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Abstract

In this paper, we introduce SciANN, a Python package for scientific computing and physics-informed deep learning using
rtificial neural networks. SciANN uses the widely used deep-learning packages TensorFlow and Keras to build deep neural
etworks and optimization models, thus inheriting many of Keras’s functionalities, such as batch optimization and model reuse
or transfer learning. SciANN is designed to abstract neural network construction for scientific computations and solution and
iscovery of partial differential equations (PDE) using the physics-informed neural networks (PINN) architecture, therefore
roviding the flexibility to set up complex functional forms. We illustrate, in a series of examples, how the framework can be
sed for curve fitting on discrete data, and for solution and discovery of PDEs in strong and weak forms. We summarize the
eatures currently available in SciANN, and also outline ongoing and future developments.
c 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past decade, artificial neural networks, also known as deep learning, have revolutionized many
omputational tasks, including image classification and computer vision [1–3], search engines and recommender
ystems [4,5], speech recognition [6], autonomous driving [7], and healthcare [8] (for a review, see, e.g. [9]).
ven more recently, this data-driven framework has made inroads in engineering and scientific applications,
uch as earthquake detection [10–12], fluid mechanics and turbulence modeling [13,14], dynamical systems [15],
nd constitutive modeling [16,17]. A recent class of deep learning known as physics-informed neural networks
PINN) [18], where the network is trained simultaneously on both data and the governing differential equations,
as been shown to be particularly well suited for solution and inversion of equations governing physical systems,
n domains such as fluid mechanics [18,19], solid mechanics [20] and dynamical systems [21]. This increased
nterest in engineering and science is due to the increased availability of data and open-source platforms such
s Theano [22], TensorFlow [23], MXNET [24], and Keras [25], which offer features such as high-performance
omputing and automatic differentiation [26].

Advances in deep learning have led to the emergence of different neural network architectures, including densely
onnected multi-layer deep neural networks (DNNs), convolutional neural networks (CNNs), recurrent neural
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networks (RNNs) and residual networks (ResNets). This proliferation of network architectures, and the (often steep)
learning curve for each package, makes it challenging for new researchers in the field to use deep learning tools
in their computational workflows. In this paper, we introduce an open-source Python package, SciANN, developed
on TensorFlow and Keras, which is designed with scientific computations and physics-informed deep learning in
mind. As such, the abstractions used in this programming interface target engineering applications such as model
fitting, solution of ordinary and partial differential equations, and model inversion (parameter identification).

The outline of the paper is as follows. We first describe the functional form associated with deep neural networks.
e then discuss different interfaces in SciANN that can be used to set up neural networks and optimization

roblems. We then illustrate SciANN’s application to curve fitting, the solution of the Burgers equation, and the
dentification of the Navier–Stokes equations and the von Mises plasticity model from data. Lastly, we show how
o use SciANN in the context of the variational PINN framework [27]. The examples discussed here and several
dditional applications are freely available at github.com/sciann/sciann-applications.

. Artificial neural networks as universal approximators

A single-layer feed-forward neural network with inputs x ∈ Rm , outputs y ∈ Rn , and d hidden units is constructed
as:

y = W1σ (W0x + b0) + b1, (1)

where (W0
∈ Rd×m , b0

∈ Rd ), (W1
∈ Rn×d , b1

∈ Rn) are parameters of this transformation, also known as
weights and biases, and σ is the activation function. As shown in [28,29], this transformation can approximate any
measurable function, independently of the size of input features m or the activation function σ . If we define the
transformation Σ as Σ i (x̂i ) := ŷi

= σ i (Wi x̂i
+bi ) with x̂i as the input to and ŷi as the output of any hidden layer i ,

x = x̂0 as the main input to the network, and y = Σ L (x̂L ) as the final output of the network, we can construct a
general L-layer neural network as composition of Σ i functions as:

y = Σ L
◦ Σ L−1

◦ · · · ◦ Σ 0(x), (2)

with σ i as activation functions that make the transformations nonlinear. Some common activation functions are:
ReLU : x̂ ↦→ x̂+,

sigmoid : x̂ ↦→ 1/(1 + ex̂ ),
tanh : x̂ ↦→ (ex̂

− e−x̂ )/(ex̂
+ e−x̂ ).

