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Abstract Characterizing the rheological properties of faults and the evolution of fault friction during
seismic slip are fundamental problems in geology and seismology. Recent increases in the frequency of
induced earthquakes have intensified the need for robust methods to estimate fault properties. Here
we present a novel approach for estimation of aquifer and fault properties, which combines coupled
multiphysics simulation of injection-induced seismicity with adaptive surrogate-based Bayesian inversion.
In a synthetic 2-D model, we use aquifer pressure, ground displacements, and fault slip measurements
during fluid injection to estimate the dynamic fault friction, the critical slip distance, and the aquifer
permeability. Our forward model allows us to observe nonmonotonic evolutions of shear traction and slip
on the fault resulting from the interplay of several physical mechanisms, including injection-induced aquifer
expansion, stress transfer along the fault, and slip-induced stress relaxation. This interplay provides the
basis for a successful joint inversion of induced seismicity, yielding well-informed Bayesian posterior
distributions of dynamic friction and critical slip. We uncover an inverse relationship between dynamic
friction and critical slip distance, which is in agreement with the small dynamic friction and large critical slip
reported during seismicity on mature faults.

1. Introduction

Faults are key to understanding earthquakes, both natural and anthropogenic (Scholz, 1989; Keranen et al.,
2014). Yet fault properties and processes are highly uncertain due to the complexity of physical mecha-
nisms controlling fault behavior at depth. Given the importance of fault friction and its evolution with fault
slip during an earthquake (Kanamori & Brodsky, 2004; Scholz, 2002), various experimental (Dieterich, 1979;
Fulton et al., 2013; Marone, 1998; Ohnaka & Shen, 1999; Scholz, 1989; Toro et al., 2011), theoretical (Campillo &
Ionescu, 1997; Rice, 1993; Rubin & Ampuero, 2005; Ruina, 1983; Scholz, 1988), and numerical (Cocco & Bizzarri,
2002) methods have been proposed in seismology and geodynamics to study fault friction. The critical slip
distance and the dynamic coefficient of friction have been identified as the two key rheological param-
eters of the slip-weakening behavior of faults observed during seismic slip (Dieterich, 1979; Ruina, 1983;
Scholz, 1988). The values of these two parameters in the field vary widely and are known with little certainty
(Fulton et al., 2013; Marone, 1998). Recently, it has been proposed that rigorous modeling of coupled fluid
flow and geomechanics, guided by field measurements, can be used to characterize induced seismicity and
to forecast the associated seismic hazard (Juanes et al., 2016). In this letter, we demonstrate by means of a syn-
thetic example that a Bayesian inference framework incorporating a coupled flow and geomechanics model
of induced seismicity can successfully deduce the critical slip distance and dynamic friction coefficient of a
seismogenic fault.

A central challenge of Bayesian inference is the efficient characterization of the posterior probability dis-
tribution of parameters or properties of interest. This distribution carries more information than the point
estimates provided by classical deterministic inversion techniques: from the posterior distribution, one can
fully characterize uncertainties and interrelationships among the model parameters and use these uncertain-
ties to make probabilistic predictions (Sivia & Skilling, 2006; Tarantola, 2005). This information is particularly
important when observational data are noisy, incomplete, and indirectly related to the quantities of interest,
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as in the present problem. Analysis of the posterior naturally quantifies the values of different types of
data (e.g., pressure, ground displacement, and fault slip) by describing how they reduce prior uncertainty,
individually and in combination. Yet standard methods for Bayesian inference—for instance, Markov chain
Monte Carlo (MCMC) sampling—are computationally prohibitive for our problem, as they require repeated
evaluations of the coupled flow and geomechanics model; here even a single model evaluation is compu-
tationally intensive. Moreover, a particularly large number of samples are required to resolve non-Gaussian
features of the posterior, which result from the nonlinear response of the fault during fluid injection.
To overcome this computational barrier, we develop principled and convergent approximations of the
parameter-to-observable relationships induced by the coupled flow and geomechanics model. These approx-
imations, collectively termed a “surrogate” model, can accelerate posterior sampling by several orders of
magnitude (Marzouk et al., 2007; Marzouk & Xiu, 2009). We build our surrogate using state-of-the-art sparse
approximation techniques (Conrad & Marzouk, 2013) that adaptively explore the response of the forward
model, yielding accurate inversion results with a small number of high-fidelity model runs.

2. Coupled Flow and Geomechanical Model of Injection-Induced Seismicity

We consider a 2-D plane-strain poroelastic domain with a confined aquifer and a fault (Figure 1). The aquifer
properties are homogeneous and isotropic, with an aquifer permeability k much higher than that of the over-
burden and underburden. The fault permeability is 10−6 darcy and follows a linear slip-weakening law for
the evolution of its friction coefficient 𝜇f from the static friction coefficient 𝜇s to the dynamic friction coeffi-
cient 𝜇d as a function of slip with a critical slip distance Dc. The law yields 𝜇f = 𝜇d when slip exceeds Dc. We
fix 𝜇s = 0.45 and assume that the fault permeability remains unchanged upon fault slip.

A normal faulting stress regime is prescribed through horizontal compression on the right boundary that is
0.7 times the vertical overburden stress, that is, 𝜎h = 0.7𝜎v. The normal faulting boundary condition favors
downdip slip on the fault in which the hanging wall containing the injection well slides downward. An injec-
tion well located near the left boundary of the aquifer injects CO2 as a supercritical (dense gas) phase into
the aquifer at a constant rate of 0.0061 m3/s/m in the out-of-plane direction. Our model setup resembles CO2

injection in the Snøhvit offshore field (Hansen et al., 2013) where CO2 was injected in the 75–110 m thick
Tubaen aquifer situated in a fault block that is sealed by faults on the north and south sides of the aquifer. We
solve the coupled problem of flow and fault poromechanics using Pylith-GPRS, a two-way coupled multiphase
flow and geomechanics simulator (Jha & Juanes, 2014).

Injection into the confined aquifer leads to a rise in the aquifer pressure, Δp> 0, and a volumetric expansion
of the aquifer due to the coupling between flow and mechanics.

Increase in pressure results in a decrease in the effective compression on the fault, that is, Δ(−𝜎′
n) < 0, where

the effective normal traction 𝜎
′

n (positive in tension) is defined on the fault using the total normal traction
and the fault pressure. We define the fault pressure to be the maximum of the two fault block pressures
(Jha & Juanes, 2014; Vilarrasa et al., 2016). Volumetric expansion of the aquifer results in an increase in the
downdip shear traction, Δ𝜏down > 0, on the fault below the aquifer, and a decrease in the downdip shear
traction, Δ𝜏down < 0, above the aquifer. As a result, the bottom point of the aquifer-fault intersection at a
depth of 1,550 m reaches the Mohr-Coulomb failure criterion, 𝜏 = 𝜏f =𝜇f𝜎

′
n, before the top point at 1,450 m

depth. The time of nucleation of slip at the hypocenter (1,550 m depth) depends on model parameters,
including aquifer porosity and permeability, fluid and rock compressibilities, injection rate, and elastic moduli
of the layers.

There are three regimes in the evolution of the state of stress on the fault (Figure 2): (1) before slip nucle-
ation, which occurs at the bottom of the aquifer, t < 15 days; (2) before slip begins at the top of the aquifer,
15 < t < 29 days; and (3) initial slip at the top of the aquifer, t > 29 days. The effective normal compression
decreases monotonically because the pressure increases monotonically and the increase in total normal
compression due to aquifer expansion is much smaller than the increase in pressure.

