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Abstract

We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to inversion
nd surrogate modeling in solid mechanics. We explain how to incorporate the momentum balance and constitutive relations
nto PINN, and explore in detail the application to linear elasticity, and illustrate its extension to nonlinear problems through
n example that showcases von Mises elastoplasticity. While common PINN algorithms are based on training one deep neural
etwork (DNN), we propose a multi-network model that results in more accurate representation of the field variables. To
alidate the model, we test the framework on synthetic data generated from analytical and numerical reference solutions. We
tudy convergence of the PINN model, and show that Isogeometric Analysis (IGA) results in superior accuracy and convergence
haracteristics compared with classic low-order Finite Element Method (FEM). We also show the applicability of the framework
or transfer learning, and find vastly accelerated convergence during network re-training. Finally, we find that honoring the
hysics leads to improved robustness: when trained only on a few parameters, we find that the PINN model can accurately
redict the solution for a wide range of parameters new to the network—thus pointing to an important application of this
ramework to sensitivity analysis and surrogate modeling.
c 2021 Elsevier B.V. All rights reserved.

eywords: Artificial neural network; Physics-informed deep learning; Inversion; Transfer learning; Linear elasticity; Elastoplasticity

1. Introduction

Over the past few years, there has been a revolution in the successful application of Artificial Neural Networks
ANN), also commonly referred to Deep Neural Networks (DNN) and Deep Learning (DL), in various fields
ncluding image classification, handwriting recognition, speech recognition and translation, and computer vision.
hese ANN approaches have led to a sea change in the performance of search engines, autonomous driving,
-commerce, and photography (see [1–3] for a review). In engineering and science, ANNs have been applied to a
arge number of areas, including geosciences [4–8], material science [9–12], fluid mechanics [13,14], genetics [15],
nd infrastructure health monitoring [16,17], to name a few examples. In the solid and geomechanics community,
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deep learning has been used primarily for material modeling, in an attempt to replace classical constitutive models
with ANNs [18–20]. In these applications, training of the network, i.e., evaluation of the network parameters, is
carried out by minimizing the norm of the distance between the network output (prediction) and the true output
(training data). In this paper, we will refer to ANNs trained in this way as “data-driven”.

A different class of ANNs, known as Physics-Informed Neural Networks (PINN), was introduced recently
21–25]. This concept of ANNs was developed to endow the network model with known equations that govern
he physics of a system. The training of PINNs is performed with a cost function that, in addition to data, includes
he governing equations, initial and boundary conditions. This architecture can be used for solution and discovery
finding parameters) of systems of ordinary differential equations (ODEs) and partial differential equations (PDEs).

hile solving ODEs and PDEs with ANNs is not a new topic, e.g., [26–28], the success of these recent studies can
e broadly attributed to: (1) the choice of network architecture, i.e., the set of inputs and outputs of the ANN, so
hat one can impose governing equations on the network; (2) algorithmic advances, including graph-based automatic
ifferentiation for accurate differentiation of ANN functionals and for error back-propagation; and (3) availability
f advanced machine-learning software with CPU and GPU parallel processing capabilities including Theano [29]
nd TensorFlow [30].

This framework has been used for solution and discovery of Schrodinger, Allen–Cahn, and Navier–Stokes
quations [21,22]. It has also been used for solution of high-dimensional stochastic PDEs [23]. As pointed out
n [23], this approach can be considered as a class of Reinforcement Learning [31], where the learning is on

aximizing an incentive or minimizing a loss rather than direct training on data. If the network prediction does not
atisfy a governing equation, it will result in an increase in the cost and therefore the learning traverses a path that
inimizes that cost.
Here, we focus on the novel application of PINNs to inversion and surrogate modeling of solid mechanics. We

tudy linear elasticity in detail, but then illustrate the performance on nonlinear von Mises elastoplasticity. Since
arameters of the governing PDEs can also be defined as trainable parameters, the framework inherently allows
s to perform parameter identification (model inversion). We validate the framework on synthetic data generated
rom low-order and high-order Finite Element Methods (FEM) and from Isogeometric Analysis (IGA) [32,33].
hese datasets satisfy the governing equations with different order of accuracy, where the error can be considered
s noise in data. We find that the training converges faster on more accurate datasets, pointing to importance of
igher-order numerical methods for pre-training ANNs. We also find that if the data is pre-processed properly, the
raining converges to the correct solution and correct parameters even on data generated with a coarse mesh and
ow-order FEM—an important result that illustrates the robustness of the proposed approach. Finally, we find that,
ue to the imposition of the physics constraints, the training converges on a very sparse dataset, which is a crucial
roperty in practice given that the installation of a dense network of sensors can be very costly.

Parameter estimation (identification) of complex models is a challenging task that requires a large number of
orward simulations, depending on model complexity and the number of parameters. As a result, most inversion
echniques have been applied to simplified models. The use of PINNs, however, allows us to perform identification
imultaneously with fitting the ANN model on data [22]. This property highlights the potential of this approach
ompared with classical methods. We explore the application of PINN models for identification of multiple datasets
enerated with different parameters. Similar to transfer learning, where a pre-trained model is used as the initial
tate of the network [34], we perform re-training on new datasets starting from a previously trained network on a
ifferent dataset (with different parameters). We find that the re-training and identification of other datasets take
ar less time. Since the successfully trained PINN model should also satisfy the physics constraints, it is in effect
surrogate model that can be used for extrapolation on unexplored data. To test this property, we train a network

n four datasets with different parameters and then test it on a wide range of new parameter sets, and find that the
esults remain relatively accurate. This property points to the applicability of PINN models for sensitivity analysis,
here classical approaches typically require an exceedingly large number of forward simulations.

