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[1] We present a phase field model of infiltration that explains the formation of gravity
fingers during water infiltration in soil. The model is an extension of the traditional
Richards equation, and it introduces a new term, a fourth-order derivative in space, but
not a new parameter. We propose a scaling that links the magnitude of the new term to the
relative strength of gravity-to-capillary forces already present in Richards’ equation.
We exploit the thermodynamic framework to design a flow potential that constrains the
water saturation to be between 0 and 1, its physically admissible values. The model
predicts a saturation overshoot at the wetting front, which is in good agreement with
experimental measurements. Two-dimensional numerical simulations predict gravity
fingers with the appearance and characteristics observed in visual laboratory experiments.
A linear stability analysis of the model shows that there is a direct relation between
saturation overshoot and the strength of the front instability. Therefore our theory supports
the conjecture that saturation overshoot, a pileup of water at the wetting front, is a
prerequisite for gravity fingering.
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1. Introduction

[2] Infiltration of water in soil is an essential component
of the hydrologic cycle [Horton, 1933; Hillel, 1980;
Domenico and Schwartz, 1998]. It governs the presence
of water and life at the land-atmosphere interface, in
particular soil moisture [Liang et al., 1994] and vegetation
[Rodriguez-Iturbe et al., 1999]. It also controls seasonal
aquifer recharge in arid regions [Allison et al., 1994;
Sophocleous, 2002], and soil weathering at the scale of
millennia [Torn et al., 1997; Markewitz et al., 2001]. All of
these feedbacks will be even more important under a
scenario of global climate warming [Porporato et al.,
2004], and will likely become crucial in an assessment of
global desertification [Schlesinger et al., 1990].
[3] Infiltration is modeled using a variety of approaches,

depending on the scale (and scope) of the problem [Philip,
1969; Hillel, 1980]. These range from the Horton method
[Horton, 1940; Philip, 1957] and the Green-Ampt approx-
imation [Green and Ampt, 1911; Philip, 1957], to the
solution of Richards’ equation [Richards, 1931]: a partial
differential equation that describes the evolution of water
content in space and time, which is based on conservation of
mass and the Darcy-Buckingham equation of fluid flux in
an unsaturated medium [Buckingham, 1907].
[4] Richards’ equation, however, is unable to explain

why the infiltration of water in homogeneous dry soil
displays preferential flow, in the form of ‘‘fingers’’ [Hill
and Parlange, 1972; Raats, 1973]. In one dimension, it is
also unable to explain the common experimental observa-

tion that the water pressure [Stonestrom and Akstin, 1994;
Geiger and Durnford, 2000] and water saturation [DiCarlo,
2004; Shiozawa and Fujimaki, 2004] is higher at the
wetting front than behind the front. These two phenomena
(saturation overshoot and gravity fingering) are believed to
be inextricably linked [Geiger and Durnford, 2000; Eliassi
and Glass, 2001], and this is confirmed by experimental
evidence [DiCarlo, 2004]. Experiments show that pressure
overshoot is not sufficient for the development of the
instability, but saturation overshoot is [DiCarlo, 2007].
Previous work has also shown, from the linear stability
analysis of a dynamic capillary pressure model, that the
degree of nonmonotonicity is related to the severity of the
instability [Egorov et al., 2003; Nieber et al., 2005].
[5] Recently, we put forward the fundamental idea of

including the effect of a macroscopic interface (the wetting
front) in the mathematical description of unsaturated flow
[Cueto-Felgueroso and Juanes, 2008]. This was done
following a phase field approach, where a gradient term
in the energy appears naturally, leading to a fourth-order
term in the mass conservation equation. The model predicts
gravity fingering, and the results of the linear stability
analysis agree well with the experiments of Glass et al.
[1989b] in terms of finger width and finger velocity. The
inspiration for the new model is the flow of thin films (like
water down a plane), which also displays fingering insta-
bility [Huppert, 1982]. We then cast the model in the
rigorous framework of phase field models and nonlocal
thermodynamics [Cahn and Hilliard, 1958].
[6] This paper builds on that idea. We extend the model,

exploiting the power of the phase field methodology, to
constrain the saturations between 0 and 1, clearly a physical
requirement. We compare extensively with experiments of
saturation overshoot [DiCarlo, 2004], and find good agree-
ment between model predictions and lab measurements, not
only in terms of saturation overshoot but also for the entire
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nonmonotonic saturation profile. We investigate the impact
of mild heterogeneity in two-dimensional simulations, and
find that the preferential flow pattern is preserved, leading
to realistic simulations of gravity fingering. We also analyze
(and confirm) that saturation overshoot is indeed a prereq-
uisite for finger formation. From the linear stability analysis,
we find that there is a direct correspondence between the
magnitude of the overshoot and the severity of the instabil-
ity. We explain the derivation of the complete model, we
give the physical reasoning behind it, and we frame it in the
context of the entire body of literature on unstable unsatu-
rated flow.
[7] The new model is appealing. It is a simple extension

