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During geologic storage of carbon dioxide (CO2), trapping of the buoyant CO2 after injection is essential in
order to minimize the risk of leakage into shallower formations through a fracture or abandoned well.
Models for the subsurface behavior of the CO2 are useful for the design, implementation, and long-term
monitoring of injection sites, but traditional reservoir-simulation tools are currently unable to resolve the
impact of small-scale trapping processes on fluid flow at the scale of a geologic basin. Here, we study the
impact of solubility trapping from convective dissolution on the up-dip migration of a buoyant gravity
current in a sloping aquifer. To do so, we conduct high-resolution numerical simulations of the gravity
current that forms from a pair of miscible analogue fluids. Our simulations fully resolve the dense, sinking
fingers that drive the convective dissolution process. We analyze the dynamics of the dissolution flux
along the moving CO2–brine interface, including its decay as dissolved buoyant fluid accumulates
beneath the buoyant current. We show that the dynamics of the dissolution flux and the macroscopic fea-
tures of the migrating current can be captured with an upscaled sharp-interface model.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The injection of carbon dioxide (CO2) into deep saline aquifers is
a promising tool for reducing anthropogenic CO2 emissions [1–4].
After injection, the buoyant CO2 will spread and migrate laterally
as a gravity current relative to the denser ambient brine, increasing
the risk of leakage into shallower formations through fractures,
outcrops, or abandoned wells.

One mechanism that acts to arrest and securely trap the migrat-
ing CO2 is dissolution of CO2 into the brine [5]. Dissolved CO2 is
considered trapped because brine with dissolved CO2 is denser
than the ambient brine, and sinks to the bottom of the aquifer. In
addition to providing storage security by hindering the return of
the CO2 to the atmosphere, this sinking fluid triggers a hydrody-
namic fingering instability that drives convection in the brine
and greatly enhances the rate of CO2 dissolution [6–9].

Although this process of convective dissolution is expected to
play a major role in limiting CO2 migration and accelerating CO2

trapping [4], the interaction of convective dissolution with a
migrating gravity current remains poorly understood. This is due
primarily to the disparity in scales between the long, thin gravity
current and the details of the fingering instability. Resolving these
simultaneously has proven challenging for traditional reservoir
simulation tools [10]. Upscaled theoretical models [11,12] and lab-
oratory experiments [13,14] have recently provided some macro-
scopic insights, but by design these capture only the averaged
dynamics of the dissolution process.

Here, we study the impact of convective dissolution on the
migration of a buoyant gravity current in a sloping aquifer by con-
ducting high-resolution numerical simulations of a pair of miscible
analogue fluids. Our simulations fully resolve the small-scale fea-
tures of the convective dissolution process. We define an average
dissolution flux and use it to study the dynamic interactions of
the fingering instability with the migrating current. We then com-
pare these results with the predictions of an upscaled theoretical
model to investigate the degree to which this simple model can
capture the macroscopic features of the migrating current.
2. Analogue fluids

For simplicity, and to focus on the role of convective dissolution,
we neglect capillarity and assume that the two fluids are perfectly
miscible. We adopt constitutive laws for density and viscosity that
are inspired by a pair of miscible analogue fluids that have been
used to study this problem experimentally [15,16,13,14]. This sys-
tem captures three key features of the CO2-brine system: (1) a den-
sity contrast that stratifies the pure fluids and drives the migration
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of the gravity current, (2) an intermediate density maximum that
triggers and drives convective dissolution (discussed below), and
(3) a viscosity contrast between the pure fluids that influences
the shape and propagation speed of the gravity current.

We write the dimensionless density q and viscosity l as func-
tions of the local concentration c of the buoyant fluid. We scale
the concentration c by the solubility so that c 2 ½0;1�. Since the ana-
logue fluids have different densities (qðc ¼ 1Þ < qðc ¼ 0Þ), the
buoyant one will ‘‘float’’ and migrate above the denser one. Since
they are perfectly miscible, they will be separated by a transition
zone that forms and grows through diffusion, and within which
the local concentration transitions from c ¼ 0 to c ¼ 1 and the local
density and viscosity vary accordingly.

To trigger convective dissolution, the essential feature of the
density law is that it must be a non-monotonic function of concen-
tration with an intermediate maximum (Fig. 1). This shape intro-
duces a neutral concentration c ¼ cn for which the density of the
mixture is equal to the density of the ambient fluid. Fluid with con-
centration c > cn (i.e., to the right of cn) is less dense than the ambi-
ent and tends to float, whereas fluid with concentration c < cn (i.e.,
to the left of cn) is denser than the ambient and tends to sink. The
contour of neutral concentration within the transition zone there-
fore emerges as a natural ‘‘interface’’ between buoyant and sinking
fluids: the fluid above is buoyant and stably stratified (density
decreasing as concentration increases from c ¼ cn to c ¼ 1), the
fluid below is dense and unstably stratified (density decreasing
as concentration decreases from c ¼ cn to c ¼ 0), and diffusion con-
tinuously transfers fluid from the stable region to the unstable
region.

