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The macroscopic properties of fluid flow and transport through porous media are a direct
consequence of the underlying pore structure. However, precise relations that characterize
flow and transport from the statistics of pore-scale disorder have remained elusive. Here
we investigate the relationship between pore structure and the resulting fluid flow and
asymptotic transport behavior in two-dimensional geometries of nonoverlapping circular
posts. We derive an analytical relationship between the pore throat size distribution fλ ∼
λ−β and the distribution of the low fluid velocities fu ∼ u−β/2, based on a conceptual model
of porelets (the flow established within each pore throat, here a Hagen-Poiseuille flow). Our
model allows us to make predictions, within a continuous-time random-walk framework,
for the asymptotic statistics of the spreading of fluid particles along their own trajectories.
These predictions are confirmed by high-fidelity simulations of Stokes flow and advective
transport. The proposed framework can be extended to other configurations which can be
represented as a collection of known flow distributions.

DOI: 10.1103/PhysRevFluids.2.124103

I. INTRODUCTION

In soil, aquifers, industrial filtration systems, and may other situations, the motion of fluids
is confined within small spaces, typically of size λ ranging between 10−6 and 10−2 m. In these
conditions, fluids flowing through such confined media are forced to pass between solid impermeable
obstacles (grains, represented by gray disks in Fig. 1) that separate spaces (pores) that can be
filled by the flow: The associated velocities of fluids are typically very small, on the order of
u ∼ 1 − 100 μm/s (∼0.1–10 m/d) [1]. These porous medium flows have a rich structure whose
spatial and temporal complexity plays a critical role in natural and engineered processes such as
groundwater contamination and remediation [2,3], water infiltration in soil [4], geologic carbon
sequestration [5], enhanced hydrocarbon recovery [6], water filtration systems [7], and polymer
electrolyte fuel cells [8]. Traditionally, the heterogeneity of these flows is considered at scales where
the main structure of the host medium varies, e.g., varying from one type of rock to another in a
geological formation, but the organization of grains and pores is not resolved. In these situations,
the fluid motion is represented by an averaged Darcy-like flow through an equivalent continuous
permeability field that represents the ability of the host medium to transmit the fluid as a result of
an applied pressure gradient [9].

Due to the complex geometry of the connected pore space, it has been challenging to
formulate predictive models for permeability based on the knowledge of the main medium features.
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FIG. 1. (a) Representation of the 2D porous media considered in this study, showing the disordered
arrangement of disks (gray circles), and the magnitude of the fluid velocity from a high-fidelity simulation
of Stokes flow rescaled by the mean velocity u/〈u〉. (b) Zoomed-in view of the red box in (a). (c) Zoomed-in
view of the blue box in (b). (d) Schematic of the conceptual model of pipes (cyan squares) associated with pore
throats. (e) Same field as in (c), in logarithmic scale. Red color indicates an above-average velocity; blue color
indicates a below-average velocity.

Semiempirical relations between medium structure, such as porosity or grain size, and permeability
[10,11] have been validated and extended for specific media [12–14]. However, the theoretical
determination of fluid velocity distributions, which characterize its heterogeneity, from statistical
descriptions of pore-scale geometry remains an open challenge. Understanding and quantifying
velocity heterogeneity in porous media is important because it controls the late-time particle
spreading [15–20] and fluid mixing [21–24], which also mediates chemical reactions [25–29] and
biological activities [30,31].

Laboratory experiments on bead packs [1,32–36], sand columns [37], and real rock samples
[38,39], as well as numerical simulations at the pore scale [19,32,33,40–43], have shown
the emergence of highly heterogeneous velocity distributions, even in simple macroscopically
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homogeneous porous media. This velocity heterogeneity leads to consequences at larger scale that
can be quantified in terms of anomalous particle-transport behavior such as early arrival and late-time
tailing of breakthrough curves, non-Gaussian plume shape, and nonlinear scaling of mean-square
displacement. These phenomena can be captured and understood only after direct observation or
computational characterization of the pore-scale fluid mechanics [41].