of Richards’ equation, with a new term but without a new
parameter. It reproduces the two key features of unsaturated
flow: a nonmonotonic saturation profile, and the formation
and persistence of gravity fingers. It shows good quantita-
tive agreement with experiments in terms of tip saturation,
tip velocity and finger width. The most attractive aspect is,
however, that the new model offers a starting point for
fundamentally new formulations of multiphase flow in
porous media.
[8] It is well known that hysteresis alone (without satu-

ration overshoot) cannot explain fingering [Eliassi and
Glass, 2001; van Duijn et al., 2004; Nieber et al., 2005;
Fürst et al., 2009]. In this paper we show that our model
can explain the features of fingered flow, including the
saturation behind the front, without resorting to hysteresis,
thereby resulting in a much simpler mathematical model.
We do not argue, however, that hysteresis is unimportant.
Hysteresis is a very real phenomenon, with important
macroscopic consequences [Liu et al., 1994; Bauters et
al., 1998; Spiteri and Juanes, 2006; Juanes et al., 2006]. It
is likely that agreement with experimental data can be
improved with hysteretic capillary pressure and relative
permeability functions, and this can be incorporated readily
in our model. The proposed model is for unsaturated flow,
and it is no longer valid under fully saturated conditions.
Extending the model to saturated-unsaturated conditions is
not trivial.
[9] We hope the model will be tested against more

experimental data, to probe its range of applicability. One
of the most interesting aspects is likely to be the strength of
the new term. While we have good reasons to defend the
proposed scaling (it allowed us to explain finger width,
finger velocity, saturation overshoot, and the length of the
traveling wave, without resorting to any tuning of the
strength of the new term), its widespread validity remains
to be investigated.
[10] In section 2 we review infiltration experiments and

existing models of unsaturated flow, highlighting their
departure from Richards’ equation. In section 3 we give a
brief overview of the mathematical model of flow of thin
films, and stability characteristics of such flows. In section 4
we introduce the essential aspects of phase field models of
interface dynamics. Next, in section 5, we present the
proposed model of infiltration. We motivate it by means
of the thin-film equation, and then formalize it within the
framework of phase field models. In section 6 we present
numerical simulations of 1-D and 2-D systems. In section 7
we give a summary of the linear stability analysis, which
explains the relation between saturation overshoot and

gravity fingering. We finish the paper with some conclu-
sions and an outlook.

2. Infiltration Experiments and Existing Models
of Unsaturated Flow

2.1. Experimental Evidence of Gravity Fingering

[11] Experiments of water infiltration into dry, homoge-
neous sand, pervasively show preferential flow, in the form
of ‘‘gravity fingers.’’ Experimental and theoretical work
was initiated in the 1970s [Hill and Parlange, 1972; Philip,
1975; Parlange and Hill, 1976]. Since then, carefully
designed experiments have repeatedly shown gravity fin-
gering during infiltration in homogeneous sands [Diment
and Watson, 1985; Glass et al., 1989b; Selker et al., 1992a;
Lu et al., 1994; Bauters et al., 2000; Yao and Hendrickx,
2001; Sililo and Tellam, 2000; Wang et al., 2004]. The
selected pattern of the phenomenon is a winner-takes-all
process, in which the fastest growing fingers channelize
most of the flow, and the growth of other incipient fingers is
thereby suppressed [Glass et al., 1989b; Selker et al.,
1992b]. The fully formed fingers advance as traveling
waves (with constant shape and velocity), and a saturation
overshoot is observed at the tip of the fingers [Selker et al.,
1992b; DiCarlo, 2004]. The initial moisture content plays a
critical role in the fingering instability: even relatively low
saturations lead to a compact, downward moving wetting
front [Lu et al., 1994; Bauters et al., 2000]. Stable fronts are
also observed in dry media when the infiltration rate is
either very small or approaches the saturated conductivity
[Hendrickx and Yao, 1996]. In general, larger infiltration
rates produce faster, thicker fingers [Glass et al., 1989b].
[12] Many authors have approached the wetting front

instability by drawing an analogy with the two-fluid system
in a Hele-Shaw cell [Saffman and Taylor, 1958], and their
analyses have led to kinematic models that reproduce trends
observed in the experiments, such as relations between
finger width and finger tip velocity with the flow rate
through the finger [Chuoke et al., 1959; Weitz et al.,
1987; Parlange and Hill, 1976; Glass et al., 1989a; Selker
et al., 1992b; DiCarlo and Blunt, 2000].
[13] Given that a saturation overshoot occurs at the tip of

the fingers, recent experimental work has focused on
reproducing this phenomenon in one-dimensional experi-
ments [Stonestrom and Akstin, 1994; Geiger and Durnford,
2000; DiCarlo, 2004; Shiozawa and Fujimaki, 2004;
DiCarlo, 2007]. In fact, it is widely believed that accumu-
lation of water at the wetting front is a prerequisite for
triggering the fingering instability [Geiger and Durnford,
2000; Eliassi and Glass, 2001; