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Assumption of isothermal dissociation

Here, we justify the simplifying assumption of isothermal hydrate dissociation. We show that the
effect of the latent heat of hydrate dissociation on the dissociation rate and hence on the pressure
evolution is, for our model system, secondary to that of multiphase flow.

Our model represents the following scenario: a small sample is subjected to rapid heating
(raising the temperature from T0 to T0 +∆T ), for instance by advection of warm fluids within the
sediment pores or due to the nearby presence of a hot wellbore. We make two major assumptions
related to heat transfer: (a) the initial conditions in our simulations are uniform temperature
(T0+∆T ) within the sample, such that the entire sample is brought out of equilibrium at t = 0; and
(b) throughout the simulations, we neglect the inhibiting effect of the latent heat of dissociation
on the dissociation rate. Endothermic hydrate dissociation absorbs heat and thus reduces the
dissociation rate, which in turn will affect the pressure evolution. However, as we demonstrate
here, the small effect of the latent heat on the temperature and hence on the reaction rate relative
to that of an external thermal stimulation justifies these assumptions.

To quantify the effect of the latent heat on the temperature distribution we compare the follow-
ing two characteristic timescales: (1) timescale for heat propagation across the sample, theat; and
(2) timescale for dissociation to cause a sufficiently large perturbation in the temperature field, tdiss.
We use the conventional assumption that heat transport in fine sediments and relatively low tem-
peratures is dominated by conduction (Cortes et al., 2004). The time required for the dissipation
of a temperature perturbation within the sample is

theat ∼ L2/κ, (1)

where L is the sample size and κ is its composite (effective) thermal diffusivity.
To evaluate the time required to perturb the temperature by dissociating a sufficient mass of

hydrate, tdiss, we compute the temperature drop (effective value, uniform throughout the sample)
due to the dissociation,

∆Tdiss = Qe
diss/(cbρb), (2)

where Qe
diss = ∆Hdissmdiss/Vb is the evolved heat per unit volume of bulk sediment, cb and ρb are

the specific heat and density of the bulk sediment, ∆Hdiss is the latent heat of dissociation, and Vb is
the total (bulk) sample volume. The cumulative dissociated hydrate mass at time t = tdiss (since the
application of ∆T at t = 0) is mdiss = (dmh/dt)tdissNc, where Nc is the number of hydrate crystals
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Figure 1: Comparison between the timescale of heat propagation, theat, and that required for
dissociation to perturb the temperature (by ε∆T ), tdiss. Each line corresponds to a different
thermal stimulation (initial temperature rise at the boundaries, ∆T ). Due to the low kinetic rate
of hydrate dissociation, the perturbation caused by latent heat of dissociation during theat is small;
for instance, the time required to dissociate sufficient hydrate mass to perturb the temperature
by 0.1◦C (1/100 of a temperature rise of ∆T = 10◦C) is ∼10 times larger than theat. The effect
of the latent heat of dissociation decreases with decreasing thermal stimulation (∆T ). The small
inhibiting effect of the latent heat on the dissociation rate allows us to assume an initially uniform
temperature and simulate isothermal dissociation, excluding heat transfer effects.

in the sample. Using the kinetic model of Kim et al. (1987) (Eq. 1 in the manuscript) to compute
the rate of dissociation dmh/dt, we get Q

e
diss = ∆HdissKhexp [−E/(RT )]FAAh (feq − f) tdissNc/Vb.

By substituting Nc/Vb = φSh/V (where φ is the porosity, Sh is the hydrate saturation and V is a
typical volume of a pore), and noting that FAAh/V ∼ a−1, where a is the pore size, we obtain

Qe
diss ∼ ∆HdissKhexp

(

−E

RT

)

(feq − f) tdissφSha
−1. (3)

Inserting this into Eq. (2) provides the following scaling:

tdiss ∼
∆Tdisscbρb

∆HdissKhexp [−E/(RT )] (feq − f)φSha−1
. (4)

The two timescales, theat and tdiss, are computed using the following parameter values (similar
to those in the simulations presented in the manuscript): a = 1µm, L = 100a, p0 = 2.58 MPa,
T0 = 0.5◦C, φ = 0.4, Sh = 0.04, R = 8.314 Jmol−1K−1, E = 8.1 × 104 Jmol−1, Kh = 3.6 ×

104 kgm−2 Pa−1 s−1 (Clark and Bishnoi , 2001), κ = 5.3 × 10−7 m2 s−1, cb = 2083 J kg−1 K−1,
ρb = 1800 kg m−3 (Kwon et al., 2010), and ∆Hdiss = 450 kJ/kg (Waite et al., 2009). In evaluating
tdiss we use fixed p-T conditions everywhere in the sample such that the fugacity difference remains
constant, feq − f = peq(T0 + ∆T ) − p0. We note that this assumption is conservative since it
provides the maximum possible driving force for dissociation, while in reality pressure increase and
latent heat of dissociation will act to reduce the dissociation rate and hence will lower the amount
of withdrawn heat.

