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ABSTRACT

We have developed a viscoplastic model that reproduces
creep behavior and inelastic deformation of rock during
loading-unloading cycles. We use a Perzyna-type descrip-
tion of viscous deformation that derives from a maximiza-
tion of dissipated energy during plastic flow, in combination
with a modified Cam-clay model of plastic deformation. The
plastic flow model is of the associative type, and the viscous
deformation is proportional to the ratio of driving stress and
a material viscosity. Our model does not rely on any explicit
time parameters; therefore, it is well-suited for standard and
cyclic loading of materials. We validate the model with re-
cent triaxial experiments of time-dependent deformation in
clay-rich (Haynesville Formation) and carbonate-rich (Eagle
Ford Formation) shale samples, and we find that the defor-
mation during complex, multiscale loading-unloading paths
can be reproduced accurately. We elucidate the role and
physical meaning of each model parameter, and we infer
their value from a gradient-descent minimization of the error
between simulation and experimental data. This inference
points to the large, and often unrecognized, uncertainty in
the preconsolidation stress, which is key to reproducing the
observed hysteresis in material deformation.

INTRODUCTION

Considering advances in observational tools, experiments, mod-
eling methods, and computational resources, geologic models are
becoming increasingly complex, taking into account nonlinear be-
havior and coupled phenomena (Settari and Mourits, 1998; Lewis
et al., 2003; Thomas et al., 2003; Braun et al., 2008; Rutqvist et al.,
2008; Segura and Carol, 2008; Aagaard et al., 2013; Jha and Juanes,

2014; Glerum et al., 2018). Rock deformation is responsible for a
wide range of geologic processes such as compaction of reservoirs
and subsequent changes in their performance, subsidence, stability
of faults, and hydraulic fracturing. To better understand these pro-
cesses and more accurately simulate them, the use of nonlinear
mechanical models of rock is required. Although modeling of
elastic time-dependent deformation (viscoelastic deformation) is
a rather mature topic (Rundle and Jackson, 1977; Yang, 2000;
Hagin and Zoback, 2004a, 2004b; Mavko and Saxena, 2016), mod-
eling of inelastic time-dependent deformation is currently plagued
with limitations. Inelastic time-dependent deformation in reservoir
rocks, or creep, causes wellbore instability, changes to the hydraulic
fracturing stimulation response, and changes in the state of stress
in sedimentary basins at different time scales (Nakken et al., 1989;
Leong and Chu, 2002; Sone and Zoback, 2013a, 2013b; Cao et al.,
2014; Rassouli and Zoback, 2018). To accurately estimate the
amount of subsidence, compaction, and change in the state of stress
due to creep, this viscoplastic deformation should be included in
geomechanical models (De Waal and Smits, 1988; Dudley et al.,
1998; Tutuncu et al., 1998).
Because of its central importance to reservoir performance and

fault behavior, creep in rocks has received increasing attention from
an experimental standpoint (Amitrano and Helmstetter, 2006; Grgic
and Amitrano, 2009; Heap et al., 2011; Sone and Zoback, 2013a,
2013b; Hao et al., 2014; Reber et al., 2014; Geng et al., 2017). Our
recent series of short- and long-term cyclic creep experiments on
clay- and carbonate-rich shales (Rassouli and Zoback, 2018) prop-
erly differentiates time independent from time-dependent deforma-
tion, allowing us to revisit viscoplastic modeling of rocks. However,
in the proposed model, we do not consider viscoplastic effects that
can possibly emanate from the pore fluid (e.g., Borja and Choo,
2016), or other deformation mechanisms due to chemical changes
in the pore fluid, which can be important for clay-rich materials.
Modeling of viscoplastic deformations in soils and rocks has a

long history (Finnie and Heller, 1959; Perzyna, 1966; Scholz, 1968;
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Borja and Kavazanjian, 1985; Wang et al., 1997; Dudley et al., 1998;
Revil, 1999; Vermeer and Neher, 1999; Yang, 2002; Shao et al.,
2003; Castelnau et al., 2008; Brantut et al., 2012). In early studies
(Finnie and Heller, 1959; Scholz, 1968; Carter et al., 1981; Dudley
et al., 1998), the viscoplastic deformation was modeled through an
explicit time-dependent power-law function, intended to represent
formation of microcracks in the rock (see also Borja and Kavazan-
jian, 1985). In many applications, such as creep modeling of sedi-
mentary rocks, power-law models remain popular (Vermeer and
Neher, 1999; Yin et al., 2010) and continue to be used to reproduce
experimental curves (Sone and Zoback, 2014; Rassouli and
Zoback, 2018). However, these models exhibit several deficiencies:
(1) Explicit-time functional forms do not account for the dependence
on the stress path, (2) they perform poorly for cyclic loading-unload-
ing as the characteristic time changes, and (3) they lead to fundamen-
tal inconsistencies, such as stress relaxation inside the elastic domain.
To address these fundamental limitations of time-explicit models