Earlier experimental [35,36,39] and computational [19,40,41,44,45] studies have identified
distinct behaviors for high and low velocities. High velocities are controlled by the formation of
channels, while low velocities are dominated by stagnation zones. Recent studies have proposed
phenomenological models for the distribution of high velocities, including stretched exponential
[46] and power-exponential [45] distributions, but without an underlying mechanistic or statistical
physics theory.

The macroscopic transport through porous media has been extensively studied by tracking
the displacement of fluid particles along their trajectories (e.g., [47]). While the high velocities
control the overall ability of the medium to transmit the fluid, the distribution of low velocities
in zones of fluid stagnation have been shown to control and characterize late-time asymptotic
particle transport statistics [19,41], mixing [22], and reactive transport [28]. To provide a conceptual
explanation of this phenomenon, one may consider the evolution of a plume of a passive tracer
in a heterogeneous medium. Plume spreading in the flow direction is determined by two simple
mechanisms: fast migration of the leading part of the plume along high-velocity channels and
trapping of the trailing part of the plume in stagnation zones. This contrast in velocities, quantified
by the broadness of the velocity distribution, controls the spreading rate of the plume. It has been
shown theoretically (e.g., [15]) and numerically (e.g., [48,49]) and confirmed in field and laboratory
experiments (e.g., [29,50]) that the described mechanisms of advective spreading are persistent and
dominate transport and mixing for times much longer than the characteristic diffusive time scale of
the heterogeneity of the medium. Therefore, the possibility to estimate the flow heterogeneity, in
particular, the distribution of low velocities that are known to control asymptotic transport properties
[15,44,47,51], based on knowledge of the host medium structure alone would constitute a powerful
tool.

To understand the origin of asymptotic transport behavior, we investigate the relationship between
the structure of the host medium and the resulting distribution of fluid velocities in stagnation zones.
We consider two-dimensional (2D) porous media whose solid impermeable structure consists of
nonoverlapping circular disks of random position and radius (Fig. 1). This disordered arrangement
of disks can be characterized geometrically by constructing a Delaunay triangulation of the disk
centers (e.g., [52]): Each triangle defines a pore body and each edge defines a pore throat [Fig. 2(a)].
We characterize the statistical properties of the medium through the distribution of pore throat size
λ = d − r1 − r2, where d is the distance between the two disk centers connected by an edge of the
Delaunay triangulation and r1 and r2 are the respective disk radii [Fig. 1(d)]. The random position
and size of the disks are generated such that the probability density function (PDF) of the pore throat
size is a power law fλ(λ) ∼ λ−β , with β > 0. We generate five pore geometries whose distribution
is a power law for small pores (0.01 < λ/〈λ〉 < 0.2) and it has a cutoff for large pores. The range
of pore sizes distributed as a power law are characterized by the exponent β, which, for the five
geometries considered, takes the value β = 0.25,0.22,0.17,0.12,0.08. The geometry associated with
β = 0.17 is illustrated in Fig. 1 (see Fig. 3 for all five geometries).

Pore network models have been used in the past to study flow and flow-driven processes in
complex pore structures. These models are based on the knowledge of some properties of the
geometry of the pore space. Therefore, the pore networks are often constructed directly from images
of porous media obtained with small-scale imaging techniques [40], like x-ray microtomography,
and the associated models are made by assuming hypotheses about what is a pore and what is a throat
and how they are connected [53]. We are unaware of a pore network model or other type of analysis
that has been used, to date, to successfully investigate low velocities, in the range 10–104 times
smaller than the average one. To this end, we use a high-resolution numerical method described in
Sec. II, allowing us to accurately quantify the distribution of such low velocities.
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FIG. 2. (a) Detail of the Delaunay triangulation of the pore geometry. Edges of the triangulation connecting
the centers of neighboring disks (red segments) define the pore throats. (b) Proposed conceptual model of
porelets, consisting of a collection of pore flows along pore throats (each of given width λ and length cλ ∼ λ).
For this simple geometry each porelet is a Hagen-Poiseuille parabolic profile.