(3)

In general, this multilayer feed-forward neural network is capable of approximating functions to any desired
accuracy [28,30]. Inaccurate approximation may arise due to lack of a deterministic relation between input and
outputs, insufficient number of hidden units, inadequate training, or poor choice of the optimization algorithm.

The parameters of the neural network, Wi and bi of all layers i = {0 . . . L}, are identified through minimization
using a back-propagation algorithm [31]. For instance, if we approximate a field variable such as temperature T
with a multi-layer neural network as T (x) ≈ T̂ (x) = NT (x; W,b), we can set up the optimization problem as

arg min
W,b

L(W,b) :=

T (x∗) − T̂ (x∗)
 =

T (x∗) − NT (x∗
; W,b)

 , (4)

where x∗ is the set of discrete training points, and ∥◦∥p is the mean squared norm. Note that one can use other
choices for the loss function L, such as mean absolute error or cross-entropy. The optimization problem (4) is
nonconvex, which may require significant trial and error efforts to find an effective optimization algorithm and
optimization parameters.

A key element contributing to the recent success of deep learning is associated with graph-based implementation
of neural networks and automatic differentiation (AD). Every node on a graph represents a mathematical operation
(e.g., addition or multiplication), and the derivatives of those operators can be traced using the chain rule, which
results in secondary graphs. Unlike hand evaluation of derivatives, AD is safe from errors, and, unlike numerical
finite-difference-type differentiation, its accuracy remains within machine precision. Although it was initially
developed to facilitate optimization of complex neural networks, AD is particularly attractive in the context of
PINN, since it can be readily used to evaluate derivatives of the solution variables with respect to independent
variables or equation parameters, as needed for the solution of partial differential equations [26].
2
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Fig. 1. A sample multi-net architecture to construct a complex functional space g as g(x, y) = g( f1(x, y), f2(x, y)).

We can construct deep neural networks with an arbitrary number of layers and neurons. We can also define
multiple networks and combine them to generate the final output. There are many types of neural networks that
have been optimized for specific tasks. An example is the ResNet architecture introduced for image classification,
consisting of many blocks, each of the form:

zk
= Σ k2

◦ Σ k1
◦ Σ k0(zk−1) + zk−1, (5)

here k is the block number and zk−1 is the output of previous block, with x = z0 and y = zK as the main inputs to
nd outputs of the network. Therefore, artificial neural networks offer a simple way of constructing very complex
ut dependent solution spaces (see, e.g., Fig. 1).

. SciANN: Scientific computing with artificial neural networks

SciANN is an open-source neural-network library, based on TensorFlow [23] and Keras [25], which abstracts
he application of deep learning for scientific computing purposes. In this section, we discuss abstraction choices
or SciANN and illustrate how one can use it for scientific computations.

.1. Brief description of SciANN

SciANN is implemented on the most popular deep-learning packages, TensorFlow and Keras, and therefore it
nherits all the functionalities they provide. Among those, the most important ones include graph-based automatic
ifferentiation and massive heterogeneous high-performance computing capabilities. It is designed for an audience
ith a background in scientific computation or computational science and engineering.
SciANN currently supports fully connected feed-forward deep neural networks, and recurrent networks are

nder development. Some architectures, such as convolutional networks, are not a good fit for scientific computing
pplications and therefore are not currently in our development plans. TensorFlow and Keras provide a wide range
f features, including optimization algorithms, automatic differentiation, and model parameter exports for transfer
earning.

To install SciANN, one can simply use the Python’s pip package installer as:

It can be imported into the active Python environment using Python’s import module:
3
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Fig. 2. The algorithmic abstraction used in SciANN and its connection to Keras/TensorFlow layers. sn.Variable handles all the inputs to
the network or to the loss function. Operator overloading and different mathematical operations are handled using Keras’s Lambda layers.

he red dashed line highlights the use of sn.Variable for channeling data to the loss function.

ts mathematical functions are located in the sn.math interface. For instance, the function diff is accessed through
n.math.diff. The main building blocks of SciANN include:

• sn.Variable: class to define inputs to the network.
• sn.Field: class to define outputs of the network.
• sn.Functional: class to construct a nonlinear neural network approximation.
• sn.Parameter: class to define a parameter for inversion purposes.
• sn.Data, sn.Tie: class to define the targets. If there are observations for any variable, the ‘sn.Data’ interface

is used when building the optimization model. For physical constraints such as PDEs or equality relations
between different variables, the ‘sn.Tie’ interface is designed to build the optimizer.