Before nucleation, the evolution is determined by the stress induced by volumetric expansion of the aquifer,
which causes the downdip shear traction to increase at the 1,550 m point and decrease at the 1,450 m point.
After nucleation, downdip shear at 1,550 m decreases because of slip-induced shear relaxation. Evolution
of stress after slip nucleation is determined by a balance between two physical mechanisms: stress due to
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Figure 1. Model of the CO2 injection-induced seismicity problem (adapted from Cappa & Rutqvist, 2011). The lateral
compression is 0.7 times the overburden, and both increase with the lithostatic gradient. CO2 is injected into the
confined aquifer at a depth of 1500 m. The aquifer is bounded at the top and bottom by a low-permeability caprock,
and the fault is impermeable to flow. The star-shaped symbols indicate observation points of aquifer pressure pobs
at (0, 1,500) m in green color, ground displacements (ux,obs, uy,obs) at (541, 500) m in cyan color, and downdip fault
slip dobs at (491, 1,550) m in red color.

injection-induced expansion and stress transfer from slip at the hypocenter. Moreover, these two mechanisms
are evolving dynamically because aquifer injection and fault slip continue with time. For the values of 𝜇d , Dc,
and k and the injection rate in Figure 2, the injection-induced stress dominates initially, causing an updip slip
at 1,450 m at t = 29 days that is aligned with the upward expansion of the aquifer. Since the overburden stress
is larger than the lateral stress (normal faulting boundary condition), downdip slip at the hypocenter is larger
than the updip slip at 1,450 m. This eventually causes the stress transfer from the hypocenter to dominate
over the injection-induced stress at the 1,450 m point at late times.

Figure 2. Evolution of fault tractions and slip at the top (1,450 m depth) and bottom (1,550 m depth) points along the
aquifer-fault intersection line in a simulation with (𝜇d ,Dc, k) = (0.2, 0.1 m, 25 millidarcy). The aquifer pressure at the
observation point, pobs, increases monotonically with time resulting in a monotonically decreasing effective normal
compression. Evolutions of shear traction and slip are nonmonotonic due to complex interplay among different physical
mechanisms: injection-induced aquifer expansion, dynamic stress transfer, and slip-induced stress relaxation. The three
regimes of stress evolution discussed in the text are delineated by vertical dashed lines at t = 15 and 29 days.
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3. Bayesian Inversion Approach

The Bayesian statistical approach uses probability distributions to represent knowledge about parameter val-
ues. In particular, a prior probability distribution (with density 𝜋pr) represents uncertainty about the inversion
parameters 𝜃 ∈ R

d before incorporating the data, including any relevant physical constraints. In the setting
of the coupled flow-geomechanical model of section 2, the parameters to be inferred are 𝜃 ∶= (𝜇d,Dc, k).
The results of inversion are captured in the posterior probability distribution (with density 𝜋pos), which follows
from conditioning on the data y ∈ R

n via Bayes’ rule:

𝜋pos(𝜃|y) ∝ 𝜋(y|𝜃)𝜋pr(𝜃). (1)

Here we assume that an additive noise 𝜂 accounts for the mismatch between data and model predictions, that
is, y = (𝜃) + 𝜂, where  ∶ R

d → R
n is the forward model. We follow standard practice in inverse problems by

letting 𝜂 be a Gaussian random variable (Kaipio & Somersalo, 2006). Letting 𝜋𝜂 denote the probability density
of 𝜂, the likelihood term in equation (1) reduces to 𝜋(y|𝜃) = 𝜋𝜂 (y − (𝜃)). The data y comprise measurements
of pobs, ux,obs, uy,obs, and dobs at the observation points indicated in Figure 1, taken at nine successive times:
t ∈ {5, 10, 15,… , 45} days. Fault slip data dobs usually come from the inversion of seismic and/or geodetic
data (Kanamori & Brodsky, 2004), which are increasingly available through seismic and geodetic monitoring
of injection sites. Each evaluation of  involves extracting predictions of these observables from a two-way
coupled simulation of the injection process.