Our aim is to derive an analytical relationship between the pore throat size distribution (the
smallest openings constraining the fluid flow) and the fluid velocity PDF. To do that, we hypothesize
that what controls this relationship is the distribution of the throat size and not the connectivity
between pores (which probably control the permeability and thus the overall flow), which we neglect.
Strictly, large pores also contain a fraction of small velocities. However, because small pores are
much more abundant (pore throats are power law distributed), we argue that it is reasonable to
assume that the distribution of small velocities is controlled by the distribution of small openings.

II. METHODS

We simulate steady incompressible flow through each pore geometry, driven by a pressure
gradient from left to right and with no-flow boundary conditions at the top and bottom boundaries.
We simulate flows at low Reynolds numbers Re = ρ〈λ〉〈u〉

μ
< 10−2, where 〈λ〉 is the mean pore throat

size, 〈u〉 is the mean velocity magnitude, ρ is the fluid density, and μ is the fluid dynamic viscosity.
Under these conditions, the flow is Stokesian and is described by the equations

μ∇2u = ∇p, ∇ · u = 0, (1)

where p is the fluid pressure and u is the fluid velocity. We neglect the gravitational term, since we
assume that the flow is horizontal, and we impose no-slip boundary conditions at the boundary of
each disk.

The Stokes equations are recast in terms of a vector-valued density function σ by using the
indirect integral equation [54]

u(x) = 1

π

∫
�

r · n
‖r‖2

r ⊗ r
‖r‖2

σ ( y)ds y, x ∈ �, (2)
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FIG. 3. Modulus of the rescaled velocity field u/〈u〉 in each of the five geometries considered. On the left
the color scale varies linearly, while on the right it changes logarithmically, showing the separation of the flow
in channels of high velocity (red areas) and zones of stagnation (blue). The white color is associated with the
average velocity.

where r = x − y, � is the boundary of the geometry �, and n is unit outward normal of � at y.
Equation (2) is called the double-layer potential and can be expressed in component form as

u1(x) = 1

π

∫
�

r · n
‖r‖2

r · σ

‖r‖2
r1( y)ds y,

u2(x) = 1

π

∫
�

r · n
‖r‖2

r · σ

‖r‖2
r2( y)ds y,

where r = (r1,r2). In addition, the pressure can be computed by evaluating the integral

p(x) = −μ

π

∫
�

1

‖r‖2

(
I − 2

r ⊗ r
‖r‖2

)
n · σ ( y)ds y, (3)

where I is the 2 × 2 identity matrix.
To avoid the two-dimensional Stokes paradox, we bound the disks by a rounded-off rectangular

boundary �0. We use a Dirichlet boundary condition on �0 to prescribe a plug flow at the left and
right ends of the channel and a no-slip condition at the top and bottom of the channel [Fig. 1(a)].
Letting f be the above-described Dirichlet boundary condition, the density function σ must satisfy
the second-kind Fredholm integral equation [54]

f (x) = −1

2
σ (x) + 1

π

∫
�

r · n
‖r‖2

r ⊗ r
‖r‖2

σ ( y)ds y, x ∈ �. (4)

To summarize, solving Eq. (1) using an indirect integral equation formulation requires a two-step
procedure. First, Eq. (4) must be solved for the density function σ . Second, the velocity u(x) is
computed for any x ∈ � using Eq. (2). In addition, if required, the pressure can be computed using
Eq. (3). Therefore, the accuracy of the method is completely determined by two approximations:
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first, the accuracy of σ , which depends on the quadrature method used to approximate the integral
in Eq. (4), and second, the quadrature method used to approximate the integral in Eqs. (2) and (3).