The concentration c ¼ cm at which the density maximum occurs
plays the role of a solubility in this system since the density of the
underlying fluid increases toward this value as dissolved buoyant
fluid accumulates. Convective dissolution stops entirely when dif-
fusion at the interface is no longer able to generate a mixture that
is denser than the fluid below it.

To make the density law dimensionless, we shift it by the brine
density and scale it by the height of the density maximum so that
the dimensionless brine density is always qðc ¼ 0Þ ¼ 0 and the
dimensionless density maximum is always qðc ¼ cmÞ ¼ 1. We rep-
resent the density law with a polynomial of degree three,
qðcÞ ¼ 6:19c3 � 17:86c2 þ 8:07c, which has neutral concentration
cn ¼ 0:56, a density maximum at cm ¼ 0:26, and a dimensionless
CO2 density of qðc ¼ 1Þ ¼ �3:6. This density law is qualitatively
 c
0 1

Fig. 1. Non-monotonic density law (dimensional) inspired by miscible analogue
fluids [15,16]. The density has a maximum at c ¼ cm . The contour of neutral
concentration c ¼ cn (red line) acts as an interface: mixtures with c < cn (left of the
red line) are denser than the ambient brine and will sink, whereas those with c > cn

(right of the red line) are buoyant relative to the ambient brine and will rise. Dqm is
the characteristic density difference that drives convective dissolution and Dqgc is
the one that drives the migration of the buoyant gravity current. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
and quantitatively similar to the true density law for mixtures of
propylene glycol (c ¼ 0, brine analogue) and water (c ¼ 1, CO2 ana-
logue) [16].

We choose an exponential constitutive law for the dimension-
less viscosity, lðcÞ ¼ exp½Rðcm � cÞ�, where we have scaled lðcÞ
by characteristic viscosity lm so that lðc ¼ cm ¼ 0:26Þ ¼ 1. The
parameter R ¼ lnM, where M¼ lbrine=lCO2

¼ lðc ¼ 0Þ=lðc ¼ 1Þ
is the mobility ratio. This viscosity law is qualitatively and quanti-
tatively similar to the true viscosity law for mixtures of propylene
glycol and water for R � 3:7 [16].

Since these analogue fluids are perfectly miscible, our results do
not incorporate the various impacts of capillarity, including resid-
ual trapping, the development of a capillary fringe, and capillary
pressure hysteresis. The absence of capillarity is a limitation in
the sense that these analogue fluids cannot capture every aspect
of the CO2–brine system, but it is also an advantage in the sense
that it allows us to isolate and study convective dissolution as a
transport process without these additional complications
[15,16,13,14].

Capillarity may impact the dynamics of the gravity current. For
example, the gravity current will shrink due to residual trapping
along its trailing edge [17–19]. The formation of a capillary fringe
between the CO2 and the brine may change the shape and reduce
the propagation speed of the gravity current [20–22]. Capillary
pressure hysteresis may also reduce the propagation speed of the
gravity current and even arrest its migration [23,24]. All of these
effects can be incorporated into upscaled models for CO2 migra-
tion, but incorporating them into our 2D simulations is less
straightforward. These effects would impact the total dissolution
rate by changing the length of the ‘‘interface’’ between the two flu-
ids, and by reducing the amount of ambient fluid available for
‘‘storing’’ dissolved CO2. However, we would not expect them to
change the dynamic interactions of migration and dissolution as
described here.

Capillarity may also have a quantitative impact on the onset
and subsequent rate of convective dissolution [25–27]. These ef-
fects have never been studied experimentally and are not well
understood, but we expect the same qualitative behavior of the
dissolution flux (diffusion, onset, convection). Although miscible
analogue fluid systems may feature quantitatively different fluxes,
they are useful for studying the dynamics of the dissolution flux
and its impact on migration.
3. Mathematical model

We consider a two-dimensional aquifer in the x–z plane, with
dimensional length Lx and uniform dimensional thickness Lz. The
aquifer is tilted by an angle h relative to horizontal. This can be
viewed as a cross-section of a sedimentary basin taken perpendic-
ular to a line-drive array of injection wells [28,4]. We assume that
the aquifer is homogeneous and with isotropic permeability.

We use the classical model for incompressible fluid flow and
advective–dispersive mass transport under the Boussinesq approx-
imation, modeling hydrodynamic dispersion as a Fickian process
with a velocity-independent diffusion–dispersion coefficient. The
governing equations for this model in dimensionless form are [29]

r � u ¼ 0; ð1Þ

u ¼ � 1
lðcÞ rp� qðcÞêg

� �
; ð2Þ

@c
@t
¼ �u � rc þ 1

Ra
r2c; ð3Þ

where p is the scaled pressure deviation from a hydrostatic datum, u
is the scaled Darcy velocity, and êg ¼ ð� sin h;� cos hÞ is the unit
vector in the direction of gravity. qðcÞ and lðcÞ are the dimensionless
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density and viscosity as functions of the scaled concentration c, as
discussed in Section 2. The Rayleigh number Ra is given by

Ra ¼ DqmgkLz

/Dmlm
; ð4Þ

where g is the body force per unit mass due to gravity, / is porosity,
k is the aquifer permeability, Dm is the diffusion–dispersion coeffi-
cient, Dqm is the characteristic density difference driving convective
dissolution, and lm is the characteristic viscosity. We write Eqs. (1)–
(3) in dimensional form and give the complete details of the scaling
with which we make them dimensionless in Appendix A.