of creep, we propose and develop a viscoplastic model based on the
concept of overstress, where the difference between the active ap-
plied stress and the preconsolidation stress (the maximum stress that
the sample has experienced) is dissipated through a rate-dependent
viscous flow (Perzyna, 1966). In particular, our model relies on
modified Cam-clay (MCC) plasticity (Roscoe and Burland, 1968;
Wood, 1990; Pietruszczak, 2010; Borja, 2013) and Perzyna-type
viscoplasticity (Perzyna, 1966). Although Perzyna-type formu-
lations have been previously used (e.g., Adachi and Oka, 1982;
Kimoto et al., 2004; Chang and Zoback, 2010; Yin et al., 2010),
these studies have used ad hoc functional forms of the viscoplastic
multiplier. Instead, we derive it by imposing the principle of maxi-
mum plastic dissipation — also known as penalty regularization
of dissipation energy (Simo and Hughes, 1998). We illustrate the
performance of the new model by applying it to reproduce a series
of experiments that we conducted on clay-rich and carbonate-rich
shales (Rassouli and Zoback, 2018). The results show that the new
viscoplastic model reproduces the short- and long-term cyclic load-
ing paths exceptionally well, a feature that had heretofore remained
elusive to constitutive modeling of creep.

VISCOPLASTIC MODEL

The volumetric response of geomaterials plays a significant role
in their strength, and predicting it requires tracking the evolution of
the void ratio (Coussy, 1995). This is expressed trivially in the
small-deformation continuum kinematics, but it is less clear in the
large-deformation range. In this section, we describe a new visco-
plastic model under large volumetric changes. The model is devel-
oped within the class of Perzyna-type viscoplasticity models (Simo
and Hughes, 1998), which ensures that it is thermodynamically
consistent during viscoplastic evolution; i.e., the dissipated plastic
energy during plastic flow remains positive (Lubliner, 1990;
Pietruszczak, 2010).

Physically consistent volumetric decomposition in
porous media

The kinematic relation for volume change in a continuum is
described by

v
V
¼ J ≡ detðFÞ; (1)

where V is the initial volume (reference configuration), v is the
volume in the current (deformed) configuration, and F is the defor-
mation gradient tensor (Truesdell and Toupin, 1960; Marsden and
Hughes, 1983). In rate form, we can express

_J ¼ J trðdÞ; (2)

where d ≡ symmð∇vÞ is the rate of deformation tensor and v is the
(spatial) velocity field. Although the volumetric strain has tradition-
ally been defined as

εv ¼
v − V
V

; (3)

the proper definition in large deformations comes from integration
of equation 2:

εv ¼ ln J ¼ ln
v
V
: (4)

Under large inelastic deformation, the common decomposition
of the volumetric deformation into its elastic and plastic parts is
multiplicative, J ¼ JeJp (Simo and Hughes, 1998). It is unclear,
however, how to relate these factors to the elastic and plastic evo-
lution of the void ratio, which are physical, measurable quantities.
Here, we define a new volumetric decomposition that is consis-

tent with physical definitions and can be directly related to geome-
chanical concepts. Any change in volume from the initial state will
be decomposed into elastic and plastic parts. Therefore, the total
volume in the final (deformed) configuration is expressed as
v ¼ V þ Δve þ Δvp, or in rate form _v ¼ _ve þ _vp. Thus, we define
the deformed elastic and plastic volumes as vα ¼ V þ Δvα,
α ¼ e; p, so that

J ¼ Je þ Jp − 1; where Jα ¼ vα

V
: (5)

Note that the volumetric changes can then be evaluated as
εv ¼ ln J, εev ¼ ln Je, and εpv ¼ ln Jp. Imposing the common geo-
mechanical constraint of incompressibility of the solid grains rela-
tive to the voids, i.e., vs ≈ Vs (Coussy, 1995), and recalling the
definition of void ratio, e ¼ vv∕vs, we have ee ¼ vev∕vs, and
ep ¼ vpv∕vs, and we can then relate elastic and plastic parts of
the void ratio to J for large volumetric changes:

ee ¼ ð1þ e0ÞJe − 1; ep ¼ ð1þ e0ÞJp − 1: (6)

Although incompressibility of the grains is certainly only an
approximation, it is defensible even for low-porosity media, espe-
cially in the regime of visco plastic deformations without localized
failure. Indeed, ongoing experimental work on creep of shales using
in situ X-ray techniques shows that most of the creep volumetric
strains are a result of the change in the volume of the pores (Ras-
souli and Zoback, 2018).

The MCC model

Here, we adapt the classic MCC model to formulate the visco-
plasticity framework (Roscoe and Burland, 1968; Borja, 2013). The
MCC yield surface is described by the ellipse:

MR156 Haghighat et al.