To approximate the density function σ , Eq. (4) is discretized at a set of collocation points {xj }Nj=1
and the integral is replaced with the trapezoid rule. The result is the dense linear system

f j = −1

2
σ j +

N∑
k=1

K(xj ,xk)�skσ k, j = 1, . . . ,N, (5)

where �sj is the Jacobian of � at xj ,

f j = f (xj ), σ j = σ (xj ), K(x, y) = 1

π

r · n
‖r‖2

r ⊗ r
‖r‖2

.

The diagonal term K(xj ,xj ) is replaced with the limiting value

lim
y → x
y ∈ �

K(x, y) = κ(x)

2π
[t(x) ⊗ t(x)], x ∈ �,

where κ(x) is the curvature at x and t(x) is the unit tangent vector at x. Since the trapezoid rule has
spectral accuracy for smooth periodic functions [55], the solution of Eq. (5) converges with spectral
accuracy to the exact solution of Eq. (4).

Equation (5) is solved iteratively with GMRES [56], which requires a mesh-independent number of
iterations [57]. To accelerate the numerical solver, the necessary matrix-vector multiplication is done
in linear time with the fast multipole method [58]. Finally, the number of GMRES iterations is reduced
by applying a block-diagonal preconditioner, where each block corresponds to an individual disk.

Once σ j is computed with spectral accuracy, the velocity u(x) for x ∈ � can be approximated.
This is done by replacing the integral in Eq. (2) with the trapezoid rule with the same quadrature
nodes used to solve Eq. (4),

u(x) ≈
N∑

k=1

K(x,xk)σk�sk, x ∈ �.

The velocity is computed on a regular set of Eulerian points in �. When x is close to one of the
disks, the accuracy of the trapezoid rule deteriorates, since the integrand becomes nearly singular,
and a near-singular integration strategy must be used. We adopt the strategy described in Ref. [59],
which achieves fifth-order accuracy with only a slight increase in the algorithmic complexity. At the
resolution we use, the smallest resolved velocity is approximately umax/105, where umax is the value
of the maximum velocity simulated.

III. RESULTS

A simulated velocity field is shown in Fig. 1 for one of the geometries studied, corresponding
to the pore throat size distribution power-law exponent β = 0.22. It is apparent that, despite the
simplicity of the porous medium, the velocity develops a complex spatial structure that combines
high-velocity channels with low-velocity stagnation zones [Fig. 1(e)], which have been shown to
play a major role in determining the fluid longitudinal and transverse asymptotic dispersion of
transported particles [19,41].

We study the distribution of the velocity magnitudes u = ‖u‖ and its dependence on the
characteristics of the porous medium. The medium geometry is characterized by the exponent
β of the power law in the low range of pore throat size fλ ∼ λ−β . To characterize the velocity, we
define the rescaled velocity magnitude ur = u/〈u〉. We find that the low velocities are well fitted
by a power law with an exponent that depends on the pore throat size distribution fur

∼ u
−β/2
r for

ur � umax [Figs. 5(a) and 5(b)]. High velocities, in contrast, are well described by an exponential
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function and the exponent of the distribution does not exhibit a detectable dependence on the pore
geometry statistics [Fig. 5(c)]. To ensure that our numerical method is accurate enough to capture
the low-velocity distribution, for one geometry, we generated the same velocity field on a finer
grid and found that the velocity distribution is unchanged. Therefore, the spatial resolution of the
numerical scheme is sufficiently fine to resolve the smallest pore throat generated and obtains a
velocity distribution that is independent of the computational grid.

We develop a model, based on a statistical approach, to explain the observed distribution of the
low velocities. In analogy with pore network models (e.g., [60–66]), we understand the overall flow
as equivalent to one through a collection of flow in pores, the porelets, that for these geometries
result in Hagen-Poiseuille flows through pipes of distributed size. In contrast with network models,
however, here we are interested in reproducing the low-velocity behavior in the pore space, that
is, velocities in the range 10–104 times smaller than the mean Eulerian velocity. Note that we can
investigate such a wide range of velocities due to the powerful and recent numerical scheme that we
have adopted.