. Physics-informed neural networks: Linear elasticity
In this section, we review the equations of linear elastostatics with emphasis on PINN implementation.
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2.1. Linear elasticity

The equations expressing momentum balance, the constitutive model and the kinematic relations are, respectively,

σi j, j + fi = 0,

σi j = λδi jεkk + 2µεi j ,

εi j =
1
2

(
ui, j + u j,i

)
.

(1)

ere, σi j denotes the Cauchy stress tensor. For the two-dimensional problems considered here i, j = 1, 2 (or
, j = x, y). We use the summation convention, and a subscript comma denotes partial derivative. The function fi

enotes a body force, ui represents the displacements, εi j is the infinitesimal stress tensor and δi j is the Kronecker
elta. The Lamé parameters λ and µ are the quantities to be inferred using PINN.

.2. Introduction to Physics-Informed Neural Networks

In this section, we provide an overview of the Physics-Informed Neural Networks (PINN) architecture, with
mphasis on their application to model inversion. Let N (x; W, b) : Rdx → Rdy be an L-layer neural network with
nput vector x, output vector y, and network parameters W, b. This network is a feed-forward network, meaning
hat each layer creates data for the next layer through the following nested transformations:

zl
= σ l (

Wl
· zl−1

+ bl) , l = 1, . . . , L , (2)

here z0
≡ x and zL

≡ y are inputs and outputs of the model, Wl , bl are parameters of each layer l, known as
eights and biases, respectively. The functions σ l are called activation functions and make the network nonlinear
ith respect to the inputs. For instance, an ANN functional of some field variable, such as displacement u(x), with

hree hidden layers and with σ l
= tanh as the activation function for all layers except the last can be written as

z1
= tanh(W1

· x + b1),

z2
= tanh(W2

· z1
+ b2),

z3
= tanh(W3

· z2
+ b3),

u = W4
· z3

+ b4.

(3)

his model can be considered as an approximate solution for the field variable u of a partial differential equation.
In the PINN architecture, the network inputs (also known as features) are space and time variables, i.e., (x, y, z, t)

n Cartesian coordinates, which makes it meaningful to perform the differentiation of the network’s output with
espect to any of the input variables. Classical implementations based on finite difference approximations are not
ccurate when applied to deep networks (see [35] for a review). Thanks to modern graph-based implementation of
he feed-forward network (e.g., Theano [29], Tensorflow [30], MXNet [36]), this can be carried out using Automatic
ifferentiation at machine precision, therefore allowing for many hidden layers to represent nonlinear response.
ence, evaluation of a partial differential operator P acting on u can then be incorporated in the cost function L

long with initial and boundary conditions as:

L = |u − u∗
| + |Pu − b∗

| + |u − u∗
|∂Ω + |u0 − u∗

0|. (4)

he quantities without asterisk represent either direct outputs of the network or quantities obtained through graph-
ased automatic differentiation of the network outputs [35], and the quantities with asterisk represent given data.
hese include direct measurements of the solution variables u∗ within the domain Ω , their values at the boundary
Ω , or their initial values u∗

0 at t = t0, as well as the true value b∗ of the right-hand side of the PDE, Pu = b, at
ny given training point. The norm | · | of a generic quantity g defined in Ω denotes 1

N

∑N
i=1 g(xi )2 where the xi ’s

are the spatial points where the data is known. The dataset is then fed to the neural network and an optimization is
performed to evaluate all the parameters of the model, including the parameters of the PDE.
3
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2.3. Training PINN

Different algorithms that can be used to train a neural network. Among the choices available in Keras [37] we
se the Adam optimization scheme [38], which we have found to outperform other choices such as Adagrad [39],
or this task. Several algorithmic parameters affect the rate of convergence of the network training. Here we adopt
he terminology in Keras [37], but the terminology in other modern machine learning packages is similar. The
lgorithmic parameters include batch-size, epochs, shuffle, and patience. Batch-size controls the number of samples
rom a dataset used to evaluate one gradient update. A batch-size of 1 would be associated with a full stochastic
radient descent optimization. One epoch is one round of training on a dataset. If a dataset is shuffled, then a new
ound of training (epoch) would result in an updated parameter set because the batched-gradients are evaluated on
ifferent batches. It is common to re-shuffle a dataset many times and perform the back-propagation updates. The
ptimizer may, however, stop earlier if it finds that new rounds of epochs are not improving the cost function. That
s where the last keyword, patience, comes in. This is mainly because we are dealing with non-convex optimization
nd we need to test the training from different starting points and in different directions to build confidence on the
arameters evaluated from minimization of the cost-function on a dataset. Patience is the parameter that controls
hen the optimizer should stop the training.
There are three ways to train the network: (1) generate a sufficiently large number of datasets and perform a

ne-epoch training on each dataset, (2) work on one dataset over many epochs by reshuffling the data, and (3) a
ombination of these. When dealing with synthetic data, all approaches are feasible to pursue. However, strategy (1)
bove is usually impossible to apply in practice, specially in space, where sensors are installed at fixed and limited
ocations. In the original work on PINN [22], approach (1) was used to train the model, where datasets are generated
n random space discretizations at each epoch. Here, we follow approach (2) to use training data that we could
ealistically have in practice. For all examples, unless otherwise noted, we use a batch-size of 64, a limit of 10,000
pochs with shuffling, and a patience of 500 to perform the training.