D
ow

nl
oa

de
d 

04
/1

3/
20

 to
 1

8.
28

.8
.7

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



F ðσ; εpv Þ ¼ q2

η2F
þ pðp − pyðεpv ÞÞ ¼ 0; (7)

where p ¼ −ð1∕3ÞtrðσÞ is the volumetric stress (or “pressure”) and
q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3∕2s∶s
p

is the von Mises stress, where s ¼ σþ p1 is the
deviatoric stress (1 is the unit tensor). The quantity py is the inter-
cept of the elliptic yield surface with the p-axis (the center of the
ellipse is located at a ≡ py∕2) and ηF is the slope of the critical state
line (CSL) in p-q space. According to this model, the evolution of
the yield surface is a function of the plastic volumetric strain. There-
fore, for the case of large volumetric changes, py needs to be modi-
fied to account for the kinematic relations involving the void ratio
defined earlier.
Following the classic soil mechanics procedure of arriving at the

evolution relations, we can express the void ratio changes as

dee ¼ −κdðln pÞ; de ¼ −λdðln pÞ: (8)

Substituting relation 6 into 8 and integrating, we obtain

py ¼ py0 exp

�
1þ e0
λ − κ

ð1 − JpÞ
�
: (9)

Note that in the classic expression for py, the term 1 − Jp is ap-
proximated as εpv , which can be shown easily by a Taylor-series
expansion.

Perzyna-type viscoplastic model

In Perzyna’s model, the plastic viscous flow is related to the
power of active stress (Perzyna, 1966). The active stress is defined
as the distance between the current state of stress and the yield sur-
face. Here, we adopt the principle of maximum plastic dissipation,
by virtue of which we maximize the dissipation energy functional
Dp

μ (Simo and Hughes, 1998):

MAX
ðσ;pÞ

Dp
μ ½σ�; p�; _εp; _εpv � :¼ σ�∶_εp þ p� _εpv −

1

2μ
hFðσ�; εpv Þi2:

(10)

Solving relation 10 results in the definition of viscoplastic strain
rates:

_εp ¼ _γ
nF
jnF j

; _εpv ¼ _γ
F ;p

jnF j
; _γ ¼ hFðσ; εpv Þi

μðεpv Þp ;

nF ¼ ∂F
∂σ

; F ;p ¼ ∂F
∂p

;

(11)

where h·i ¼ maxð0; ·Þ denotes the Macaulay brackets. Equation 11
implies that viscous flow is proportional to the overstress, with a
viscosity that depends on the plastic volumetric strain and acts as
a hardening function. We take a simple exponential dependence

μðεpv Þ ¼ μ0 expðζεpv Þ; (12)

which introduces two parameters (reference viscosity μ0 and
exponent coefficient ζ) and that, as we will see, leads to excellent
quantitative agreement with the experimental data.

Elastic response

From equations 6 and 8, the volumetric response of the material
can be expressed as

dee ≡ ð1þ e0ÞdJe ¼ −κ
dp
p

: (13)

Expanding equation 13 and using the relations _Je ¼ J_εev and
J ¼ ð1þ eÞ∕ð1þ e0Þ, we arrive at the volumetric stress-strain re-
lation in the elastic domain:

dp ¼ Kdεev

with

K ¼ 1þ e
κ

p; (14)

where K is the bulk modulus, which is therefore pressure depen-
dent. As a result, the elasticity tensor D is also pressure dependent,
i.e., D ≡ DðpÞ. Our choice of a pressure-dependent elastic model is
motivated by its ability to capture the nonlinear elastic behavior of
geomaterials (Borja, 2013). Strictly speaking, however, this choice
does not preserve elastic energy during cycles of loading-unloading
(Zytynski et al., 1978). Preserving the elastic energy under cyclic
loading would require the use of a hyperelastic model of elasticity
(Houlsby, 1985; Borja et al., 1997). The use of hypoelasticity in
the finite-deformation range also suffers from theoretical and com-
putational issues regarding objectivity and frame invariance (for a
detailed discussion, see section 7.3 of Simo and Hughes, 1998).
Although this formulation has proven sufficient for modeling of
our shale samples, it may need to be extended to use Jaumann ob-
jective rates for soft clayey soils undergoing significant volumetric
deformation (Niemunis and Herle, 1997).

Summary and numerical implementation

At any given time step, the stress in the viscoplastic model is
updated according to

σ ≡ σt þ D∶_εeΔt ¼ σt þ D∶Δε − D∶_εpΔt; (15)

where all of the variables are evaluated at the current time step
tþ Δt unless specifically described by a subscript of t. In equa-
tion 15, _εp is given in equation 11 with yield surface F ðσ; εpv Þ
given by the MCC model (equation 7). The quantity Δε is the in-
cremental strain, typically evaluated through finite-element nonlin-
ear iterations. The nonlinear stress update is then implemented as a
return-mapping algorithm (Simo and Ortiz, 1985; Simo and
Hughes, 1998; Borja, 2013). As a result, the nonlinear strain
residual takes the form r ≡ −Δεþ Δεe þ Δεp, with
Δεe ¼ D−1∶Δσ and Δεp ¼ _γΔtnF∕jnF j, and the plastic multiplier
is determined by rewriting _γ in residual form: ψ ≡ F∕p − _γμðεpv Þ.
The return-mapping algorithm is then a Newton iteration on vari-
ables ðσ; _γÞ:

rþ ∂r
∂σ

∶δσþ ∂r
∂_γ

δ_γ ¼ 0;