• sn.SciModel: class to set up the optimization problem, i.e. inputs to the networks, targets (objectives), and
the loss function.

• sn.math: mathematical operations are accessed here. SciANN also support operator overloading, which
improves readability when setting up complex mathematical relations such as PDEs.

The algorithmic design of SciANN favors simplicity of use while taking advantage of key functionalities in
eras. Keras evaluates all terms of the loss function on a single training (collocation) grid through the input layer.
his is done to achieve mini-batch optimization and parallelization capabilities. This is in contrast with the original
INN implementation [18], in which different terms of the loss function were evaluated on different grids; for
xample, the terms for the boundary condition and for the PDE are evaluated on different grids. Additionally, in
ciANN, all mathematical operations on network outputs are handled through Keras’s Lambda layers. Therefore,

argets can be either a network output directly or the result of mathematical operations applied to network outputs.
his choice makes the implementation of targets almost identical to their mathematical representations—a feature

hat will be illustrated in the following sections. In Fig. 2 we summarize the implementation flowchart for SciANN.

.2. An illustrative example: curve fitting

We illustrate SciANN’s capabilities with its application to a curve-fitting problem. Given a set of discrete data,
enerated from f (x, y) = sin(x) sin(y) over the domain x, y → [−π, π] × [−π, π], we want to fit a surface, in
he form of a neural network, to this dataset. A multi-layer neural network approximating the function f can be
onstructed as f̂ : (x, y) ↦→ N f (x, y; W,b), with inputs x, y and output f̂ . In the most common mathematical and
ythonic abstraction, the inputs x, y and output f̂ can be implemented as:
4
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A 3-layer neural network with 6 neural units and hyperbolic-tangent activation function can then be constructed as

This definition can be further compressed as

At this stage, the parameters of the networks, i.e. set of W,b for all layers, are randomly initialized. Their current
values can be retrieved using the command get weights:

One can set the parameters of the network to any desired values using the command set weights.
As another example, a more complex neural network functional as the composition of three blocks, as shown in

ig. 1, can be constructed as

Any of these functions can be evaluated immediately or after training using the function, by providing discrete
data for the inputs:

Once the networks are initialized, we set up the optimization problem and train the network by minimizing an
bjective function, i.e. solving the optimization problem for W and b. The optimization problem for a data-driven
urve-fitting is defined as:

arg min
W,b

L(W,b) :=
 f (x∗, y∗) − N f (x∗, y∗

; W,b)
 , (6)

here x∗, y∗ is the set of all discrete points where f is given. For the loss-function ∥◦∥, we use the mean squared-
rror norm ∥◦∥ =

1
N

∑
x∗,y∗∈I ( f (x∗, y∗) − f̂ (x∗, y∗))2. This problem is set up in SciANN through the SciModel

class as:
5
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Fig. 3. Using SciANN to train a network on synthetic data generated from sin(x) sin(y); (a): network predictions; (b): absolute error with
espect to true values.

he train model is then used to perform the training and identify the parameters of the neural network:

Once the training is completed, one can set parameters of a Functional to be trainable or non-trainable (fixed).
For instance, to set f to be non-trainable:

The result of this training is shown in Fig. 3, where we have used 400 epochs to perform the training on a dataset
generated using a uniform grid of 51 × 51.

Since data was generated from f (x, y) = sin(x) sin(y), we know that this is a solution to ∆ f +2 f = 0, with ∆ as
the Laplacian operator. As a first illustration of SciANN for physics-informed deep learning, we can constrain the
curve-fitting problem with this ‘governing equation’. In SciANN, the differentiation operators are evaluated through
sn.math.diff function. Here, this differential equation can be evaluated as:

with order expressing the order of differentiation.
Based on the physics-informed deep learning framework, the governing equation can be imposed through the

objective function. The optimization problem can then be defined as

arg min
W,b

L(W,b) :=

 f (x∗, y∗) − f̂ (x∗, y∗)
 +

∆ f̂ (x∗, y∗) + 2 f̂ (x∗, y∗)
 , (7)

nd implemented in SciANN as

Note that while the inputs are the same as for the previous case, the optimization model is defined with two targets,
fxy and L. The training data for fxy remains the same; the sampling grid, however, can be expanded further as
‘physics’ can be imposed everywhere. A sampling grid 101 × 101 is used here, where data is only given at the
same locations as the previous case, i.e. on the 51 × 51 grid. To impose target L, it is simply set to . The
new result is shown in Fig. 4. We find that, for the same network size and training parameters, incorporating the
‘physics’ reduces the error significantly.