. Illustrative example and discussion

In this section, we use the PINN architecture on an illustrative linear elasticity problem.

.1. Problem setup

To illustrate the application of the proposed approach, we consider an elastic plane-strain problem on the unit
quare (Fig. 1), subject to the boundary conditions depicted in the figure. The body forces are:

fx = λ
[
4π2 cos(2πx) sin(πy) − π cos(πx)Qy3]

+ µ
[
9π2 cos(2πx) sin(πy) − π cos(πx)Qy3]

fy = λ
[
−3 sin(πx)Qy2

+ 2π2 sin(2πx) cos(πy)
]

+ µ
[
−6 sin(πx)Qy2

+ 2π2 sin(2πx) cos(πy) + π2 sin(πx)Qy4/4
]
.

(5)

he exact solution of this problem is

ux (x, y) = cos(2πx) sin(πy), (6)

u y(x, y) = sin(πx)Qy4/4. (7)

hich is plotted in Fig. 2, for parameter values of λ = 1, µ = 0.5, and Q = 4.

.2. Neural network setup

Due to the symmetry of the stress and strain tensors, the quantities of interest for a two-dimensional problem are
x , u y , εxx , εyy , εxy , σxx , σyy , σxy . There are a few potential architectures that we can use to design our network. The

nput features (variables) are the spatial coordinates (x, y), for all the network choices. For the outputs, a potential
esign is to have a densely connected network with two outputs as (ux , u y). Another option is to have two densely
onnected independent networks with only one output each, associated with ux and u y , respectively (Fig. 3). Then,

he remaining quantities of interest, i.e., σi j , εi j , can be obtained through differentiation. This is equivalent to the

4
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Fig. 1. Problem setup and boundary conditions.

classical displacement formulation. Alternatively, we may have (ux , u y, σxx , σyy, σxy) or (ux , u y, εxx , εyy, εxy) as
outputs of one network or multiple independent networks. This choice is classically known as a mixed formulation.
As can be seen from Fig. 3, these choices affect the number of parameters of the network and how different quantities
of interest are correlated. Eq. (3) shows that the feed-forward neural network imposes a special functional form to
the network that may not necessarily follow any cross-dependence between variables in the governing equations (1).
Note that for the single-network model, the input to the last layer is identical for all outputs. In principle, using a
sufficiently wide network would allow that the optimizer would associate different parts of each layer to a specific
output. We find, however, that using separate networks facilitates this task for the optimizer. The choice of separate
networks is, in fact, similar to the choice that is made in classical numerical methods for the solution of PDEs.
Weights and biases of a neural network play a similar role to the degrees of freedom in finite-element or meshfree
methods, which are defined independently for each solution variable. Our tests on different problems also confirm
that using separate networks for each variable results in a far more effective strategy. Therefore, we propose to have
variables ux , u y, σxx , σyy, σxy defined as independent ANNs as our architecture of choice (see Fig. 4), i.e.

ux (x) ≈ Nux (x),
u y(x) ≈ Nuy (x),

σxx (x) ≈ Nσxx (x),
σyy(x) ≈ Nσyy (x),

σxy(x) ≈ Nσxy (x),

(8)

The cost function is defined as

L = |ux − u∗

x | + |u y − u∗

y | + |σxx − σ ∗

xx | + |σyy − σ ∗

yy | + |σxy − σ ∗

xy |

+ |σxx,x + σxy,y + f ∗

x | + |σxy,x + σyy,y + f ∗

y |

+ |(λ + 2µ)εxx + λεyy − σxx | + |(λ + 2µ)εyy + λεxx − σyy | + |2µεxy − σxy |.

(9)

The quantities with asterisks represent given data. We will train the networks so that their output values are as close
as possible to the data, which may be real field data or, in this paper, synthetic data from the exact solution to the
problem or the result of a high-fidelity simulation. The values without asterisk represent either direct outputs of
the network (e.g., ux or σxx ; see Eq. (8)) or quantities obtained through automatic graph-based differentiation [35]

∗ ∗
of the network outputs (e.g., εxx = ux,x ). In Eq. (9), fx and fy represent data on the body forces obtained as

5
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Fig. 2. Exact solution in Eqs. (6)–(7) for parameter values of λ = 1, µ = 0.5, and Q = 4.

f ∗

i = −σ ∗

i j, j . Since the initial state of the network is random, in what follows, we report the evolution of the loss
unction L normalized by its value L0 at the end of the first epoch.

The different terms in the cost function represent measures of the error in the displacement and stress fields,
he momentum balance, and the constitutive law. This cost function can be used for deep-learning-based solution
f PDEs as well as for identification of the model parameters. For the solution of PDEs, λ and µ are treated
s fixed numbers in the network. For parameter identification, λ and µ are treated as network parameters that
hange during the training phase (see Fig. 4). In TensorFlow [30] this can be accomplished defining λ and µ as
onstant (PDE solution) or Variable (parameter identification) objects, respectively. We set up the problem using
he SciANN [40] framework, a high-level Keras [37] wrapper for physics-informed deep learning and scientific
omputations. Experimenting with all of the previously mentioned network choices can be easily done in SciANN
ith minimal coding (see [40] for some examples).
In our experience, the use of PINNs as a forward solver does not lead to advantages in either accuracy or

erformance, and, therefore, we do not discuss it further here (the code for the forward solution of linear elasticity

an be found in our github repository).
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d

Fig. 3. Potential PINN network choices, with ux and u y as outputs of a single network (left), or outputs of two independent networks with

ifferent parameters (right).