The velocities through the porous medium are locally controlled by the size of the smallest
openings, the pore throats, therefore, we conceptualize the flow through each throat of size λ, a
porelet, as the one through a pipe, of width λ and length l, which we assume begin proportional
to it l = cλ [Fig. 2(b)], driven by a single effective pressure gradient 〈∇||p〉 along the pipe itself.
This simple conceptual model neglects the pore connectivity and is consistent with the isotropy of
a porous material (in contrast with a fractured medium, where the fracture orientation determines a
preferential direction). Moreover, it is supported by the direct observation of the parabolic velocity
profile within throats [1,32,40]. The fluid velocity through a pipe has only a longitudinal component
[67] and its magnitude has a parabolic profile

u(y) = −〈∇||p〉
2μ

[(
λ

2

)2

− y2

]
.

Setting A = −〈∇||p〉
2μ

, the maximum velocity, achieved at the pipe centerline (y = 0), is uM = Aλ2/4
and the minimum velocity, achieved at the no-slip pipe walls (y = ±λ/2), is um = 0.

The main assumption of the proposed model is the existence of the porelet. By porelet we
mean the unit flow configuration at the pore scale (in our case, Poiseuille flow) that repeats itself,
appropriately scaled, throughout the medium. Once the velocity fields have been simulated, we
verify this central assumption by interpolating the modulus of the Eulerian velocity field along each
pore throat (the segments of the Delaunay triangulation connecting disk walls) and fitting a parabola
to the velocity profile from the high-resolution simulations. In Fig. 4 we show the magnitude of
the velocity field for four representative areas of the geometries studied and its profile projected
along the four pore throats. The results illustrate that the velocity profile is well approximated by a
parabola, thereby confirming our working hypothesis of a Poiseuille unit velocity configuration. We
confirm this observation with a quantitative analysis over all pore throats in the five flow geometries
studied. In each geometry, we compute the mean normalized residual 〈ru〉 between the simulated
profile and the parabolic fit (Table I). The mean residual is below 6.5% in all cases, demonstrating
that the assumption of Poiseuille flow at the pore throats is accurate.

The velocity PDF corresponding to each of these parabolic profiles is

fp(u) = −2

λ

dy

du
= 2

Aλ2
√

1 − 4u
Aλ2

. (6)

For a collection of pipes with a given width distribution fλ(λ), Eq. (6) represents the conditional
probability of the local velocity u fu(u|λ) within a pipe of given width λ. In our conceptual model,
the overall flow consists of a randomly distributed collection of pore flow, the porelet, each of width
λ [Fig. 2(b)]. To obtain the equivalent of the Eulerian velocity PDF, we must integrate the PDF of
all the porelets by weighing the contribution from each individual porelet by the length over which
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FIG. 4. Zoomed-in views of the magnitude of the velocity field around four typical pore throats with the
color map in natural scale (left column) and logarithmic scale (center column) and its interpolation along
the segment connecting the grain walls (right column). A parabolic fit (red solid line) is superposed to the
interpolation data (blue symbols).

the parabolic profile applies. We conjecture, based on the direct numerical simulations at the pore
scale, that such a length l is proportional to λ. Therefore, we recover the following scaling for our
velocity distribution, controlled by an ensemble of porelets:

fu(u) ∼
∫ λM

λm(u)
fu(u|λ)fλ(λ)λ dλ, (7)

where λm(u) is the pipe width such that the centerline velocity uM (λ) = u, that is, λm(u) = 2
√

u/A,
and λM is the maximum width of the distribution fλ(λ). Since we constructed our porous media
such that the distribution of narrow throat widths scales as fλ(λ) ∼ λ−β , we approximate Eq. (7) in
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TABLE I. Mean normalized residual 〈ru〉 of the parabolic
fit to the velocity profile along pore throats, for the five flow
configurations considered in our study.