Incorporating a new loss function is straightforward: one can include a new loss function when compiling the
optimization problem using sn.SciModel through a Python function. Let us illustrate this process by the use of the
6
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Fig. 4. Using SciANN to train a network on synthetic data generated from sin(x) sin(y) and imposing the governing equations f,xx + f,yy −

2 f = 0; (a): network predictions; (b): absolute error with respect to true values.

mean absolute error as the loss function. The mean operation is handled by default in the Keras backend, therefore
one should define a function that evaluates the absolute error of each term and pass it to sn.SciModel using the
loss func keyword, as:

There are several factors that affect the training of a neural network, including the size of the network, the
hoice of activation function, the initial values of network parameters, and the optimization algorithm and its hyper
arameters. If chosen identically, the trained network from SciANN is identical to that obtained when the network
s implemented directly in TensorFlow/Keras. Once the training is completed, the weights W,b for all layers can

be saved using the command save weights, for future use. These weights can be later used to initialize a network
of the same structure using load weights from keyword in SciModel.

4. Application of SciANN to physics-informed deep learning

In this section, we explore how to use SciANN to solve and discover some representative case studies of
physics-informed deep learning.

4.1. Burgers equation

As the first example, we illustrate the use of SciANN to solve the Burgers equation, which arises in fluid
mechanics, acoustics, and traffic flow [32]. Following [33], we explore the governing equation:

u,t + uu,x − (0.01/π )u,xx = 0, t ∈ [0, 1], x ∈ [−1, 1], (8)

subject to initial and boundary conditions u(t = 0, x) = − sin(πx) and u(t, x = ±1) = 0, respectively. The
olution variable u can be approximated by û, defined in the form of a nonlinear neural network as û : (t, x) ↦→

u(t, x; W,b). The network used in [33] consists of 8 hidden layers, each with 20 neurons, and with tanh activation
unction, and can be defined in SciANN as:
7
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To set up the optimization problem, we need to identify the targets. The first target, as used in the PINN
ramework, is the PDE in Eq. (8), and is defined in SciANN as:

To impose boundary conditions, one can define them as continuous mathematical functions defined at all sampling
points:

L2 := (1 − sign(t − tmin))(u + sin(πx)),
L3 := (1 − sign(x − xmin))u,
L4 := (1 + sign(x − xmax))u,

(9)

or instance, L2 is zero at all sampling points except for t < tmin, which is chosen as t0 + tol. Instead of sign, one
can use smoother functions such as tanh.

In this way, the optimization model can be set up as:

In this case, all targets should ‘vanish’, therefore the training is done as:

An alternative approach to define the boundary conditions in SciANN is to define the target in the sn.SciModel

s the variable of interest and pass the ‘ids’ of training data where the conditions should be imposed. This is achieved
s:

Here, ids ic bc are ids associated with collocation points (t data, x data) where the initial condition and
boundary condition are given. An important point to keep in mind is that if the number of sampling points where
boundary conditions are imposed is a very small portion, the mini-batch optimization parameter batch size should
be set to a large number to guarantee consistent mini-batch optimization. Otherwise, some mini-batches may not
acquire any data on the boundary and therefore not generate the correct gradient for the gradient-descent update.
Also worth noting is that setting governing relations to ‘zero’ is conveniently done in SciANN.
8
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Fig. 5. Solution of the Burgers equation using PINN. (a) True solution for u; (b) PINN predicted values û; (c) Absolute error between true
nd predicted values, |u − û|.