The behavior of a buoyant gravity current is then completely
characterized by Eqs. (1)–(3), the value of Ra, the constitutive laws
qðcÞ and lðcÞ, and appropriate initial and boundary conditions.

To study convective dissolution from a gravity current, we solve
Eqs. (1)–(3) numerically in a rectangular domain of dimensionless
height 1 and length A ¼ Lx=Lz ¼ 20. We discretize the equations for
flow (Eqs. (1) and (2)) and transport (Eq. (3)) in space using 2nd-or-
der finite volumes and 6th-order compact finite differences (4th
order for boundary conditions), respectively, in a domain of
10000� 500 grid blocks (see Appendix B). We evolve this system
in time using an explicit 3rd-order Runge–Kutta scheme.

We prescribe the pressure along the right boundary and take
the other boundaries to be impervious. We then write the dimen-
sionless boundary conditions as

p ¼ 0 at x ¼ A; ð5Þ
u � n ¼ 0 elsewhere ð6Þ

for flow, and

rc � n ¼ 0 ð7Þ

for transport.
Initially, the region x 6 4 is filled with CO2.We do not add any

perturbation to trigger the instability, which is started by numeri-
cal errors [30]. A sequence of snapshots from a typical simulation is
shown in Fig. 2. These results are qualitatively similar to the finger-
ing patterns observed in experiments using water and propylene
glycol, although those fluids have a much higher value of R � 3:7
[16,14].

Reported values of the Rayleigh number in real CO2 sequestra-
tion scenarios range over several orders of magnitude, from as
low as 100 in thin, low-permeability aquifers to as high as 105 in
thick, high-permeability aquifers. Our results here target the mid-
dle of this range, Ra � 5000, to explore the limit in which diffusion
Fig. 2. Sequence of snapshots from a high-resolution simulation of convective dissolution
shown) at dimensionless times 0; 3; 9, and 27. The domain extends to x ¼ 20, but on
concentration c ¼ cn , which separates the buoyant current from the sinking fluid (Fig. 1
referred to the web version of this article.)
is still important and to show the convergence of the dissolution
behavior for Ra > 5000.

The mobility ratio for a real CO2–brine system is M� 5–12 or
R � 1:5–2:5 [4], which is somewhat higher than the values used
here (R ¼ 0 and 1). The mobility ratio has a direct impact on the
dynamics of the gravity current, which is longer, thinner, and more
strongly tongued for larger R [18,31]. It also has a weak impact on
the magnitude of the dissolution flux, as shown in [32] and in the
present work (Fig. 5(d)).

The aspect ratio of the initial condition is the width of the initial
rectangle of buoyant fluid relative to the width of the thickness the
aquifer, which we take here to be 4. This is a realistic value for car-
bon sequestration, although field values can range from an order of
magnitude smaller (� 0:4) to an order of magnitude larger (� 40)
depending on the thickness of the aquifer and the volume of CO2

injected [4].
4. Effect of dissolution on CO2 migration

We quantify the evolution of the buoyant current with four
macroscopic quantities: its mass, its length, the total dissolution
rate of CO2 into the brine, and the average dissolution flux per unit
length of the current. These quantities characterize the spreading
and migration of the current and the effectiveness of solubility
trapping, which have implications for planning and risk assess-
ment [33,34].

The dissolution flux between two miscible fluids must be de-
fined with care since there is no true interface across which mass
is transferred. Instead, there is an initial concentration distribution
that homogenizes as mixing progresses. Although the natural char-
acterization for such a system is through the evolution of the mean
scalar dissipation rate [32], it is useful in practice to define a disso-
lution flux. Here, we define the dissolution flux via the non-mono-
tonic behavior of fluid density with concentration. Since mixtures
with concentration c ¼ cn are neutrally buoyant relative to the
ambient fluid, this concentration can be used to define a neutral
contour separating the buoyant, mobile CO2 (c P cn) from the
dense brine with dissolved CO2 (c < cn; Fig. 1). This is an unstable
equilibrium point and any perturbation of concentration causes
significant buoyancy forces that trigger convection. To define the
dissolution flux, we first compute the mass of buoyant fluid as
MbðtÞ ¼