Fig. 4. Network architecture of choice used in this study. We define five networks, one for each variable of interest, i.e., ux , u y , σxx , σyy , σxy .
Each network has (x, y) as input features.

3.3. Identification of model parameters: PINN trained on the exact solution

Here, we use PINN to identify the model parameters λ and µ. Our data corresponds to the exact solution with
parameter values λ = 1, µ = 0.5 and Q = 4. Our default dataset consists of 100 × 100 sample points, uniformly
distributed. We study how the accuracy and the efficiency of the identification process depend on the architecture
and functional form of the network; the available data; and whether we use one or several independent networks
for the different quantities of interest. To study the impact of the architecture and functional form of the ANN, we
use 4 different networks with either 5 or 10 hidden layers, and either 20 or 50 neurons per layer; see Table 1. The
role of the network functional form is studied comparing the performance of the two most widely used activation
functions, i.e., tanh and ReLU, where ReLU(x) = max(0, x) [1]. For the activation functions, the hyperbolic-tangent
function is the default choice, unless otherwise noted.

Studying the impact of the available data on the identification process is crucial because we are interested in

identifying the model parameters with as little data as possible. We undertake the analysis considering two scenarios:

7
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Table 1
Statistics of the networks of choice to perform PINN learning. As shown in Fig. 3, by “single network” we refer to the case where all
solution variables (ux , u y , σxx , σyy , and σxy ) are outputs of a single network, thus sharing all network parameters except for the last layer.
By “independent networks” we refer to the case where the solution variables are represented with 5 different networks and do not share any
network parameters. For each network size, the number of hidden layers is kept constant to represent the same degree of nonlinearity, while
the number of neurons is adjusted to have a similar total number of parameters for both “single network” and “independent networks” cases.

Network Num hidden layers Independent networks Single network

Neurons Parameters Neurons Parameters

i 5 20 8805 45 8645
ii 5 50 52 005 113 52 437
iii 10 20 19 305 45 18 995
iv 10 50 115 755 113 116 847

Fig. 5. Evolution of the total normalized MSE loss L for training networks i, ii, iii, and iv on the analytical dataset ux , u y , σxx , σyy , and
σxy ; (a) body forces are evaluated from central-difference differentiation of stress components, (b) body forces are also given analytically.
The losses are normalized by L0, which is the value of the loss function at the end of the first epoch.

(a) Stress-complete data: In this case, we have data at a set of points for the displacements and stresses, that is,
u∗

x , u∗
y , σ ∗

xx , σ ∗
yy , σ ∗

xy . Because our cost function (9) involves also data that depends on the stress derivatives
( f ∗

x and f ∗
y ), this approach relies on an additional algorithmic procedure for differentiation of stresses. In

this section we compute the stress derivatives using second-order central finite-difference approximations.
(b) Force-complete data: In this scenario, we have data at a set of points for the displacements, stresses and their

derivatives. The availability of stress derivatives allows us to determine data for the body forces f ∗
x and f ∗

y
using the momentum balance equation without resorting to any differentiation algorithm.

In Fig. 5 we compare the evolution of the cost function for stress-complete data (Fig. 5a) and force-complete
ata (Fig. 5b). Both figures show a comparison of the four network architectures that we study; see Table 1. We
nd that training on the force-complete data performs slightly better (lower loss) at a given epoch.

The result of convergence of model identification is shown in Fig. 6. The training converges to the true values
f parameters, i.e., λ = 1 and µ = 1/2, for all cases. Convergence of the normalized mean squared error of the
ndividual terms in the loss function (9) is shown in Fig. 7 for Net-ii (see Table 1). We find that the optimization is
ery quick on the parameters while it takes far more epochs to fit the network on the field variables. Additionally,
e observe that deeper networks produce less accurate parameters. We attribute the loss of accuracy as we increase

he ANN complexity to over-fitting [1,3]. We also find that all terms in the loss, i.e., data-driven and physics-
nformed, show oscillations during the optimization. Therefore, no individual term is solely responsible for the
scillations in the total loss (Fig. 5). The training of network iv, which has the most parameters, shows the largest
scillations—possibly an indication of some redundancy in the number of layers or neurons.

The impact of the ANN functional form can be examined comparing the data in Figs. 5b and 8a, which show
he evolution of the cost function using the activation functions tanh and ReLU, respectively. The function ReLU
8
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Fig. 6. The result of identification for λ = 1, µ = 1/2 for networks i, ii, iii, and iv on the analytical dataset ux , u y , σxx , σyy , and σxy ;
(a) body forces are evaluated from central-difference differentiation of stress components, (b) body forces are also given analytically.

has discontinuous derivatives, which explains its poor performance for physics-informed deep learning, whose
effectiveness relies heavily on accurate evaluation of derivatives.

A comparison of Figs. 5b and 8b shows that using independent networks for displacements and stresses is more
effective than using a single network. We find that the single network leads to less accurate elastic parameters
because the cross-dependencies of the network outputs through the kinematic and constitutive relations may not be
adequately represented by the tanh activation function.
9
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Fig. 7. The evolution of normalized mean squared error (MSE) Lα/Lα
0 for different terms, shown in different colors. Here, Lα represents

the MSE for displacements summed over both (ux , u y ), for stresses summed over (σxx , σyy , σxy ) components, for momentum equations
summed for both x and y directions, and for constitutive relations summed over all three components. The Lα

0 is the normalization value
for each α at the end of the first epoch. The training is performed on network ii using (left) stress-complete and (right) force-complete data.