To make the solution of the inverse problem tractable, we replace the high-fidelity forward model  in the
likelihood with a surrogate model ̃. Our surrogate consists of generalized polynomial chaos (gPC) expansions
(LeMaı̂tre & Knio, 2010; Xiu, 2010), which approximate each component (j) of  (for j = 1… n, corresponding
to each observable and time) as a weighted sum of polynomials orthogonal with respect to 𝜋pr. The surrogate
model in turn induces a surrogate posterior 𝜋pos(𝜃|y) ∝ 𝜋𝜂(y − ̃(𝜃))𝜋pr(𝜃) (compare to equation (1). The
surrogate posterior is a close approximation to the true posterior insofar as ̃ is a good approximation to .
Convergence of the surrogate model to the true forward model guarantees convergence of the surrogate
posterior to the true posterior, measured using various divergences or distances between distributions (Cotter
et al., 2010; Marzouk & Xiu, 2009).

gPC surrogate models offer several advantages over other choices such as Gaussian process regression
models. They converge exponentially fast (in polynomial degree) when the outputs of the forward model
depend smoothly on the input parameters. Moreover, through the use of sparse grids based on the Smolyak
construction (Smolyak, 1963), we can create surrogates that scale to high-dimensional parameter spaces.
These methods are advantageous even in the present problem, where d = 3. The Smolyak construction
employs a carefully chosen combination of full-tensor polynomial approximations, taking advantage of cer-
tain mixed regularity in the function to be approximated. While Smolyak approaches in general seek to
omit higher-order interactions among model parameters, it is computationally advantageous to identify the
most important interactions via anisotropic adaptation (Gerstner & Griebel, 2003). In this work, we employ
the adaptive pseudospectral approximation formulated by Conrad and Marzouk (2013). This formulation
guarantees that certain aliasing errors (due to the approximation of polynomial coefficients from a finite
number of model runs) remain small (Constantine et al., 2012), while providing useful error indicators for
greedy adaptation of the underlying polynomial basis. Since our parameters 𝜃 will be endowed with uniform
priors, the pseudospectral approximation employs Gauss–Patterson quadrature rules, which are nested by
construction—further reducing the number of model runs used to build the surrogate. More details on this
construction are in Conrad and Marzouk (2013).

After constructing the surrogate ̃ using model runs at parameter values dictated by our anisotropic adap-
tation procedure, we characterize the corresponding surrogate posterior distribution using MCMC sampling
with long chains, since 𝜋pos is inexpensive to evaluate (Marzouk & Xiu, 2009).

4. Numerical Results

In this section, we first validate our surrogate of the two-way coupled flow and geomechanical model. Then
we perform several inversion studies to characterize the parameters governing poromechanical behavior of
the fault. Computations are performed with the help of the open-source uncertainty quantification software
MUQ (Parno et al., 2017).
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Figure 3. Magnitudes of coefficients in the surrogate model, versus total
degree of the corresponding polynomial. Colors identify successive
“generations” of basis functions, matching those in Figure S1. Coefficients
added in later stages of the adaptive procedure are relatively small and
correspond to refinements of the surrogate that are well below the
observational noise magnitude.

4.1. Validation of the Adaptive Surrogate Model
To successfully employ the surrogate model in inversion, we must ensure
its accuracy over the prior distribution𝜋pr; here the prior is chosen uniform
on 𝜇d ∈ [0.1, 0.45], Dc ∈ [0.05, 1.0] m, and k ∈ [10, 200] millidarcy.

Recall that the surrogate consists of a sparse sum of tensorized orthonor-
mal polynomial basis functions, adaptively chosen. Results of this adap-
tation procedure, and their relationship to the physics encoded in the
forward model, are detailed in the supporting information. Here we focus
on assessing the accuracy of the surrogate, which requires examining not
only the choice of basis functions but the magnitudes of their coefficients.
Figure 3 shows the absolute value of each polynomial coefficient in our
final approximation as a function of the total degree of the corresponding
polynomial. Since the surrogate comprises a distinct polynomial expan-
sion for each output (though using a common set of basis functions), we
plot the mean—across all the observables—of the absolute value of each
coefficient. Additionally, since the pressure, displacement, and fault slip
values vary by several orders of magnitude in physical units, our approx-
imations are constructed after scaling the corresponding outputs of the
forward model to be (1). As in Figure S1 of the supporting information,
we have color coded the markers using five distinct sets. The key take-
away from Figure 3 is that the coefficients corresponding to higher-order
basis functions (added later in the adaptive procedure) are significantly

smaller in magnitude than the lower-order coefficients. Based on the magnitudes of these coefficients, and the
(10−2) standard deviation of our normalized observational noise (see below), we conclude that the accuracy
of the surrogate model is more than sufficient. Building this surrogate required 703 high-fidelity model evalu-
ations. Any further refinements to the surrogate, which involve adding coefficients of even smaller magnitude,
will not impact the inversion study at this noise level.