ψ þ ∂ψ
∂σ

∶δσþ ∂ψ
∂_γ

δ_γ ¼ 0; (16)

Viscoplastic model of creep MR157
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where

∂r
∂σ

¼ D−1 þ ∂pD−1∶Δσ
∂p
∂σ

þ _γ
Δt
jnF j

�
∂nF
∂σ

−
1

jnF j
nF

∂jnF j
∂σ

�
;

∂r
∂_γ

¼ Δt
nF
jnF j

;

∂ψ
∂σ

¼ nF
p

−
F
p2

∂p
∂σ

− _γ
∂μ
∂εpv

∂εpv
∂σ

;

∂ψ
∂_γ

¼ −μðεpv Þ−
�
∂py

∂εpv
þ _γ

∂μ
∂εpv

�
∂εpv
∂σv

; (17)

with the initial value of _γ ¼ fF∕pg∕μ. Solving the system of equa-
tion 16, the expressions for the updates are

δ_γ ¼ ψ − ∂σψ∶E∶r
∂σψ∶E∶∂_γr − ∂_γψ

;

δσ ¼ −E∶ðrþ ∂_γrδ_γÞ; (18)

where E−1 ¼ ∂σr and the normalization factor jnF j is given by
jnF j ¼ q2∕η2F þ p2. The consistent tangent operator takes the form

DT ¼ E −
ðE∶nF Þ ⊗ ðnF∶EÞ
He −Hp þHvp

; (19)

where He ¼ nF∶E∶nF , Hp ¼ ð∂F∕∂pyÞp 0
yð∂F∕∂pÞ, and

Hvp ¼ pððμ∕ΔtÞjnF j þ _γμ 0ð∂F∕∂pÞÞ.

APPLICATION TO MODELING CREEP IN SHALE

To investigate the performance of the proposed model, we used
the results of creep experiments conducted on four rock samples.
The details of these experiments are given in Rassouli and Zoback
(2018). Here, we present a brief summary of these creep laboratory
tests, and we show that the new model reproduces the experimental
observations accurately.

Experimental procedure

Experiments were conducted on two sets of shale samples:
clay-rich samples from the Haynesville Formation in northwest
Louisiana and East Texas, and carbonate-rich samples from the
Eagle Ford Formation in South Texas. Each set contained two core
plugs: one with parallel and the other with perpendicular bedding
planes, oriented parallel to the axial loading axis. A summary of the
characteristics and mineralogy of these samples is given in Table 1.

The creep experiments were performed in a triaxial loading ap-
paratus following a cyclic pattern, with each cycle including four
stages: loading, creep, unloading, and rebound. We loaded the sam-
ples to a certain value of deviatoric (differential) stress, kept the load
constant so that the samples creep for a period of three to four hours,
unloaded the sample to the minimum loading capacity of the triaxial
system, and let the sample rebound for a similar time span as for the
creep stage. These four loading steps were then repeated for 1 day, 1
week, and 4 weeks to study the effect of experimental time on the
prediction of creep behavior of shale (Figure 1).
The confining pressure for all of the samples was 40 MPa during

all the loading steps. The deviatoric stress for sample HV35 was
increased to 30 MPa at the creep stages, whereas this value was
equal to 40 MPa for all other samples. The applied load in the first
cycle promotes closure of the microfractures initiated in the samples
as a result of the changes in environmental conditions from the
reservoir to the surface pressure and temperature.

Parameter identification

The initial void ratio of the sample is reported as e0 ¼ 0.15

(Rassouli and Zoback, 2018), and the Poisson’s ratio is measured
independently and taken as ν ¼ 0.2. The critical state parameter is
assumed to be ηF ¼ 1.3. Note that this parameter is not directly
measured in the experiments — as the stresses stay well below
the CSL — but it is taken within the range from different studies
(Kutter and Sathialingam, 1992; Vermeer and Neher, 1999; Pietruszc-
zak, 2010). These parameters are taken as known. Our first approach
to identify the viscoplastic model parameters is to split them into two
disjoint sets: yield-stress parameters and creep parameters.

Figure 1. Time-cycling loading and unloading during the triaxial
creep experiments. Shown here is the loading path for sample
HV37, for which the differential stress for all the creep stages is
equal to 40 MPa.

Table 1. Characteristics and mineralogy of the samples used for triaxial creep experiments, from Rassouli and Zoback (2018).