Fig. 8. (Left) Evolution of the normalized loss function for the independent-network model with ReLU activation function. (Right) Evolution
of the loss function for the single-network model. Net i–iv reflect different network sizes discussed in Table 1. The analytical force-complete
dataset ux , u y , σxx , σyy , σxy , fx , and fy are used to train these networks.

Fig. 9 analyzes the effect of availability of data on the training. We computed the exact solution on four different
uniform grids of size 10 × 10, 40 × 40, 160 × 160, and 640 × 640; and carried out the parameter identification

rocess. We performed the comparison using force-complete data and a network with 10 layers and 20 neurons per
ayer (network iii). The training process found good approximations to the parameters for all cases, including that
ith only 10 × 10 points. The results show that fewer data points require many more epoch cycles, but the overall

omputational cost is far lower.

.4. PINN models trained on the FEM solution

Here, we generate synthetic data from FEM solutions, and then perform the training. The domain is discretized
ith a mesh comprised of 40 × 40 elements. Four datasets are prepared using quadrilateral bilinear (P1), biquadratic

P2), bicubic (P3), and biquartic (P4) Lagrange C0 elements using the commercial FEM software COMSOL [41].
e evaluate the FEM displacements, strains, stresses and stress derivatives at the center of each element. Then,
e map the data to a 100 × 100 training grid using SciPy’s griddata module with cubic interpolation. This step is
erformed as a data-augmentation procedure, which is a common practice in machine learning [1].

To analyze the importance of data satisfying the governing equations of the system, we focus our attention on

etwork ii, which has shown good accuracy, convergence, and training time, and we study cases with stress- and
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Fig. 9. Training on different sizes of data. Parameters are all accurately identified however solution has different levels of accuracy.

Fig. 10. (a1) Training on the FEM dataset using ux , u y , σxx , σyy , σxy , fx and fy components. (a2) Training with body forces fx and fy
valuated from central-differentiation of stress components.

orce-complete data. The results of training are presented in Fig. 10. As can be seen here, the bilinear element
erforms poorly on the learning and identification. The performance of training on the other elements is good,
omparable to that using the analytical solution. Further analysis shows that this is indeed expected as FEM
ifferentiation of bilinear elements provides a poor approximation of the body forces. The error in the body forces
s shown in Fig. 11, which indicates a high error for bilinear elements. We conclude that the standard bilinear
lements are not suitable for this problem to generate numerical data for deep learning. Fig. 10a2 confirms that
re-processing the data can remove the error that was present in the numerical solution with bilinear elements, and
nable the optimization to successfully complete the identification.

.5. PINN models trained on the IGA solution

Observing the lowest loss L on the analytical solution, we decided to study the influence of the global continuity
f the numerical solution. We generated a C3-continuous dataset using Isogeometric analysis [42]. We, therefore,
nalyze the system using C3 IGA elements with again a grid of 40 × 40 dimension. The data are then mapped on
o a grid of 100 × 100 and used to train the PINN models. The training results are shown in Fig. 12. The outputs

re very similar to the high-order FEM datasets.

11
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Fig. 11. The error in bilinear (P1), biquadratic (P2), bicubic (P3), and biquartic (P4) FEM data, that is evaluated as the difference between
FEM evaluation of momentum relation, i.e., σi j, j and true body forces f ∗

i in x (top) and y (bottom) directions.

Fig. 12. (a1) Training on the IGA dataset using ux , u y , σxx , σyy , σxy , fx and fy components. (a2) Learning with body forces fx and fy
evaluated from central-differentiation of stress components.

3.6. Identification using transfer learning

Here we explore the applicability of our PINN framework to transfer learning: a neural network that is pre-trained
is used to perform identification on a new dataset. The expectation is that since the initial state of neural network
is not randomly chosen anymore, training should converge faster to the solution and parameters of the data. This
is crucial for many practical aspects including adaptation to new data for online search or purchase history [34]
or in geosciences, where we can train a representative PINN in highly-instrumented regions and use them at other
locations with limited observational datasets. To this end, we use the pre-trained model on Net-ii (Fig. 5), which
was trained on a dataset with λ = 1.0 and µ = 0.5 and then we explore how the loss evolves and the training
converges when data is generated with different values of µ ∈ {2.0, 1.5, 1.0, 0.1}.

In Fig. 13 we show the convergence of the model with different datasets. Note that the loss is normalized by the
nitial value L0 from the pre-trained network on µ = 0.5 (Fig. 5). As can be seen here, re-training on new datasets
osts only a few hundred epochs with a smaller initial value for the loss. This is pointing to the advantage of deep
earning and PINN, where retraining on similar data is much less costly than classical methods that rely on forward

imulations.

12
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Fig. 13. Identification of a new dataset generated with different values of µ using a pre-trained neural network on µ = 0.5. The left plot
hows the training progress for each epoch while the right plot represents the progress with respect to the training time (s) in log-scale.
he re-training takes far less epochs to converge with an initial value for loss L much smaller.

Fig. 14. Application to sensitivity analysis: the model is trained on multiple datasets generated with different values of µ ∈ {1/4, 2/3, 3/2, 4}

highlighted in dot-dashed lines). The model is then tested on a continuous range of values for µ ∈ (0, 9). The error is defined as
◦ − ◦

∗
|/| ◦

∗
| at the point where ◦

∗ is maximum.