4.2. Results of Bayesian Inversion
We solve the inverse problem using synthetic data, generated by recording the response of the high-fidelity
forward model  at [𝜇d,Dc, k] = [0.2, 0.1, 25], which we henceforth refer to as the truth parameter values.
We assume an uncorrelated noise with a signal-to-noise ratio of 1%, reflective of practical observation sce-
narios. The synthetic data are perturbed with a realization of this noise. We explore the posterior distribution
induced by the perturbed data and our surrogate model, using 500 × 103 steps of delayed rejection adaptive
Metropolis MCMC (Haario et al., 2006) and discarding the first 5,000 samples as burn-in.

In Figure 4 we plot two-dimensional marginals of the posterior distribution for each pair of inference param-
eters. The contour lines represent different levels of the two-dimensional probability density function of each
pair, with red corresponding to higher values than blue. We consider the case when the posterior is deter-
mined using all the observables described in section 3. The resulting distribution is clearly non-Gaussian,
justifying the need for a fully Bayesian approach. The data are quite informative, in the sense that the poste-
rior distribution is much narrower than the prior distribution in all parameter directions. (Compare the prior
ranges, specified in section 4.1, with the much more concentrated regions of high posterior probability in
Figure 4.) A striking feature of the posterior distribution is the negative correlation between 𝜇d and Dc. The
posterior also suggests some positive correlation between k and Dc, particularly for the lower values of Dc that
are favored by the data. These relationships—between Dc and 𝜇d and between Dc and k —uncovered by the
Bayesian inversion can be interpreted from the physics of fault slip. A larger critical slip distance Dc decreases
the rate of shear relaxation, and thereby the rate of slip, and thus increases frictional stability of the fault. Hon-
oring the timing of fault slip dobs then increases the likelihood of a lower dynamic friction coefficient𝜇d (which
decreases the frictional strength of the fault) and a higher reservoir permeability k (which accelerates pore
pressure increase at the fault from fluid injection). More generally, the fault slip is also affected by mechanical
parameters such as the rock compressibility and Poisson’s ratio (Jha et al., 2015), which in the present context
we assume to be known. We plan to include uncertainties in mechanical parameters in our future studies.

It is interesting that the posterior mode in Figure 4 does not coincide precisely with the truth parameter value
(illustrated with a star symbol) used to generate the synthetic data, though it is close—especially relative
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Figure 4. Pairwise marginals of the posterior distribution, with the truth parameters indicated by the star.

to the scale of the prior. Yet this mismatch is not surprising, as in general these two values should not coin-
cide in Bayesian inference with finite data (Stark & Tenorio, 2010). In particular, the data here are perturbed
by observational noise and the forward model has a relatively flat response to input parameter variations in
certain regions of the prior.

In Figure 5 we plot marginal posterior distributions for one inference parameter at a time. We distinguish
between the posterior obtained using all the data simultaneously, 𝜋pos, and the posteriors obtained using
only observables of a single kind: 𝜋 p

pos for pressure measurements only, 𝜋d
pos for ground displacements only,

and 𝜋
fs
pos for fault slip measurements only. In Figure 5 (first and second panels), the marginals for parameters

𝜇d and Dc corresponding to the displacement (blue) and pressure (green) observations are not shown, as the
corresponding data sets are relatively uninformative and we obtain the prior up to a sampling error. These two
data sets do, however, inform the permeability k to some extent. In contrast, the fault slip observations are
extremely informative about all the parameters. We also note that k is particularly well identified: its posterior
distribution is very concentrated relative to its prior range. Pressure observations do inform the value of k, but
fault slip observations are even more informative.