Sample Formation Orientation
Carbonate
(wt%)

Clay
(wt%)

TOC
(wt%)

Water content
(%)

Bulk density
(g∕cm3)

Final porosity
(%)

HV35 Haynesville Vertical 7 62 1.6 1 2.47 8.1

HH37 Haynesville Horizontal 7 62 1.6 1 2.47 8.1

EV8 Eagle Ford Vertical 51.3 20 4.7 0.3 2.45 4.3

EH5 Eagle Ford Horizontal 85.0 3 3.0 0.3 2.45 5.9

MR158 Haghighat et al.
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Yield-stress parameters

To define the yield stress relation (equation 9), we need to identify
the parameters py0, κ, and λ. In a triaxial setup, these parameters can
be inferred from the void ratio-effective pressure plots. The experi-
mental data for sample HV35 (Figure 2) indicate an almost linear-
elastic loading followed by time-dependent deformation at constant
pressure. Therefore, while κ can be accurately evaluated from the un-
loading paths, this is difficult for py0 and λ due to the lack of time-
independent plastic deformation. Acknowledging this uncertainty,
and using equation 9, the mean value for λ parameter is estimated as
λ ¼ 0.0146 from the loading paths. The mean value of κ from the
unloading paths is evaluated as κ ¼ 0.0127. The value of the ratio
λ∕κ is well outside the typical range (approximately 5–20), and thus
we set λ ¼ 2κ. Similarly, estimating the preconsolidation stress py0 is
not possible from the experimental e-p curve, again due to the lack of
rate-independent inelastic deformation. From the nominal reservoir
conditions for sample HV35 (50–75 MPa horizontal stress and 92
MPa vertical stress; Rassouli and Zoback, 2018), the equivalent pre-
consolidation stress is 64–80 MPa. However, the process of extreme
decompression from reservoir to surface conditions can easily alter
the microfabric of the rock, rendering the effective preconsolidation
stress upon loading during the triaxial tests very different. Here, we
use a value of py0 ¼ 50 MPa; otherwise, F would be very small and
would not result in viscoplastic deformation. It is clear that these
parameters are subject to large uncertainty due to lack of enough data
in the plastic region. We will later show how a gradient-descent opti-
mization approach can improve the estimation of these parameters.

Creep parameters

To evaluate the viscoplastic parameters, we analyze the time-
dependent part of the deformation history. The viscosity function
μ ¼ μðεpv Þ can be evaluated from equation 11. Rewriting this equa-
tion, we have

μ ¼ 1

_εpv

hF ðσ; εpv Þi
p

∂pF
jnF j

¼ 1

_εpv

�
q2

ηFp
þ ðp − pyðεpv ÞÞ

�
ð2p − pyðεpv ÞÞ:

(20)

Because there is no direct measurement of _εpv ,
we first perform a best fit on the εpv data and then
evaluate its time derivative. We assume a function
of the form εpv ¼ a logðbtþ cÞ, which provides an
excellent fit to the data (Figure 3a), and fromwhich
the time derivative is obtained _εpv ¼ ab∕ðbtþ cÞ.
We now evaluate the plastic viscosity μ from the

triaxial experiments via equation 20, and we per-
form curve fitting of the data with the exponential
functional form in equation 12. This results in an
excellent fit to the data, with parameter values μ0 ¼
4.13 × 106 MPa s and ζ ¼ 4.73 × 103 (Figure 3b).

Model predictions via 3D finite-element
simulation

From the two-step procedure described in the
previous section, we identified the following model
parameters for the HV35 sample (Haynesville
clay-rich shale): ν ¼ 0.2, ηF ¼ 1.29, κ ¼ 0.0127,

λ ¼ 0.0254, py0 ¼ 50 MPa, μ0 ¼ 4.13 × 106 MPa s, and ζ ¼
4.73 × 103. We are interested in determining the model predictions
for this set of parameters and contrasting them with the actual
measurements of axial strain during the multiscale, multicycle creep
experiments.
Although it would be possible to do this by performing a single-

degree-of-freedom calculation (in effect, a stress-driven integration
of equation 15), we decided to implement the model in the finite-
element code ABAQUS (Simulia, 2018) and reproduce the exper-
imental conditions with a full 3D simulation with implicit time
stepping that incorporates the time-varying boundary conditions of
the triaxial setup (see Appendix A).
The result of the simulation is shown in Figure 4. It is apparent

that the model can reproduce the time-dependent cyclic features of
the creep experiment. Because this is done in the framework of vis-
coplasticity, the time-dependent deformation is stress driven and not

Figure 2. Evolution of void ratio e versus pressure p during all four
loading-creep-unloading-rebound cycles, for sample HV35.

Figure 3. (a) Evolution of volumetric creep deformation εpv versus time, with experi-
mental data (the red points) fit by a logarithmic function (the black line). (b) Evolution of
the plastic viscosity μ as a function of volumetric creep deformation εpv , with data from
the theoretical relation in equation 20 (the red points) fit by an exponential function (the
black line). Data are for sample HV35.
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controlled by an explicit relaxation-time parameter. We hypothesize
that this is the reason why the response can be captured with a single
set of parameters, despite the fact that the load-creep-unload-
rebound cycles vary in duration from a few hours (the first cycle)
to a few weeks (the fourth cycle).