The result of solving the Burgers equation using the deep learning framework is shown in Fig. 5. The results
atch the exact solution accurately, and reproduce the formation of a shock (self-sharpening discontinuity) in the

olution at x = 0. The limited accuracy in the neighborhood of the boundary x = 0 is due to the coarse training
grid; the accuracy can be improved by incorporating more collocation points in this region.

4.2. Data driven discovery of Navier–Stokes equations

As a second example, we show how SciANN can be used for discovery of partial differential equations. We
choose the incompressible Navier–Stokes problem used in [18]. The equations are:

u,t + p,x + λ1(uu,x + vu,y) − λ2(u,xx + u,yy) = 0,
v,t + p,y + λ1(uv,x + vv,y) − λ2(v,xx + v,yy) = 0,

(10)

where u and v are components of velocity field in x and y directions, respectively, p is the density-normalized
pressure, λ1 should be identically equal to 1 for Newtonian fluids, and λ2 is the kinematic viscosity. The true value
of the parameters to be identified are λ1 = 1 and λ2 = 0.01. Given the assumption of fluid incompressibility, we
use the divergence-free form of the equations, from which the components of the velocity are obtained as:

u = ψ,y, v = −ψ,x , (11)

where ψ is the potential function.
Here, the independent field variables p and ψ are approximated as p(t, x, y) ≈ p̂(t, x, y) and ψ(t, x, y) ≈

ψ̂(t, x, y), respectively, using nonlinear artificial neural networks as p̂ : (t, x, y) ↦→ Np(t, x, y; W,b) and
ˆ : (t, x, y) ↦→ Nψ (t, x, y; W,b). Using the same network size and activation function that was used in [18],
e set up the neural networks in SciANN as:

Note that this way of defining the networks results in two separate networks for p and ψ , which we find more
suitable for many problems. To replicate the one-network model used in the original study, one can use:
9
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Here, the objective is to identify parameters λ1 and λ2 of the Navier–Stokes equations (10) on a dataset with
given velocity field. Therefore, we need to define these as trainable parameters of the network. This is done using
sn.Parameter interface as:

Note that these parameters are initialized with a value of 0.0. The required derivatives in Eqs. (10) and (11) are
evaluated as:

with ‘order’ indicating the order of differentiation. We can now set up the targets of the problem as:

The optimization model is now set up as:

where only training points for u and v are provided, as in [18]. The results are shown in Fig. 6, that are the same
as those reported in [18].

4.3. Discovery of nonlinear solid mechanics with von Mises plasticity

Here, we illustrate the use of PINN for solution and discovery of nonlinear solid mechanics. We use the von Mises
elastoplastic constitutive model, which is commonly used to describe mechanical behavior of solid materials, in
particular metals. Elastoplasticity relations give rise to inequality constraints on the governing equations [34], and,
therefore, compared to the Navier–Stokes equations, they pose a different challenge to be incorporated in PINN.
The elastoplastic relations for a plane-strain problem are:

σi j, j + fi = 0,
σi j = si j − pδi j ,

p = −σkk/3 = −(λ+ 2/3µ)εv,
si j = 2µee

i j ,

εi j = (ui, j + u j,i )/2 = ei j + εvδi j/3,
εv = εkk = εxx + εyy,

e = ee
+ ep

.

(12)
i j i j i j

10
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Fig. 6. Predicted values from the PINN framework, for the field variables u, v and p, at different times t . The parameters are identified as
λ1 = 0.9967 and λ2 = 0.0110. The predictions are the same as those reported in [18].

Here, the summation notation is used with i, j, k ∈ {x, y}. σi j are components of the Cauchy stress tensor, and si j

and p are its deviatoric components and its pressure invariant, respectively. εi j are components of the infinitesimal
strain tensor derived from the displacements ux , u y , and ei j and εv are its deviatoric and volumetric components,
respectively.

According to the von Mises plasticity model, the admissible state of stress is defined inside the cylindrical yield
surface F = F(σi j ) as F := q − σY ≤ 0. Here, q is the equivalent stress defined as q =

√
3/2si j si j . Assuming the

ssociative flow rule, the plastic strain components are:

ε
p
i j ≡ ep

i j = ēp ∂F
∂σi j

= ε̄ p 3
2

si j

q
, (13)

here ε̄ p is the equivalent plastic strain, subject to ε̄ p
≥ 0. For the von Mises model, it can be shown that ε̄ p is

evaluated as

ε̄ p
= ε̄ −

σY

3µ
≥ 0, (14)

here ε̄ is the total equivalent strain, defined as ε̄ =
√

2/3ei j ei j . Note that for von Mises plasticity, the volumetric
part of plastic strain tensor is zero, ε p

v = 0. Finally, the parameters of this model include the Lamé elastic
parameters λ and µ, and the yield stress σY .