R
XbðtÞ

c dX;XbðtÞ :¼ ðx; zÞ jcðx; z; tÞ > cnf g (Fig. 3(a)). We then
define the total dissolution rate as �dMb=dt (Fig. 3(b)). By dividing
this quantity by the length of CO2–brine interface, which we mea-
from a buoyant current in a sloping aquifer for Ra ¼ 5000; R ¼ 1, and h ¼ 2:5� (not
ly 0 6 x 6 15 is shown here. The red line marks the contour of neutrally buoyant
). (For interpretation of the references to color in this figure legend, the reader is
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Fig. 3. We characterize the dynamics of convective dissolution from a migrating gravity current with the time evolution of four macroscopic quantities: (a) the remaining
buoyant mass, MbðtÞ, (b) the total dissolution rate, �dMb=dt, (c) the length of the CO2-brine interface, LðtÞ, measured as the length of the neutral contour, and (d) the average
dissolution flux per unit interface length, �ð1=LÞdMb=dt. Results shown here are for R ¼ 0; h ¼ 2:5� , and several values of Ra, as indicated.
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sure as the length of the neutral contour (Fig. 3(c)), we obtain the
average dissolution flux (Fig. 3(d)).

Both the total dissolution rate and the average dissolution flux
evolve as the buoyant current migrates (Fig. 3(b) and (d)). Much
like for a stationary layer of CO2 dissolving into brine
[9,30,15,16,32,35], we distinguish three distinct regimes in convec-
tive dissolution from the migrating current: a diffusive regime at
early times, a constant-flux regime during intermediate times,
and a decay at late times. The early-time evolution of the gravity
current in this system is a classical lock exchange, where an ini-
tially vertical interface between a buoyant fluid and a dense fluid
evolves by tilting and stretching (here with the added complication
of convective dissolution). The classical sharp-interface model for
lock exchange predicts that the length of the interface will grow
proportional to t1=2 [36]. This regime ceases here when the left-
traveling edge of the interface hits the left boundary of the domain,
at which point the dynamics of the interface change suddenly as
the gravity current detaches from the bottom of the aquifer and
enters a migration-dominated regime (Fig. 3(c)) [37]. Both the dis-
solution rate and dissolution flux are small at early times as the
CO2–brine interface tilts from its initial, vertical orientation and
diffusion–dispersion dominates. After the onset of convection
(t � 1), the dissolution flux becomes roughly constant (t � 1–4),
as expected for a stationary layer, and the growth of the interface
slows down. Before the fingers interact significantly with the
bottom boundary, our computed dissolution flux exhibits the same
qualitative behavior as has been observed previously for dissolu-
tion of a stationary layer [30,38,32]. However, our flux differs
quantitatively from these previous measurements. This is expected
since the value of the flux has been shown to depend strongly on
the concentration at which the density maximum occurs [32],
and also on the nature of the boundary condition at the boundary
where dissolution occurs (here across a moving interface between
two miscible fluids vs. across a rigid boundary with prescribed con-
centration) [32,26]. The total dissolution rate grows strongly dur-
ing this period since the interface length grows rapidly (Fig. 3(c))
while the flux remains roughly constant. At later times (t > 5),
the accumulation of dissolved CO2 under the leftmost part of the
current begins to suppress further convective dissolution there
and the average dissolution flux begins to decay (Fig. 3(d))
[13,35]. The total dissolution rate also decays (Fig. 3(b)) even
though the length of the interface continues to increase
(Fig. 3(c)), reflecting the fact that the accumulation of dissolved
CO2 is suppressing convective dissolution along a progressively lar-
ger fraction of the interface (Fig. 2).

As Ra increases, we find that the dynamics of this process con-
verge to a common high-Ra limit, indicating that relevant macro-
scopic quantities are independent of Ra for Ra � 5000 and higher
[32]. We therefore fix Ra ¼ 5000 in what follows.

5. Upscaled model

We now consider the extent to which the dynamics of convec-
tive dissolution from a migrating gravity current can be captured
by a simple upscaled model. Such models have recently been used
to develop insight into the physics of CO2 migration and trapping
[12,18,19,31,37,39–41].

We have elsewhere presented an upscaled model for the migra-
tion and trapping of a buoyant current of CO2 in a sloping aquifer
[12]. The model adopts the sharp-interface approximation, as-
sumes vertical flow equilibrium, and neglects capillarity. The mod-
el accounts for residual trapping, but we ignore this here for
simplicity. Here, we extend the model to include the slumping of
the CO2-rich brine layer against the bottom of the aquifer as in
[13]. We outline the derivation of this model in Appendix C.

The model incorporates convective dissolution as a constant
flux of CO2 per unit length of CO2–brine interface
[30,38,15,16,32]. This rate will decay as dissolved CO2 accumulates
in the brine beneath the buoyant current, and we account for this
effect by assuming that a dense mound of brine with a uniform and
constant concentration of dissolved CO2 grows on the bottom of
the aquifer as the buoyant current shrinks. The model is designed
to capture: (1) the decay in dissolution flux by stopping convective
dissolution locally where the dense mound fills the region beneath
the buoyant current [12], and (2) the slumping of the CO2-rich
brine layer against the bottom of the aquifer [13].