.7. Application to sensitivity analysis

Performing sensitivity analysis is an expensive task when the analytical solution is not available, since it requires
erforming many forward numerical simulations. Alternatively, if we can construct a surrogate model to be a
unction of parameters of interest, then performing sensitivity analysis becomes tractable. However, construction
f such a surrogate model is itself an expensive task within classical frameworks. Within PINN, however, this
eems to be naturally possible. Let us suppose that the parameter of interest is shear modulus µ. Consider an ANN
odel with inputs as (x, y, µ) and outputs as (ux , u y, σxx , σyy, σxy). We can, therefore, use a similar framework to

onstruct a model that is a function of µ in addition to the space variables. Again, PINN can constrain the model
o adapt to the physics of interest and therefore there is less data needed to construct such a model.

Here, we explore if a PINN model trained on multiple datasets generated with various material parameters,
.e., different values of µ, can be used as a surrogate model to perform sensitivity analysis. The network in Fig. 4 is
ow slightly adapted to carry µ as an extra input (in addition to x, y). The training set is prepared based on λ = 1

and µ ∈ {1/4, 2/3, 3/2, 4}. Note that there is no identification in this case, and therefore the parameters λ and µ

are known at any given training data. The results of the analysis are shown in Fig. 14. For a wide range of values
of µ ∈ (0, 9), the model performs very well in terms of displacements; it is less accurate, but still very useful, in

terms of stresses with a maximum error for near-incompressible conditions, µ ≈ 0.
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4. Extension to nonlinear elastoplasticity

In this section, we discuss the application of PINN to nonlinear solid mechanics problems undergoing elastic and
lastic deformation. We use the von Mises elastoplastic constitutive model—a commonly used model to describe
echanical behavior of solid materials, in particular metals. We first describe the extension of the linear-elasticity

elations in Eq. (1) to the von Mises elastoplastic relations. We then discuss the neural-network setup and apply the
INN framework to identify parameters of a classic problem: a perforated strip subjected to uniaxial extension.

.1. von Mises elastoplasticity

We adopt the classic elastoplasticity postulate of additive decomposition of the strain tensor [43],

εi j = εe
i j + ε

p
i j . (10)

he stress tensor is now linearly dependent on the elastic strain tensor:

σi j = λεe
kkδi j + 2µεe

i j . (11)

he plastic part of deformation tensor is evaluated through a plasticity model. The von Mises model implies that
he plastic deformation occurs in the direction of normal to a yield surface F defined as F(σi j ) := q − σY , as

ε
p
i j = γ

∂F
∂σi j

, (12)

where σY is the yield stress, q is the equivalent stress defined as q =
√

3/2si j si j , with si j the components of the
eviatoric stress tensor, si j = σi j − σkk/3δi j . The strain remains strictly elastic as long as the state of stress σi j

remains inside the yield surface, F < 0. Plastic deformation occurs when the state of stress is on the yield surface,
F = 0. The condition F > 0 is associated with an inadmissible state of stress. Parameter γ is the plastic multiplier,
subject to the condition γ ≥ 0, and evaluated through a predictor–corrector algorithm by imposing the condition
F ≤ 0 [43]. In the case of von Mises plasticity, the volumetric plastic deformation is zero, ε

p
kk = 0. It can be shown

that the plastic multiplier γ is equal to the equivalent plastic strain ε̄ p
=

√
2/3ep

i j e
p
i j , where ei j are the components

of deviatoric strain tensor, ei j = εi j − εkk/3δi j .
Therefore, the elastoplastic relations for a plane-strain problem can be summarized as:

σi j, j + fi = 0,

σi j = λεkkδi j + 2µεi j = (λ + 2/3µ)εkk + si j ,

si j = 2µ(ei j − ep
i j ),

ep
i j = ε̄ p ∂F

∂σi j
= ε̄ p 3

2
si j

q
,

(13)

ubject to the elastoplasticity conditions:

ε̄ p
≥ 0, F ≤ 0, ε̄ pF = 0, (14)

lso known as Karush–Kuhn–Tucker (KKT) conditions. For the von Mises model, the plastic multiplier ε̄ p can be
xpressed as

ε̄ p
= ε̄ −

σY

3µ
≥ 0, (15)

here ε̄ is the total equivalent strain, i.e., ε̄ =
√

2/3ei j ei j . Therefore, the parameters of this model are the Lamé
elastic parameters λ and µ, and the yield stress σY .

4.2. Neural network setup

The solution variables for a two-dimensional problem are ux , u y , εxx , εyy , εxy , ε
p
xx , ε

p
yy , ε

p
zz , ε

p
xy , σxx , σyy , σzz , σxy .
Since the out-of-plane components are no longer zero, they must be reflected in the choice of independent networks.

14
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Following the discussions for the linear elasticity case, we approximate the displacement and stress components
ux , u y, σxx , σyy, σzz, σxy with nonlinear neural networks as:

ux ≈ Nux (x),
u y ≈ Nuy (x),

σxx ≈ Nσxx (x),
σyy ≈ Nσyy (x),

σzz ≈ Nσzz (x),
σxy ≈ Nσxy (x).