We use a classic example to illustrate our framework: a perforated strip subjected to uniaxial extension [34,35].
Consider a plate of dimensions 200 mm × 360 mm, with a circular hole of diameter 100 mm located in the center
of the plate. The plate is subjected to extension displacements of δ = 1 mm along the short edge, under plane-
strain condition, and without body forces, fi = 0. The parameters are λ = 19.44 GPa, µ = 29.17 GPa and
σY = 243.0 MPa. Due to symmetry, only a quarter of the domain needs to be considered in the simulation.
The synthetic data is generated from a high-fidelity FEM simulation using COMSOL software [36] on a mesh
of approximately 13,000 quartic triangular elements. The plate undergoes significant plastic deformation around the
circular hole. This results in localized deformation in the form of a shear band. While the strain exhibits localization,
the stress field remains continuous and smooth—a behavior that is due to the choice of a perfect-plasticity model
with no hardening.
11
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Following the approach proposed in [20], we approximate displacement and stress components ux , u y, σxx , σyy,

σzz, σxy with nonlinear neural networks as:

ûx : (x, y) ↦→ Nux (x, y; W,b)
v̂x : (x, y) ↦→ Nvx (x, y; W,b)
σ̂xx : (x, y) ↦→ Nσxx (x, y; W,b)
σ̂yy : (x, y) ↦→ Nσyy (x, y; W,b)

σ̂zz : (x, y) ↦→ Nσzz (x, y; W,b)
σ̂xy : (x, y) ↦→ Nσxy (x, y; W,b)

(15)

ote that due to plastic deformation, the out-of-plane stress σzz is not predefined, and therefore we also approximate

t with a neural network. These neural networks and parameters λ,µ, σY are defined as follows:

The kinematic relations, deviatoric stress components and plastic strains can be defined as:
12
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[

s

a

The operator-overloading abstraction of SciANN improves readability significantly. Assuming access to the
measured data for variables ux , u y , σxx , σyy , σzz , σxy , εxx , εyy , εxy , the optimization targets for training data can be
described using the L* = sn.Data(*), where ∗ refers to each variable. The physics-informed constraints are set
as:

We use 2000 data points from this reference solution, randomly distributed in the simulation domain, to provide
the training data. The PINN training is performed using networks with 4 layers, each with 100 neurons, and with a
hyperbolic-tangent activation function. The optimization parameters are the same as those used in [20]. The results
predicted by the PINN approach match the reference results very closely, as evidenced by: (1) the very small errors
in each of the components of the solution, except for the out-of-plane plastic strain components (Fig. 7); and (2) the
precise identification of yield stress σY and relatively accurate identification of elastic parameters λ and µ, yielding
estimated values λ = 18.3 GPa, µ = 27.6 GPa and σY = 243.0 MPa.

5. Application to variational PINN

Neural networks have recently been used to solve the variational form of differential equations as well [37,38].
In a recent study [27], the vPINN framework for solving PDEs was introduced and analyzed. Like PINN, it is based
on graph-based automatic differentiation. The authors of [27] suggest a Petrov–Galerkin approach, where the test
functions are chosen differently from the trial functions. For the test functions, they propose the use of polynomials
that vanish on the boundary of the domain. Here, we illustrate how to use SciANN for vPINN, and we show how
to construct proper test functions using neural networks.

Consider the steady-state heat equation subject to Dirichlet boundary conditions and a known heat source f (x, y)
27]:

∆T + f (x, y) = 0, x, y ∈ [−1, 1] × [−1, 1], (16)

ubject to the following boundary conditions:

T (x = ±1, y) = sin(2πy),
T (x, y = ±1) = 0,

(17)

nd a heat source:

f (x, y) = sin (2πy)
(

20 tanh (10x)
(
10tanh (10x)2 − 10

)
−

2π2 sin (2πx)
5

)
− 4π2 sin (2πy)

(
tanh (10x)+

sin (2πx)
10

)
.