Fig. 4. The upscaled model captures the macroscopic shape of the buoyant current. Here, we compare the prediction of the upscaled model (dashed blue line) with the
evolution of the neutral contour (c ¼ cn ¼ 0:56, red line) from a high-resolution simulation for Ra ¼ 5000; R ¼ 1, and h ¼ 2:5� at dimensionless times 0; 3; 9, and 27 (same
parameters and times as in Fig. 2). Only a portion of the domain is shown (0 6 x 6 15). The concentration field (black to gray map) show the suppression of the fingering
instability by the accumulation of dissolved CO2 in the brine. We capture this in the upscaled model by disabling convective dissolution locally wherever the dense mound of
brine with dissolved CO2 (dashed cyan line) touches the buoyant current. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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The model takes the form of two coupled partial differential
equations to be solved for the local thickness hðx; tÞ of the buoyant
current and the local thickness hdðx; tÞ of the dense mound [12,13].
We write it in dimensionless form as

@h
@t
þ @

@x
ð1� f Þh Ns � Ng

@h
@x

� �
þ dfhd Ns þ Ng

@hd

@x

� �� �
¼ �eNd; ð8Þ

@hd

@t
� @

@x
fdh Ns � Ng

@h
@x

� �
þ dð1� fdÞhd Ns þ Ng

@hd

@x

� �� �
¼
eNd

Cd
; ð9Þ

where x and t are defined and scaled as in Eqs. (1)–(3) and h and hd

are scaled by the aquifer thickness, Lz. The dimensionless parame-
ters Ns; Ng , and d measure the speed of migration due to aquifer
slope relative to the speed at which the fingers fall, the speed of
buoyant spreading due to gravity relative to the speed at which
the fingers fall, and the migration speed of the buoyant current rel-
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Fig. 5. The inclusion of the mound of brine with dissolved CO2 allows the upscaled mo
resolution simulations (solid lines). We again characterize the dynamics of convective d
total dissolution rate, �dMb=dt, (c) the length of the CO2–brine interface, LðtÞ, an
Ra ¼ 5000; h ¼ 2:5� , and R ¼ 0 (blue) and 1 (cyan). (For interpretation of the references t
ative to that of the dense one, respectively. They are given by
Ns ¼ ðDqgclm sin hÞ=ðDqmlCO2

Þ, Ng ¼ ðDqgclm cos hÞ=ðDqmlCO2
Þ, and

d ¼ DqdlCO2
=ðDqgcldÞ, where Dqgc is the amount by which the den-

sity of the brine exceeds the density of the buoyant CO2; Dqd is the
amount by which the density of the mound of brine with dissolved
CO2 exceeds the density of the ambient brine, lCO2

is the dynamic
viscosity of the CO2; ld is the dynamic viscosity of the dense brine
with dissolved CO2. The dissolution flux vanishes locally where the
mound of brine with dissolved CO2 fills the aquifer beneath the
buoyant current:

eNd ¼
Nd if hþ hd < 1;
0 if hþ hd ¼ 1;

�
ð10Þ

where Nd ¼ qdlm=ðDqmgkÞ, and qd is the volume of CO2 that dis-
solves per unit area of CO2–brine interface per unit time. The volume
fraction Cd is the equivalent volume of free-phase CO2 dissolved in
one unit volume of the mound of brine with dissolved CO2. This
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del (dashed lines) to capture the decaying average dissolution flux from the high-
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determines both the rate at which the dense mound grows and also
the density and viscosity of the dense mound via the constitutive
laws for density and viscosity. The fractional-flow functions f and
fd are given by f ðh; hdÞ ¼ Mh=½MhþMdhd þ ð1� h� hdÞ� and
fdðh; hdÞ ¼ hd=½MhþMdhd þ ð1� h� hdÞ�, where M¼ lbrine=lCO2

is
the mobility ratio for the buoyant current (lbrine is the dynamic vis-
cosity of the brine) and Md ¼ lbrine=ld is the mobility ratio for the
dense mound.

All of the parameters in this upscaled model are readily derived
from the parameters and constitutive laws for the full problem
with the exception of the upscaled dissolution flux Nd and the
volume fraction Cd. We measure the dissolution flux directly from
our high-resolution numerical simulations, taking the dimension-
less upscaled flux to be the typical average flux per unit length be-
fore the brine begins to saturate, Nd � 0:015 (Fig. 3(d)). We treat
the concentration Cd as a fitting parameter, choosing Cd � 0:18
as a value that captures the rate at which the dissolution flux de-
cays as the brine saturates for Ra ¼ 5000 and R ¼ 0. Further
numerical simulations and laboratory experiments for a stationary
layer and for a migrating current will be necessary to study the de-
tails of this accumulation process to develop a predictive model for
the value of Cd. Here, we use these values of Nd and Cd for all com-
parisons (i.e., R ¼ 0 and R ¼ 1).