(16)

The associated cost function is then defined as
L = |ux − u∗

x | + |u y − u∗

y |

+ |σxx − σ ∗

xx | + |σyy − σ ∗

yy | + |σzz − σ ∗

zz| + |σxy − σ ∗

xy |

+ |σxx,x + σxy,y − f ∗

x | + |σxy,x + σyy,y − f ∗

y |

+ |(λ + 2/3µ)εkk + 2µ(exx − ep
xx ) − σxx |

+ |(λ + 2/3µ)εkk + 2µ(eyy − ep
yy) − σyy |

+ |(λ + 2/3µ)εkk + 2µ(ezz − ep
zz) − σzz|

+ |2µ(exy − ep
xy) − σxy | + |(ε̄ − σY /3µ) − ε̄ p

|

+ |(1 − sign(ε̄ p))|ε̄ p
∥ + |(1 + sign(F))|F∥ + |ε̄ pF |.

(17)

The KKT positivity and negativity conditions are imposed through a penalty constraint in the loss function. For
instance, ε̄ p

≥ 0 is incorporated in the loss as (1 − sign(ε̄ p))|ε̄ p
|. Therefore, for values of ε̄ p < 0, the resulting

‘cost’ is 2|ε̄ p
|, which should vanish.

4.3. Illustrative example

The objective is to explore the applicability and performance of PINN to nonlinear solid mechanics, where the
nonlinearity arises not from nonlinear terms in the PDEs [22] but, rather, from highly nonlinear, irreversible material
behavior in the form of inequality constraints and compatibility relations. To this end, we use a classic example to
illustrate our framework: a perforated strip subjected to uniaxial extension [43,44]. Consider a plate of dimensions
200 mm×360 mm, with a circular hole of diameter 100 mm located in the center of the plate. The plate is subjected
to extension displacements of δ = 1 mm along the short edge, under plane-strain condition, and without body forces,
fi = 0. The parameters are λ = 19.44 GPa, µ = 29.17 GPa and σY = 243.0 MPa. Due to symmetry, only a quarter
of the domain needs to be considered in the simulation. The synthetic data is generated from a high-fidelity FEM
simulation using COMSOL software [41] on a mesh of 13041 quartic triangular elements (Fig. 15). The plate
undergoes significant plastic deformation around the circular hole, as can be seen from ε

p
i j contours in Fig. 15.

This results in localized deformation in the form of a shear band. While the strain exhibits localization, the stress
field remains continuous and smooth—a behavior that is due to the choice of a perfect-plasticity model with no
hardening.

We use 2,000 data points from this reference solution, randomly distributed in the simulation domain, to provide
the training data. The PINN training is performed using networks with 4 layers, each with 100 neurons, and with
a hyperbolic-tangent activation function. The optimization parameters are the same as those used for the linear
elasticity problem. The results predicted by the PINN approach match the reference results very closely, as evidenced
by: (1) the very small errors in each of the components of the solution, except for the out-of-plane plastic strain
components (Fig. 16); and (2) the precise identification of yield stress σY and relatively accurate identification of
elastic parameters λ and µ, yielding estimated values λ = 18.3 GPa, µ = 27.6 GPa and σY = 243.0 MPa.

To complete our study on the von Mises elastoplasticity problem, we generate a dataset by varying the Young
modulus E and the yield stress σY , covering a wide range of material responses, in terms of peak load at δ = 1 mm,
as shown in Fig. 17, and displacement, stress and plastic strain response, as shown in Fig. 18. The elastic modulus
is varied at 5 GPa increments around the reference point 70 GPa as E = {40, 45, . . . , 95, 100} GPa, while the yield
stress is varied at 20 MPa increments around the reference point 243 MPa as σY = {143, 163, . . . , 323, 343} MPa,

as highlighted in Fig. 17.
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Fig. 15. Reference solution of extension loading of a perforated plate from a high-fidelity FEM simulation. The true parameters are
λ = 19.44 GPa, µ = 29.17 GPa and σY = 243.0 MPa.

Identification using transfer learning. Here we explore the transfer learning approach described in the previous
section for the von Mises elastoplasticity problem. The previously trained model on reference parameters E =

70 GPa and σY = 243 MPa is used as the initial state of the network on other test points, shown in Fig. 17. The
initial training takes about 10,000 epochs to be completed by the optimizer. We then vary datasets and re-train the
model on the new data at the different values of E and σY . In this case, the optimizer stops much earlier (generally
aking much fewer than 1000 epochs) with relatively accurate estimations for both the Young modulus and yield
tress (Fig. 19).

urrogate modeling. Following the approach described in the previous section, we explore the use of PINNs
or surrogate modeling with applications in sensitivity analysis. Here, we consider surrogate modeling with
espect to two parameters: the Young modulus E and yield stress σY . We train the network on the grid σY =

183, 243, 303} MPa and E = {55, 70, 85} GPa, and then test the network on the test grid, as shown in Fig. 17.
he global error (MSE) is then evaluated for each variable and plotted as shown in Fig. 20. Here, the results remain

elatively accurate for a wide range of parameters. Similar to the transfer learning case, the results are most accurate
hen the response remains within the elastoplastic region and diminishes for the purely elastic case (low E and

igh σY ) or the highly localized plastic case (high E and low σY ).
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Fig. 16. Relative error RE(◦) = | ◦

∗
− ◦ |/ max(| ◦

∗
|) in predicted values from the PINN framework for displacements, strains, plastic strains

nd stresses.