Optimized parameter identification and model validation

In the previous section, we showed that the new viscoplastic
model can reproduce the cyclic and time-dependent response of
the creep deformation experiment. However, the simple procedure
that we used for the parameter identification — separately for the
yield stress parameters (κ, λ, and py0 from the compression curve,
Figure 2) and for the viscous deformation parameters (μ0 and ζ from
the creep deformation versus time curve, Figure 3) — means that
the agreement between model predictions and experimental data is
not quantitatively accurate (Figure 4).
To improve parameter identification, we use an iterative pro-

cedure that minimizes a cost function based on the L2-norm of
the mismatch between the measured (ε̂) and simulated (εðαÞ) axial
strain versus time:

IðαÞ ≡
Z

T

0

ðεðt;αÞ − ε̂ðtÞÞ2dt; (21)

where α ¼ ðκ; λ; py0; μ0; ζÞ is the vector of parameters to be deter-
mined. Due to the short time periods of the cyclic loading at the start
of the experiment, the use of actual time results in a better fit of the
late times, whereas use of logarithmic time results in a better fit of
the early times. Because we are particularly interested in the accu-
rate evaluation of λ and py0, we use the expression in equation 21 as
the cost function, with a logarithmic rescaling of time. We use a
standard gradient-descent algorithm to perform the minimization,
and we initialize the iteration using the two-step methodology de-
scribed in the previous section. The result of the parameter identi-
fication for all four samples using this approach is reported in
Table 2, and the performance of the model in reproducing the

experimental data is shown in Figure 5. The results of the parameter
optimization are relatively insensitive to the value of the critical-
state parameter ηF (see Appendix A). In practice, the optimization
algorithm would be applied to the pointwise stress evolution (at the
“Gauss point level”). Given that it is a low-dimensional problem
with only five parameters, the entire optimization procedure takes
orders of magnitude less time and computational resources than a
typical full-scale simulation for a real-world engineering problem.

DISCUSSION

Figure 5 clearly shows that the proposed viscoplastic model of
creep provides an excellent quantitative agreement with the defor-
mation behavior of shale measured in triaxial experiments. The ob-
vious disparity between model and experiments for the EH5 sample
is due to a read-out issue in the strain gauge after the first load-
ing cycle.
The model exhibits the remarkable ability to capture the defor-

mation behavior for multistaged, multiscale loading cycles (note the
logarithmic scale of the time axis in Figure 5). This central feature
of the model is the result of the overstress-driven formulation
(Perzyna, 1966; Simo and Hughes, 1998), and it sets our model
apart from existing models of creep (Finnie and Heller, 1959;
Scholz, 1968; Carter et al., 1981; Dudley et al., 1998; Vermeer and
Neher, 1999; Yin et al., 2010), which use a time-explicit viscoplas-
tic function — something that requires setting a characteristic time
for stress relaxation, which, by definition, prevents capturing the
material’s time-dependent deformation under disparate periods of
creep between loading and unloading (Sone and Zoback, 2014;
Rassouli and Zoback, 2018).
When using the optimized model parameters in Table 2, the

model improves the fit to the data significantly with respect to
the initial parameters (compare Figures 4 and 5 for HV35). In this
particular case, the improvement in model performance can be
attributed to the refined identification of parameters κ and py0. An
interesting and nonintuitive outcome from our analysis is that the
preconsolidation stress py0 should be understood as a fitting
parameter in our model (and probably in other soil- and rock-
mechanics models), when the samples are subject to unconstrained
decompression from reservoir conditions, likely generating micro-
fractures and altering the fabric of the rock.
The model parameters all have a physical interpretation. This is

illustrated directly by analyzing the sensitivity to each parameter
around the optimum (Appendix A). It is informative to analyze the
shape of the cost function IðαÞ (equation 21) in the neighborhood

Figure 4. Comparison of axial strain from the laboratory experi-
ment of sample HV35 (red) and the 3D finite-element simulation
with implicit time integration of our viscoplastic model (black),
with the initial identification of model parameters.

Table 2. Model parameters for carbonate-rich shale samples
from the Eagle Ford Formation (EH5 and EV8) and
clay-rich shale samples from the Haynesville Formation
(HV35 and HH37).

EH5 EV8 HV35 HH37

κ 4.05 4.58 8.86 3.16 ×10−3

λ 5.09 7.45 29.30 56.60 ×10−3

μ0 17.44 50.29 9.69 152.0 ×106 MPa s

ζ 11.92 11.37 4.33 32.01 ×103

p0 34.35 38.94 43.17 49.93 MPa
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of the optimum (Appendix A). As a function of parameters κ, py0,
μ0, and ζ, the cost function exhibits a pronounced minimum, im-
plying that a gradient-descent optimization procedure will quickly
converge to the optimum value of those parameters. This is not the
case, however, for parameter λ: the cost function is flat over a wide
range of values — a behavior that indicates that the parameter is
poorly constrained by the data (Appendix A). In our case, this is due
to a lack of strain measurements in the rate-independent plastic
deformation regime.