We find that this upscaled model captures the evolution of the
buoyant current and also the suppression of convective dissolution
under the left portion of the current as dissolved CO2 accumulates
in the brine (Fig. 4). Although the dissolution flux in the upscaled
model can take only one of two values locally, eNd ¼ 0:015 or 0
(Eq. (10)), we find that this is sufficient to capture the dynamics
of the decaying average dissolution flux from the high-resolution
simulations (Fig. 5).
6. Conclusions

Using high-resolution numerical simulations, we have studied
the detailed dynamics of convective dissolution from a buoyant
current of CO2 in a sloping aquifer. We have found that, much like
for a stationary layer of CO2 dissolving into brine, the dissolution
flux from a buoyant current is characterized by three regimes: an
early-time diffusive regime before the onset of convection, an
intermediate constant-flux regime, and a late-time decay as con-
vection is suppressed by the accumulation of dissolved CO2 in
the brine. We have found, further, that these dynamics are inde-
pendent of Ra for Ra � 5000 and higher (Fig. 3).

We have shown that the macroscopic evolution of the buoyant
current can be captured with an upscaled, sharp-interface model
that assumes a constant dissolution flux and accounts for the accu-
mulation of dissolved CO2 with a dense mound that grows and
slumps on the bottom of the aquifer as the buoyant current shrinks
and spreads (Fig. 4). The upscaled dissolution flux qd is the
essential input for upscaled models such as the ones discussed
here and elsewhere [12,11,13,14]. Our high-resolution simulations
allow us to obtain realistic values for this parameter in the context
of a migrating current. The upscaled model also captures the
smooth decay in the average dissolution flux even though we use
a binary ‘‘on–off’’ model for the flux locally (Fig. 5). These results
provide support for insights derived previously from upscaled
models based on similar assumptions [12,11,13]. In addition, this
provides us with a sound base for extending the upscaled model
to more complex systems such as heterogeneous aquifers, which
will be subject of future work.

We have assumed in the upscaled model that dissolved CO2

accumulates in the brine as a dense mound of constant and uni-
form CO2 concentration [12,13]. This concentration determines
both the rate at which the dense mound grows and also the rate
at which it slumps relative to the ambient brine, and is unknown
a priori. Here, we have treated this concentration as a fitting
parameter. Further high-resolution simulations for a stationary
layer and for a migrating current will be necessary to study the de-
tails of this accumulation process. At later times, the slumping and
down-slope migration of the dense mound will compete with mix-
ing driven by diffusion and dispersion [42].

In our high-resolution numerical simulations, we have ne-
glected capillarity and instead assumed that the buoyant fluid
and the dense fluid are perfectly miscible, taking advantage of con-
stitutive laws inspired by the analogue fluids that have been used
to study convective dissolution in the laboratory [15,16]. This
assumption will be reasonable when the capillary pressure is small
relative to typical viscous and gravitational pressure changes in the
flow. The impact of capillarity on the evolution of gravity currents
is increasingly well understood [20,21,41,23,22]. Recent studies
also suggest that capillarity can have a quantitative impact on
the dissolution flux [25,41,26,27], but a complete understanding
of these effects will require further study including laboratory
experiments in addition to mathematical modeling and numerical
simulation.

Our 2D analogue-fluid model requires a dimensionless density
law and three other dimensionless parameters: the Rayleigh num-
ber; the log of the mobility ratio; and the aspect ratio of the initial
condition. We discuss appropriate values of these three parameters
in Section 3 above. The dimensionless density law can be charac-
terized by two parameters: the concentration at which the density
maximum occurs and the ratio of the two density differences
(Fig. 1). The concentration at which the density maximum occurs
plays the role of the solubility since convective dissolution will
stop as the density of the ambient fluid approaches the maximum
attainable density. For the analogue fluids used here, this value is
cm ¼ 0:26. Appropriate values for carbon sequestration are 25 to
50 times smaller (� 0:005–0:01 [4]). This means that the brine
underlying the CO2 would saturate with dissolved CO2 much more
quickly than in our analogue system. However, the ratio of the den-
sity difference that drives the migration of the gravity current to
the one that drives convective dissolution is much smaller in the
analogue system (� 3:6) than in the field (� 25–60 [4]). This means
that a gravity current of supercritical CO2 in the field would gener-
ally migrate faster compared to the rate at which it dissolves than
in our analogue-fluid simulations, implying that the saturation of
the water beneath the plume will tend to play a lesser role in the
field. Similarly, the density-driven migration of the mound of
water with dissolved CO2 is likely to be much less important in
the field since it migrates very slowly compared to the buoyant
plume. However, both effects can be extremely important in hori-
zontal or weakly sloping aquifers [12,13].