(18)

The analytical solution to this problem is:

T (x, y) = 0.1 sin(2πx) + tanh(10x) sin(2πy). (19)
( )

13
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Fig. 7. The predicted values from the PINN framework for displacements, strains, plastic strains and stresses. The inverted parameters are
= 18.3 GPa, µ = 27.6 GPa and σY = 243.0 MPa.

The weak form of Eq. (16) is expressed as:∫
Ω

[∇Q · ∇T + Q · f (x, y)] dV =

∫
∂Ω

Qqn d S, (20)

where Ω is the domain of the problem, ∂Ω is the boundary of the domain, qn is the boundary heat flux,
and Q is the test function. The trial space for the temperature field T is constructed by a neural network as
T : (x, y) ↦→ NT (x, y; W,b). For the test space Q, the authors of [27] suggest the use of polynomials that satisfy
he boundary conditions. However, considering the universal approximation capabilities of the neural networks,
e suggest that this step is unnecessary, and a general neural network can be used as the test function. Note that

est functions should satisfy continuity requirements as well as boundary conditions. A multi-layer neural network
ith any nonlinear activation function is a good candidate for the continuity requirements. To satisfy the boundary

onditions, we can simply train the test functions to vanish on the boundary. Note that this step is associated to
he construction of proper test function and is done as a preprocessing step. Once the test functions satisfy the
homogeneous) boundary conditions, there is no need to further train them, and therefore their parameters can be
et to non-trainable at this stage. We also find that there is no need for the NT and NQ networks to be of the same
ize, or use the same activation functions.
14
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Therefore, the test function Q is defined as Q : (x, y) ↦→ NQ(x, y; W̄, b̄) subject to Q(x = ±1, y) = Q(x, y± =

1) = 0. Here, overbar weights and biases W̄, b̄ indicate that their values are predefined and fixed (non-trainable).
Therefore, the boundary flux integral on the right side of Eq. (20) vanishes, and the resulting week form can be
expressed as∫

Ω

∇Q · ∇T + Q · f (x, y) dV = 0. (21)

The problem can be defined in SciANN as follows. The first step is to construct proper test function:

As discussed earlier, Q data takes a value of 0.0 for training points on the boundary and random values at interior
uadrature points. Additionally, parameters of Q are set to non-trainable at the end of this step. The trial function T

and the target weak form in Eq. (21) are now implemented as:

Since the variational relation (21) takes an integral form, we need to perform a domain integral. Therefore, the
volume information should be passed to the network along with the body-force information at the quadrature points.
This is achieved by introducing two new SciANN variables as the inputs to the network. The optimization model
is then defined as:

The second target on T imposes the boundary conditions at specific quadrature points bc ids.
Following the details in [27], we perform the integration on a 70 × 70 grid. The results are shown in Fig. 8,

hich are very similar to those reported in [27].

. Conclusions

In this paper, we have introduced the open-source deep-learning package, SciANN, designed specifically
o facilitate physics-informed simulation, inversion, and discovery in the context of computational science and
ngineering problems. It can be used for regression and physics-informed deep learning with minimal effort
n the neural network setup. It is based on TensorFlow and Keras packages, and therefore it inherits all the
igh-performance computing capabilities of TensorFlow back-end, including CPU/GPU parallelization capabilities.

The objective of this paper is to introduce an environment based on a modern implementation of graph-based
eural network and automatic differentiation, to be used as a platform for scientific computations. In a series of
xamples, we have shown how to use SciANN for curve-fitting, solving PDEs in strong and weak form, and for
15
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Fig. 8. Solution of a steady-state heat equation using the vPINN framework. (a) True temperature field, T (x, y). (b) Temperature field
predicted by the neural network, T̂ (x, y). (c) Absolute error between true and predicted values, |T (x, y) − T̂ (x, y)|.

model inversion in the context of physics-informed deep learning. As part of the continued development of SciANN,
we are currently working on the implementation of several attractive features for scientific computing, including
domain decomposition, stochastic modeling, and uncertainty quantification. The examples presented here as well
as the package itself are all open-source, and available in the github repository github.com/sciann.
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