CONCLUSION

In this study, we propose a model for the time-dependent defor-
mation (creep) of geomaterials under cyclic loading. Current mod-
eling approaches rely on the imposition of a characteristic relaxation
time, something that prevents their applicability to the case of load-
ing cycles with disparate time scales. Here, we address this issue by
developing a modeling framework that extends the well-known
Cam-clay plasticity model to simulate creep through a Perzyna-type
viscous deformation flow.
We validate the new viscoplastic model by simulating recent

long-term and cyclic creep experiments on shale-rock samples, and
we show that the new model reproduces the experimental results
accurately. By using a gradient-descent training approach to min-
imize the discrepancy between experimental results and simula-
tions, we find that the preconsolidation stress — reflecting the
mechanical-state alteration of the rock samples as a result of drilling
and underground retrieval operations — should be understood as
a model parameter rather than a material parameter, and one that is
subject to large variability and uncertainty.

An important aspect of the newly developed model is that it
honors crucial properties such as positive energy dissipation during
plastic and viscoplastic evolution and stress relaxation toward the
yield surface. It also guarantees the stability of its implementation in
finite-element codes of mechanical deformation, including an effi-
cient return-mapping algorithm for the nonlinear iterations at each
time step. Coupling with fluid flow is straightforward by using Biot
poroelasticity in the elastic domain, and understanding stresses as
effective stresses, σ 0 ¼ σþ bpf1, where pf is the fluid pressure
and b is the Biot coefficient. The validation of our model as an
effective stress model, however, would require dedicated additional
experiments, in which the samples are saturated with fluid and
loaded under different pore pressures. The water content of the sam-
ples that we worked with was small (1% for the Haynesville and
0.3% for the Eagle Ford samples), and the experiments were per-
formed at ambient temperature. We are currently working on creep
experiments at reservoir temperatures, and the results and the mod-
eling will be reported in future work. An interesting extension of the
model is consideration of anisotropy (in deformation and strength
response) — a feature that is required for the accurate modeling of
many geomaterials, including shales.
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Figure 5. Comparison of axial strain from the lab-
oratory experiments (the dotted gray lines) and the
3D finite-element simulation with implicit time
integration of our viscoplastic model (the solid
black lines) for all four samples: EH5 and EV8
are carbonate-rich shales from the Eagle Ford
Formation and HV35 and HH37 are clay-rich
shales from the Haynesville Formation. Simulation
curves correspond to the optimized parameters
obtained from minimizing the cost function in
equation 21.
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DATA AND MATERIALS
AVAILABILITY

Data associated with this research are available
and can be obtained by contacting the corre-
sponding author.

APPENDIX A

ADDITIONAL FIGURES
AND TABLES

In this appendix, we provide additional details
regarding the model application in a 3D finite-
element method simulation (Figure A-1), sensitiv-
ity analysis (Figure A-2), parameter identification
(Figure A-3), and evolution of the yield surface
(Figure A-4). Finally, we also provide a summary
of the model parameters for all of the shale sam-
ples that we studied (Table A-1).

Figure A-1. (a) Stress loading function as a function of time for sample HV35, repro-
ducing the four cycles of loading-creep-unloading-rebound (note the logarithmic time
axis). (b) Schematic of the 3D finite-element simulation setup, reproducing the exper-
imental conditions of the triaxial tests for sample HV35. The displacement in the z-di-
rection is restrained at the bottom boundary, i.e., uz ¼ 0. The model is initialized with
normal stress p ¼ 40 MPa on the side boundary and q0 ¼ 9 MPa on the top boundary
to replicate the experiment’s initial stress state. Then, a cyclic load of q ¼ 21 MPa is
applied over time, as shown in (a). The experiments involve a constant state of stress;
therefore, the number of elements does not play a role in these simulations — some-
thing that we have checked. Similarly, we use a sufficiently large number of time steps
(1000 time steps per loading cycle) such that the results are independent of this choice.

Figure A-2. Sensitivity of the modeled axial strain to parameters κ, λ, py0, μ0, and ζ for sample HV35. The model response is obtained varying
one parameter at a time, around the optimum parameter set obtained from gradient-descent optimization.
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APPENDIX B

COMPARISON WITH A CLASSICAL
MODEL OF VISCOPLASTICITY

It proves useful to contrast our proposed model with the classic
Vermeer and Neher (1999) model of creep in rocks. In the latter
model, the volumetric deformation is evaluated from classic soil
mechanics concepts as

_εpv ¼ μ∕ð1þ eÞ
tþ τc

�
pa

py

�λ−κ
μ

; (B-1)

where μ and τc are the model parameters, pa is defined as
pþ q2∕ðη2FpÞ and, importantly, t is the time of creep deformation.
It is worth noting that the number of creep parameters in our model
(μ and ζ) is the same as in the Vermeer and Neher (1999) model
(μ and τc). From equation B-1, the plastic multiplier _γ and, there-
fore, the plastic strain tensor _εp are fully defined. The time variable t
in this relation is difficult to reconcile with the theory of plasticity,
where the stress difference from the yield surface drives the evolu-
tion of plastic deformations. In particular, for cyclic loading, it is
unclear the point at which the reference for t should be set.