Fig. 17. The dataset generated for transfer learning and surrogate modeling, expressed on the parameter space (σY , E). It results in a wide
range of peak load at the applied tensile displacement δ = 1 mm on the perforated plate.
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Fig. 18. Sample solutions from the dataset generated for transfer learning and surrogate modeling, illustrating the wide range in solution
patterns, from almost elastic (low E , high σY ) to very localized plastic (high E , low σY ) deformation patterns.

Fig. 19. Application to transfer learning. Identification of a new dataset generated with different values of E and σY , using the neural
networks pre-trained on the case with E = 70 GPa and σY = 243 MPa. The training takes far fewer epochs to reach a low value for
the loss, as shown in the left figure. The Young modulus and yield stress are also evaluated accurately over a wide range of parameters.
The accuracy of predictions are generally better for low E and high σY , as they are associated with similar elastoplastic patterns. The
accuracy degrades for high E and low σY , as the solution is dominated by very highly localized plastic deformation, whose stresses deviate
significantly from those in the reference solution.
18



E. Haghighat, M. Raissi, A. Moure et al. Computer Methods in Applied Mechanics and Engineering 379 (2021) 113741

5

f
l
e
t
w
d
i
i

w
a
a
t
a

w
c
l
l
s
fi
t
i

s
t
t

Fig. 20. Application to sensitivity analysis: the model is trained on multiple datasets with different values of E and σY on a grid
E = {100, 243, 400} GPa and σY = {40, 70, 100} MPa. The model is then tested on different values of E and σY as shown in Fig. 17. The
plots show the relative MSE error for each variable with respect to each parameter E and σY .

. Conclusions

We study the application of a class of deep learning, known as Physics-Informed Neural Networks (PINN),
or inversion and surrogate modeling in solid mechanics. In this work, we formulate and apply the framework to a
inear elastostatics problem, which we analyze in detail, but then illustrate the application of the method to nonlinear
lastoplasticity. We study the sensitivity of the proposed framework to noise in data coming from different numerical
echniques. We find that the optimizer performs much better on data from high-order classical finite elements, or
ith methods with enhanced continuity such as Isogeometric Analysis. We analyze the impact of the size and
epth of the network, and the size of the dataset from uniform sampling of the numerical solution—an aspect that
s important in practice given the cost of a dense monitoring network. We find that the proposed PINN approach
s able to converge to the solution and identify the parameters quite efficiently with as little as 100 data points.

We also explore transfer learning, that is, the use a pre-trained neural network to perform training on new datasets
ith different parameters. We find that training converges much faster when this is done. Lastly, we study the

pplicability of the model as a surrogate model for sensitivity analysis. To this end, we introduce shear modulus µ

s an input variable to the network. When training only on four values of µ, we find that the network predicts
he solution quite accurately on a wide range of values for µ, a feature that is indicative of the robustness of the
pproach.

Regarding the network choices, we find that defining each solution variable through a separate network, that is,
ithout common network parameters, outperforms the single-network model with multiple outputs. This behavior

an be explained by the structure of the feed-forward neural network, and the fact that the input to the last
ayer of the single-network model is the same for all outputs. This implies that, unless the solution variables are
inearly correlated, it is more challenging for the single-network model to accurately represent all the variables. The
eparate-network model also seems a natural choice when compared with classical numerical methods such as the
nite element method, where each solution variable employs a separate set of degrees of freedom. The parameters of

he neural networks can be thought of as those degrees of freedom, which are therefore not shared among variables
n the separate-network model.

On the training, we find that, initially, the loss function drops smoothly to lower values from the initial random
tate of the network, and then the loss function oscillates. The oscillations could be somewhat mitigated by reducing
he learning rate, regularizing the parameters [3], or increasing the batch size [45]. However, we find that all of

hose strategies end up slowing the training significantly, and often result in lower accuracy. These oscillations are
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common for a batch-training stochastic gradient optimizer, and they can be attributed to the nonconvex loss-function
landscape—a generic feature of deep neural networks.

In addition to the training challenges that arise in deep neural networks, PINN introduces a multi-objective
ptimization problem (i.e., multiple loss terms for ICs, BCs, and governing relations), which poses additional
hallenges to trainability of the neural networks. Here, we used equal weights for each term in the combined
oss function, and this is likely the reason for disparate rate of convergence among the different terms. A more
uanced weighting scheme could improve the overall convergence [46,47], particularly for more complex problems.
n addition, the use of the standard multi-layer neural network architecture could be the reason for the observed
ack of accuracy in capturing the sharp localized deformation in the elastoplastic problem—an issue that likely
ould be exacerbated as the problem complexity increases. Indeed, the results of transfer learning and surrogate
odeling also show that loss of accuracy of PINN is associated with the development of localization in the solution.
ecent work suggests that the origins of this inaccuracy may lie on the spectral bias of standard neural-network
rchitectures [48], and that potential ways to alleviate this issue are the use of Extended PINN [49], Nonlocal
INN [50], or the inclusion of Fourier features [51].

Despite the success exhibited by the PINN approach, we have found that it faces challenges when dealing with
roblems with discontinuous solutions. The network architecture is less accurate on problems with localized high
radients as a result of discontinuities in the material properties or boundary conditions. We find that, in those
ases, the results are artificially diffuse where they should be sharp. We speculate that the underlying reason for
his behavior is the particular architecture of the network, where the input variables are only the spatial dimensions
x and y), rendering the network unable to produce the required variability needed for gradient-based optimization
hat would capture solutions with high gradients. Addressing this extension is an exciting avenue for future work
n machine-learning applications to solid mechanics.
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