We have confined our modeling and simulations here to two
dimensions, but three-dimensional flow effects can be important
in scenarios where, for example, the lateral extent of the plume
is not large compared to its length [43]. Studies of the dissolution
of a stationary layer in 3D suggest a qualitatively similar evolution
of flux to the one observed here [38,44]. High-resolution simula-
tions combining migration and convective dissolution in 3D, as
we have done here in 2D, would be a very interesting follow-up
study.
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Fig. B.6. Numerical convergence of macroscopic quantities with grid size. Here we
calculate the error in buoyant mass for grid size Dx as the log of the maximum
difference between the value for that grid size and the next coarser one,
logðmax jMkþ1

b ðtÞ �Mk
bðtÞjÞ. These results are for R ¼ 0; h ¼ 0� , and Ra ¼ 5000.
Appendix A. Equations in dimensional form

Here we present the 2D mathematical model in dimensional
form. We present the upscaled (1D) mathematical model in dimen-
sional form in Appendix C.

Contrary to the rest of the paper, variables without decoration are
dimensional and those with tildes are dimensionless. The equations
governing incompressible fluid flow and advective–dispersive mass
transport, where we adopt the Boussinesq approximation and mod-
el hydrodynamic dispersion as a Fickian process, take the form [29]

$ � u ¼ 0; ðA:1Þ

u ¼ � k
lðcÞ $pþ qðcÞg sin h êx þ qðcÞg cos h êzð Þ; ðA:2Þ

/
@c
@t
¼ �u � $c þ /Dmr2c; ðA:3Þ

Dimensional Eqs. (A.1)–(A.3) are related to their dimensionless
counterparts Eqs. (1)–(3) by the scalings t ¼ ð/lmLz=DqmgkÞ~t,
$ ¼ ~$=Lz, u ¼ ðDqmgk=lmÞ~u, p ¼ DqmgLz~pþ qðc ¼ 0Þgzþ p0,
l ¼ lm ~l, and q ¼ Dqm ~qþ q0. p0 and q0 are a dimensional reference
pressure and dimensional brine density, respectively.

The density difference qðc ¼ cmÞ � qðc ¼ 0Þ ¼ Dqm drives con-
vective dissolution, while the density difference qðc ¼ 0Þ�
qðc ¼ 1Þ ¼ Dqgc drives the migration of the gravity current.

Appendix B. Convergence analysis

Fingering instabilities are very sensitive to numerical discretiza-
tion [45]. To accurately capture the dynamics of convective disso-
lution, it is essential for our simulations to resolve the smallest
relevant length and time scales. The smallest such length scale
for convective dissolution is believed to be the critical wavelength
for the onset of convection, kc � 90Lz=Ra [9]. We present results
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Fig. B.7. Convergence with grid size of (a) buoyant mass, (b) total dissolution rate,
Ra ¼ 5000; R ¼ 0; h ¼ 0� , and a dimensionless initial width of 0:5. These macroscopic q
here for Ra as high as 10,000 (Fig. 3), for which kc=Lz � 0:009. Lar-
ger values of Ra require proportionally finer spatial discretizations.
Allocating at least two horizontal grid blocks per wavelength then
suggests a minimum horizontal resolution of � 220 grid blocks per
unit dimensionless length for Ra ¼ 10000. We use 500 grid blocks
per unit length in both directions (10000� 500 for a domain of
20� 1) for all simulations, which we expect to be sufficient.

Regarding the convergence of macroscopic quantities such as
the dissolution flux, we choose a discretization for which the re-
sults vary by a few percent or less when the grid is refined further.
We perform such a convergence analysis by comparing a sequence
of simulations performed on meshes of increasing resolution. We
compare resolutions of 200–600 grid blocks per unit dimensionless
length (same in the horizontal and vertical directions). Since the
dimensionless height of the domain is always 1, the resolution is
the same as the number of grid blocks Nz in the vertical direction.
We illustrate this convergence quantitatively in Fig. B.6 for
Ra ¼ 5000;R ¼ 0; h ¼ 0 and a dimensionless initial width of 0:5.
The domain has aspect ratio A ¼ 5, so the finest mesh has
3000� 600 grid blocks (Nz ¼ 600). We illustrate this convergence
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uantities converge to within a few percent for Nz P 500.
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Fig. B.8. Convergence with grid size of (a) buoyant mass, (b) total dissolution rate, (c) interface length (length of the neutral contour), and (d) dissolution flux for
Ra ¼ 5000; R ¼ 1; h ¼ 2:5� , aspect ratio A ¼ 20, and a dimensionless initial width of 4. As for R ¼ 0, these quantities converge to within a few percent for Nz P 500.
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qualitatively in Figs. B.7 and B.8 for R ¼ 0 and R ¼ 1, respectively.
Based on these results, we choose a resolution of 500 grid blocks
per unit length for all simulations presented here as a compromise
between numerical accuracy and computational burden. We ex-
pect other parameters, such as the slope or the shape of the density
curve, to have little impact on convergence.
Appendix C. Derivation of the upscaled model

Here we briefly outline the derivation of the upscaled (1D)
model in dimensional form. This model is an extension of the
model of [12] to include the density-driven slumping of the dense
CO2-rich brine layer against the bottom of the aquifer as in [13],
but without residual fluids. The model may also be viewed as an
extension of the model of [13] to include slope and a net back-
ground flow. We refer the reader to these previous works for a de-
tailed discussion and justification of the main assumptions, which
include vertical-flow equilibrium and the sharp-interface approxi-
mation. Here, as in Appendix A and contrary to the rest of the pa-
per, all quantities are dimensional.