Figure A-3. Sensitivity of the cost function used in the optimization to parameters κ, λ, py0, μ0, and ζ for sample HV35. The cost function is
evaluated by varying one parameter at a time, around the optimum parameter set obtained from gradient-descent optimization. As function of
parameters κ, py0, μ0, and ζ, the cost function exhibits a pronounced minimum, implying that a gradient-descent optimization procedure will
quickly converge to the optimum value of those parameters. This is not the case, however, for parameter λ: The cost function is flat over a wide
range of values — a behavior that indicates that the parameter is poorly constrained by the data, and results in relatively slow convergence
(typically 100–200 iterations) of the gradient-descent algorithm. In this case, this is due to a lack of strain measurements in the rate-inde-
pendent plastic deformation regime.

Figure A-4. Evolution of the yield surface for ηF ¼ 1.0, 1.3, and 1.6
associated to CSL angles ϕcs ¼ 25.4°, 32.2°, and 39.2°, respectively.
As can be seen here, the unit normal to the yield surfaces at the in-
tersection with the triaxial loading path from our experiments does not
vary significantly. This leads us to suspect that the choice of ηF does
not significantly change our inference of the other model parameters.
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To validate our implementation of the Vermeer and Neher (1999)
model, we use the undrained problem reported in their work
(Vermeer and Neher, 1999). The material parameters are taken as
ν ¼ 0.25, κ ¼ 0.025, λ ¼ 0.1575, ϕcs ¼ 32°, μ ¼ 0.006, and τc ¼
24 h, assuming an initial void ratio of e0 ¼ 0.5. The results of
undrained axial loading (Figure B-1) precisely match those reported
in Vermeer and Neher (1999).
To further test the models, we simulate an uniaxial compression

test subject to an initial stress of p0 ¼ 373 kPa and a deviatoric
stress q ¼ 500 kPa. The axial load q is increased linearly within
1 day and kept fixed for 9 days. Because this is a stress-controlled

experiment, we take the final displacement from Vermeer’s model
as the reference curve and evaluate parameters of our proposed
model using the optimization technique described in the main
manuscript, leading to parameter values κ ¼ 0.039, λ ¼ 0.251,
μ ¼ 6.45 × 104, ζ ¼ 135.7, and py0 ¼ 448 kPa. Because the plastic
deformation mechanism is different for each model, the parameters
providing a best match (Figure B-2) are also different.
In Figure B-3, we plot the evolution of pa and py as well as

F ¼ pa − py. After a sufficiently long time, the system should
reach a new equilibrium with a new preconsolidation stress and
yield surface satisfying the new stress state. This is indeed the case

Table A-1. Model parameters for carbonate-rich shale samples from the Eagle Ford Formation (EH5 and EV8) and clay-rich
shale samples from the Haynesville Formation (HV35 and HH37) for different values of the critical-state parameter ηF � 1.0,
1.3, and 1.6.

ηF EH5 EV8 HV35 HH37

1.00 κ 4.05 4.33 8.75 3.06 ×10−3

λ 5.09 7.09 22.35 56.72 ×10−3

μ0 17.44 57.0 3.94 152.1 ×106 MPa s

ζ 11.92 14.66 6.61 35.65 ×103

p0 34.35 39.38 46.33 50.95 MPa

1.30 κ 4.05 4.58 8.86 3.16 ×10−3

λ 5.09 7.45 29.30 56.60 ×10−3

μ0 17.44 50.29 9.69 152.0 ×106 MPa s

ζ 11.92 11.37 4.33 32.01 ×103

p0 34.35 38.94 43.17 49.93 MPa

1.60 κ 3.81 4.60 8.77 3.16 ×10−3

λ 5.16 7.80 22.44 56.60 ×10−3

μ0 7.20 84.15 3.51 152.0 ×106 MPa s

ζ 7.64 8.30 3.35 31.59 ×103

p0 31.67 38.11 43.22 49.60 MPa

Figure B-1. Results from the simulation reported in Vermeer and Neher (1999) for modeling viscoplastic deformation under undrained loading
conditions (i.e., εv ¼ 0 or ε22 ¼ ε33 ¼ −ε11∕2) for axial strain rates of 0.00094%/min, 0.15%/min, and 1.1%/min. (a) Evolution of p and q
versus axial strain. (b) Evolution of stresses in the p-q space.
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for our viscoplastic model: the yield surface grows and becomes
tangent to the applied active stress (point A), indicating a proper
dissipation of the excess stresses through time-dependent plastic
deformation. This behavior implies that the yield function F be-
comes positive initially and then asymptotes back to zero (point B),
illustrating the behavior of a Perzyna-type model. In contrast, the
Vermeer model predicts an evolution in which the yield surface
overshoots the applied active stress — a thermodynamically in-
compatible stress state.
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