This simple analysis clearly shows that, due to the low kinetic rate of hydrate dissociation, the
timescale for heat dissipation is much smaller than that required for latent heat of dissociation to
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significantly perturb the temperature (and hence the dissociation rate) [Fig. 1]. In conclusion, the
small inhibiting effect of the latent heat on the dissociation rate justifies our assumptions of initially
uniform temperature and isothermal dissociation under fixed, uniform temperature, allowing us to
exclude heat transfer from our simulations.

Effective compressibility of the system

The gas generated by hydrate dissociation invades the porous medium, displacing water. During
this drainage process, the pressure of the defending phase (water) is controlled by an effective

compressibility of the system, ct, that is independent of its bulk fluid compressibility. Water
viscosity introduces spatial non-locality due to redistribution of water along the invasion front.
Slow drainage in disordered media occurs in the form of bursts [“Haines jumps” (Haines, 1930)],
which lead to sudden changes in water pressure. When one or more pores are invaded during a
burst, the interface menisci at neighboring pores readjust, receding along throats or even leading to
a backfilling of previously drained pores (M̊aløy et al., 1992; Xu et al., 2008). The short timescales
associated with water pressure build-up relative to that of drainage out of the system makes fluid
redistribution along the front a crucial mechanism (M̊aløy et al., 1992; Furuberg et al., 1996; Xu
et al., 2008). This mechanism reduces the capillary pressure (the local curvature decreases as the
meniscus recedes) and suppresses further invasion until the excess water pressure is dissipated, thus
limiting the burst size.

Incorporating meniscus readjustments in a dynamic pore-network model (Aker et al., 1998;
Lam, 2004) is computationally intensive. For instance, Lam (2004) used the concept of volume
capacitance that describes the liquid volume extracted from the porous medium locally per unit
decrease in pressure (Furuberg et al., 1996) within a pore-network model. In Holtzman and Juanes

(2010) we take a simpler approach, introducing the main effect of front interface dynamics through
an effective compressibility of the system, even though water is nearly incompressible.

The effective compressibility ct can be obtained by the following argument. The capillary
number is a ratio of viscous forces over capillary forces at the pore scale, Ca = ∆pvisc/∆pcap.
Assuming Poiseuille flow, the viscous pressure drop over a pore length is ∆pvisc ∼ µva/k, with
k ∼ a2, and v the average flow velocity evaluated from the cumulative values of the drained
volume, time, and cross-sectional area along the boundaries (Furuberg et al., 1996). Together with
the Young–Laplace equation, ∆pcap ∼ γ/a, this leads to the classical definition Ca = µv/γ. An
alternative definition is the ratio of time scales for pressure dissipation and pore filling (Furuberg
et al., 1996), Ca∗ = ∆tpress/∆tfill. Unlike Furuberg et al. (1996), we invoke pore-scale quantities
only. The time scale for pressure dissipation is ∆tpress ∼ a2/D, where D = (k/µ)/ct is the hydraulic
diffusivity. The pore filling time scale is simply ∆tfill ∼ a/v, leading to Ca∗ = (µv/γ)(ctγ/a).
Equating the two definitions of the capillary number provides the effective compressibility of slow
drainage in a disordered medium: ct = a/γ.
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Måløy, K. J., L. Furuberg, J. Feder, and T. Jøssang (1992), Dynamics of slow drainage in porous
media, Phys. Rev. Lett., 68 (14), 2161–2164, doi:10.1103/PhysRevLett.68.2161.

Waite, W. F., et al. (2009), Physical properties of hydrate-bearing sediments, Rev. Geophys., 47 (4),
RG4003, doi:10.1029/2008RG000279.

Xu, L., S. Davies, A. B. Schofield, and D. A. Weitz (2008), Dynamics of drying in 3D porous media,
Phys. Rev. Lett., 101, 094,502, doi:10.1103/PhysRevLett.101.094502.

4