β ndisks nthroats 〈ru〉
0.25 1660 1912 0.057
0.22 893 1182 0.055
0.17 823 962 0.053
0.12 753 931 0.047
0.08 994 1074 0.063

the range of low velocities as

fu(u) ∼
∫ λM

2
√

u/A

2λ−β+1

Aλ2
√

1 − 4u
Aλ2

dλ ∼ 1

2βA

(
u

A

)−β/2 ∫ 1

u/umax

xβ/2−1(1 − x)−1/2 dx, (8)

where we introduced the change of variables x = 4u
Aλ2 , which plays the role of a rescaled velocity

with respect to the centerline velocity of a pipe of width λ, x = u
uM (λ) . In the range of low velocities,

the limit of integration u/umax → 0 and the definite integral in Eq. (8) converges to the Beta function
B( β

2 , 1
2 ) and loses its dependence on u. We conclude that our model of porelets for low velocities in

a porous medium predicts a velocity distribution that scales as

fu(u) ∼ u−β/2. (9)

To test this prediction, we perform a power-law fit to the numerically simulated velocity distribution
for each of the geometries considered [Fig. 5(a)] and we compare the fitted exponent with the
theoretical exponent −β/2 [Fig. 5(b)].

We conclude that our simple conceptual model of a collection of porelets successfully captures
the velocity distribution in the range of low velocities. The high velocities exhibit an exponential
distribution that is largely insensitive to the statistical characteristics of the porous medium geometry:
The slope in Fig. 5(c) has value 1 for all geometries (the exponential distribution is parametrized by
the average value only).

To illustrate the impact of fluid velocity heterogeneity and the importance of capturing the
distribution of low velocities, we study macroscopic signatures of transport through the porous
medium by tracking the displacement of fluid particles along streamlines (no diffusion, just
advection). The fluid trajectories are computed using a fourth-order Runge-Kutta time-stepping
scheme. In the Runge-Kutta scheme, instead of evaluating the velocity u(x) using Eq. (2), we locally
interpolate the fully resolved Eulerian grid near the particle location with a bicubic polynomial.
Then the velocity at the particle location is approximated by evaluating the bicubic polynomial
interpolant. By using the interpolant with a precomputed Eulerian grid rather than using Eq. (2), we
greatly accelerate the streamline calculation. To illustrate the quality of the numerical solution, we
plot the streamlines of 500 tracer particles initialized at the left end of the channel (Fig. 6), where
the same colors identify groups of particles initiated within the same vertical segment at the left
boundary.

At time t , the distance traveled by a particle j along its trajectory is sj (t). The first and second
ensemble moments of sj over the Np simulated fluid particles are

〈s〉(t) = 1

Np

Np∑
j=1

sj (t), σ 2
s (t) = 1

Np

Np∑
j=1

[sj (t) − 〈s〉(t)]2. (10)
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FIG. 5. (a) PDF of the rescaled velocity magnitude ur = u/〈u〉 for all five geometries studied, with β = 0.25
(red), β = 0.22 (green), β = 0.17 (blue), β = 0.12 (cyan), and β = 0.083 (black). Symbols correspond to the
direct numerical simulations and straight lines are the power-law fits to the symbols. Symbols and curves are
shifted vertically for clarity. (b) Fitted exponents plotted against the theoretical exponents −β/2 [Eq. (9)],
where the error bars represent the standard deviation in the least-squares estimate of the time exponent.
(c) Symbols represent the same data as in (a), but plotted on semilogarithmic axes to highlight the exponential
decay in the distribution of high velocities.
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FIG. 6. Streamlines for 500 particles initialized at the left end of the channel at four equally spaced time
steps. The different colors for different groups of particles help visualize the flow. Shown on the right are the
magnifications of small regions (the associated red boxes on the left), illustrating the quality of the streamlines
furnished by our spectral-accurate velocity field and high-order time integrator.