We assume that the fluids are vertically segregated into three
regions of uniform density and viscosity, and that these regions
are separated by sharp interfaces. The three regions contain free-
phase CO2, brine, and brine with a volume fraction Cd of dissolved
CO2. At position x and time t, these regions have respective thick-
nesses hðx; tÞ;hwðx; tÞ, and hdðx; tÞ, where hþ hw þ hd ¼ Lz. The CO2

has density qg and viscosity lg; the brine has density qw and vis-
cosity lw; and the brine with dissolved CO2 has density qd and vis-
cosity ld.

We write the Darcy velocity of the fluid in each region as

ug ¼ �
k
lg

$pg þ qgg sin h êx þ qgg cos h êz

	 

; ðC:1Þ

uw ¼ �
k
lw

$pw þ qwg sin h êx þ qwg cos h êzð Þ; ðC:2Þ

ud ¼ �
k
ld

$pd þ qdg sin h êx þ qdg cos h êzð Þ; ðC:3Þ

where pg ; pw, and pd are the fluid pressures in each region. We next
assume vertical-flow equilibrium, neglecting the vertical compo-
nent of the fluid velocity relative to the horizontal one because of
the characteristic long and thin nature of the flow. The z-compo-
nents of Eqs. (C.1)–(C.3) then imply that the pressure distribution
in each region is hydrostatic and given by

pg ¼ piðx; tÞ þ qgg cos h ðLz � h� zÞ; ðC:4Þ
pw ¼ piðx; tÞ þ qwg cos h ðLz � h� zÞ; ðC:5Þ
pd ¼ piðx; tÞ þ qwg cos hhw þ qdg cos h ðhd � zÞ; ðC:6Þ

where piðx; tÞ is the unknown pressure along the CO2 interface
(z ¼ Lz � h). Substituting Eqs. (C.4)–(C.6) into the x-components of
Eqs. (C.1)–(C.3) gives expressions for the horizontal fluid velocity
in each region in terms of pi.

Since we have taken the fluids and the rock to be incompress-
ible, the total volume of fluid flowing through any cross-section
of the aquifer must be conserved. This requirement can be written

ðug � êxÞhþ ðuw � êxÞhw þ ðud � êxÞhd ¼ Q ; ðC:7Þ

where the constant total volume flow rate Q may be nonzero when
there is fluid injection or extraction, leakage, or if there is a natural
groundwater through-flow. Eq. (C.7) can be combined with the
expressions for the horizontal fluid velocity obtained from Eqs.
(C.1)–(C.3) and (C.4)–(C.6) to eliminate the unknown pressure pi.

Finally, local volume conservation dictates that the change in the
thickness of each region must be balanced locally by the divergence
of the flux of fluid through that region and the transfer of volume
from one region to another. This requirement can be written

/
@h
@t
þ @

@x
ðug � êxÞh
� �

¼ �eqd; ðC:8Þ

/
@hd

@t
þ @

@x
ðud � êxÞhd½ � ¼

eqd

Cd
; ðC:9Þ

where eqd is defined by

eqd ¼
qd if hþ hd < Lz;

0 if hþ hd ¼ Lz

�
ðC:10Þ

and qd is the flux due to convective dissolution, which transfers vol-
ume from the CO2-region to the region of brine with dissolved CO2.
Combining all of the above and eliminating hw through the require-
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ment that the three thicknesses sum to the total thickness of the
aquifer, the resulting model is given by

@h
@t
þ Q

/
@f
@x
þ

Dqgcgk
/lg

@

@x
sin h ð1� f Þh� cos h ð1� f Þh @h

@x

� �

þ Dqdgk
/ld

@

@x
sin h f hd þ cos h f hd

@hd

@x

� �
¼ �eqd=/; ðC:11Þ

@hd

@t
þQ

/
@fd

@x
þ

Dqgcgk
/lg

@

@x
�sinhf d hþcoshf d h

@h
@x

� �

þDqdgk
/ld

@

@x
�sinhð1� fdÞhd�coshð1� fdÞhd

@hd

@x

� �
¼
eqd

/Cd
; ðC:12Þ

where f ðh; hdÞ and fdðh;hdÞ are as defined in Section 5. Eqs. (C.11)
and (C.12) are related to their dimensionless counterparts Eqs. (8)
and (9) by scaling h and hd with characteristic thickness Lz; x with
characteristic length Lz, and t with characteristic time
/lmLz=Dqmgk. Note that we have taken Q ¼ 0 in Eqs. (8) and (9)
for comparison with our 2D results, in which there is no net flow.
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