; (3)

where ru is the gradient of the velocity field. The second
term in (3) is the rate of stretching of the square norm of
concentration gradient g and it is negative due to fingering.
For a globally chaotic flow with steady or time-periodic
velocity fields, it is proportional to hjgj2i. For viscous
fingering displacements, where the velocity field is a func-
tion of concentration, the dependency on g is stronger and
there is an additional dependency on the viscosity contrast.
From Darcy’s equation,

ru ¼ ���1½Rrc � rpþrðrpÞ�: (4)

We combine the effect of hjrð�rpÞji and hRjrc � rpji in
(4) because they evolve similarly in time, which we veri-
fied with the multidimensional numerical simulations
(not shown). Thus, ru����1½Rrc � rp� � Ru � g.
Further assuming a spatially averaged kinematic viscosity
h�i, we obtain the scaling relation between scalar dissipa-
tion rate � and mechanical dissipation rate �u ¼
2h�rsymu: rsymui,

�u � 2h�iR2hjrcj2ih��2jrpj2i � R2Pe�: (5)

This �u � Pe� behavior is confirmed in the numerical
simulations [Figs. 3(a) and 3(b)]. Using (4), the advective
term in (3) becomes

2

Pe
hru: g� gi � 2

Pe
hRjgj2ðu � gÞi ��2R

Pe
hjgj3ihjujihcos�i

��R
ffiffiffiffiffiffi
Pe

p
e�R=4 �

5=2

�2
; (6)

where � is the angle between u and g vectors at the inter-

face, and we take hcos�i ¼ e�R=4�=�2, a model that agrees
well with simulations (not shown). The effect of channel-
ing at higher M is to reduce hjgji (by reducing total
interfacial area) and realign the gradient vector to become
orthogonal to the velocity vector. This realignment reduces
hcos�i. Using the ADE,

2

Pe2
hrg:rgi�2hð@tcþu �gÞ2i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RPee�R=4

p �
�

�

�
5=2

; (7)

where we model hð@tcÞ2i � 1
�2 ðd�2

dt Þ2 � �2

�2 , and

�h@tcðu � gÞi � hðu � gÞ2i � Pe�hcos2�i. In a purely diffu-
sive setting (R ¼ 0), the evolution of mean dissipation rate,
and therefore mixing, also involves interactions among the
various interfaces in the domain. The evolution of the
interface thickness and � transitions from power-law to
exponential to an error-function-like behavior in time, with

FIG. 3 (color online). The dissipative structure of viscous
fingering. (a),(b) The mechanical and scalar dissipation rates
synchronize as mixing advances, as shown by the scatter plots of
mechanical (�u) against scalar (�) dissipation rates at early (a)
and late (b) times. At late times we find �u � �	, with 	 � 1.
Inset, logarithm of the scalar dissipation rate. (c),(d) Probability
density function (PDF) of the derivatives of the concentration
field and scalar dissipation rate. (c) At early times, @c=@y
exhibits characteristic exponential tails. This behavior is similar
to that of passive scalars in turbulent flows [22]. (d) At late times,
the PDFs tend toward a Gaussian behavior. The skewness of
@c=@x reflects the inhomogeneity of the flow.
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transition times depending on the initial configuration of
the fluid interfaces. Here, we have chosen to model
R> 0:5 and Pe> 5000 to avoid dealing with a separate
model under pure diffusion. The resulting model equation
for � is

d�

dt
� AR

ffiffiffiffiffiffi
Pe

p
e�R=4 �

5=2

�2
þ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RPee�R=4

p �
�

�

�
5=2 ¼ 0: (8)

Equations (2) and (8) form a coupled system of first-order
ODEs which can be solved with initial values of �2 and �.
This two-equation model is analogous to the k-epsilon
models in turbulence. Equation (8) has two terms corre-
sponding to fingering-induced enhancement and diffusion-
driven decrease in the dissipation rate. The advection-
driven term is negative and gives the rising behavior in �
whereas the diffusion-driven term is positive and gives the
declining behavior in �.

We test the above model predictions by comparing the
predicted decay of variance and scalar dissipation rate with
results from the direct numerical simulations (Fig. 4).
Mixing times predicted from the model compare well
with those obtained from the simulations, reaching a mini-
mum around R ¼ 2:5. Channeling of the less viscous fluid
is persistent at high Pe, as shown by the surface of mixing
time as a function of mobility ratio and Pe [Fig. 4(c)].

Our results show that interfacial area and dissipation rate
are the central variables to understand mixing enhanced by
viscous fingering. The viscosity contrast that provides
optimum mixing time depends on the Péclet number, and
arises from a delicate balance between interface stretching
due to flow disorder, and channeling due to the higher
mobility of the less viscous fluid. The use of ideas from
turbulence modeling, synthesized in our two-equation
model, provides a framework to upscale the dissipative
effects of fingering in large-scale flow models.
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behaves nonmonotonically with R, increasing at high R due to
channeling. Inset: mixing time surface from the model as a
function of R and Pe: A ¼ 0:76, B ¼ 0:84.
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