In Fig. 7 we plot the temporal evolution of particle spreading
√

σ 2
s , as a function of time rescaled by the

characteristic advective time across a pore, τ = 〈λ〉/〈u〉. Particle dispersion exhibits two power-law
regimes

√
σ 2

s ∼ tα . For t/τ < 1, the fluid dispersion is ballistic (α = 1), as expected since individual
fluid particles have not yet explored enough space to significantly alter their velocity. For t/τ > 1,
the dispersion of fluid particles along their trajectories slows down, but it retains a superdiffusive
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FIG. 7. Temporal evolution of particle spreading
√

σ 2
s as a function of rescaled advective time, for the five

geometries considered, with β = 0.25 (red), β = 0.22 (green), β = 0.17 (blue), β = 0.12 (cyan), and β = 0.08
(black). Symbols correspond to the results from direct numerical simulations. Dashed lines are power-law fits to
the late-time spreading behavior, which show excellent agreement with the exponents predicted by CTRW theory
with the velocity distribution from the proposed porelet model, (t/τ )(1/2+β/4) (inset). Solid lines correspond to
separate CTRW simulations that account for the correlation structure in the velocity field, which are capable of
capturing the transition from the ballistic regime to the superdiffusive regime [19,41].

behavior (α > 1/2) which is persistent over two orders of magnitude in time. The transition time
between these two regimes, t/τ ∼ 1, corresponds to the time when particles move between porelets
and therefore sample different velocities.

From the wide spectrum of statistical models of transport (e.g., [68–70]), here we employ an
uncorrelated continuous-time random-walk (CTRW) model that is known to reproduce late-time
anomalous spreading from the broad velocity distribution [15], as we observe in our simulations.
The CTRW theory predicts the asymptotic scaling of tracer particle dispersion in Eq. (10) [15],

〈s〉(t) ∼ t,

√
σ 2

s (t) ∼ t (1−γ )/2,

where γ is the characteristic exponent of the velocity distribution γ = −β/2, which leads to
√

σ 2 ∼
t1/2+β/4, and is therefore superdiffusive for β > 0. The CTRW theory agrees well with the direct
numerical simulations (Fig. 7). Therefore, the late-time scaling of tracer particle dispersion is
controlled by the distribution of low velocities and consequently from the pore throat size distribution.
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IV. CONCLUSION

In summary, we have taken steps to address a long-standing challenge in porous medium flows:
the relationship between pore structure and velocity distribution from Stokesian flow through the
pore space. We have focused our study on describing the low velocities, as their distribution controls
asymptotic properties of particle transport, fluid retention time, mixing efficiency, and reaction rates.
We have proposed a conceptual model of flow as a collection of porelets, here Hagen–Poiseuille
parabolic flows through the throats width, from which we derive the scaling properties of the
velocity distribution. Despite its simplicity, the analytical predictions from the model agree well
with high-resolution simulations, in terms of both the velocity distribution and the consequent
anomalous particle spreading. Our results show that, for the cases studied, knowledge of the throat
size distribution is sufficient to describe the PDF of low velocities (and thus the asymptotic transport
properties) and that information about medium connectivity is not needed. This theoretical and
computational study uncovers the analytical relationship between the pore throat size distribution
and the distribution of fluid velocity. This conceptual model of porelets allows us to make predictions
also for the statistics of fluid particles spreading along their own trajectories, which are confirmed
by high-fidelity simulations of Stokes flow and advective transport. While we have studied simple
2D porous media, the proposed framework is rather general and the ability to work out the analytical
predictions carries over to other flow configurations for which it is possible to disassemble the
considered complex flow into a collection of known spatial velocity distributions. Indeed, we have
recently started to extend our approach to simple but fully 3D geometries consisting of dense packs
of polydisperse spherical beads [71], with encouraging results for the prediction of the entire velocity
distribution from characteristics of the pore geometry.
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