These “experiments” with different combinations of data illustrate the utility of performing Bayesian infer-
ence with different kinds of observations and—perhaps more importantly—the value of a two-way coupled
model in interpreting these observations. Without a coupled model in the likelihood function, it would not
be possible for fault slip observations to inform the aquifer permeability; nor would it be feasible to learn
the parameters 𝜇d and Dc of the slip-weakening law, as honoring the observations hinges on capturing the
interplay of injection-induced expansion and slip-induced stress transfer.

Figure 5. Comparison of single-parameter posterior marginal distributions and the prior. 𝜋pos is obtained using all
the observables; 𝜋 p

pos is obtained using pressure measurements only, 𝜋 d
pos is obtained using surface displacement

measurements only, and 𝜋 fs
pos is obtained using fault slip measurements only. 𝜋 p

pos and 𝜋 d
pos in the first and second

panels are essentially the prior density 𝜋pr up to a sampling error and have not been plotted.
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5. Discussion and Conclusions

We have presented a coupled flow-geomechanics Bayesian inversion framework to learn the dynamic friction
properties of faults subject to destabilization from injection. The framework is unique in combining the rig-
orous multiphysics simulation of induced seismicity with a sophisticated surrogate-based Bayesian inference
methodology. We infer the dynamic friction coefficient and the critical slip distance, two of the most uncer-
tain and seismically influential fault parameters, along with the aquifer permeability between the injection
well and the fault. Our inference framework reveals an inverse relationship between the two fault parame-
ters, suggesting that the dynamic friction coefficient is smaller for faults with larger critical slip distances—a
phenomenon that has previously been reported for mature faults such as the San Andreas. More gener-
ally, our results point to the benefit of accounting for the coupling between flow and geomechanics for
improved identification of model parameters in the subsurface and elucidation of the mechanisms potentially
responsible for injection-induced seismicity. In the future, we intend to apply our framework to a real site of
injection-induced seismicity with site-specific values of the model parameters
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1. Text S1
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This document provides additional numerical results supporting our Bayesian inversion

study of the poromechanical behavior of the aquifer-fault system.

Text S1: Adaptive construction of the surrogate model

Recall that the objective of adaptation is to iteratively refine the surrogate by adding

relevant basis functions until a desired accuracy is achieved. Adaptation should thus reflect

the physics encoded in the forward model—identifying parameters that yield a more nonlinear

response in the observables, parameters that interact closely and hence require coupled basis

functions, and parameters that act alone. Beginning with a basis set defined by an isotropic

sparse grid of prescribed total order, we incrementally incorporate basis functions of higher

order into the approximation. In the present case we consider a level–5 sparse grid before

starting the anisotropic adaptation. Fig. S1 visualizes the basis functions in our final surrogate

model. Each cube corresponds to a unique basis function, whose polynomial degree in each

parameter dimension is indicated by the three axes. The cubes are color-coded by the stage

of adaptation at which they are added. We highlight five distinct sets of basis functions and

annotate the plot with the cardinality of each set. The set Φ3, colored red, corresponds to

a coarse surrogate model defined by a level–3 isotropic sparse grid. The basis set Φ4 \ Φ3,

colored blue, is introduced in the level–4 isotropic sparse grid. The remaining sets can be

understood in a similar manner. In particular, the sets Φ5I
a
\ Φ5 and Φ5II

a
\ Φ5I

a
contain the

basis functions introduced after two successive anisotropic adaptation steps, beyond the level–

5 isotropic sparse grid. A key observation emerging from the adaptation process is that the

friction coefficient µd and critical slip distance Dc interact nonlinearly; in other words, mixed

high-order polynomials in both parameters are needed to resolve the forward model response.

The permeability k is comparatively less coupled.

Corresponding author: J. Jagalur-Mohan, jagalur@mit.edu
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Figure S1. Polynomial basis functions used to construct a surrogate of the coupled flow–geomechanical

model. Each cube corresponds to a polynomial whose degree in each parameter direction is indicated by the

three axes. Colors identify different “generations” of basis functions added by the adaptive procedure. The

pattern reflects the anisotropic dependence of the model outputs (pressure, ground displacements, fault slip)

on the input parameters.
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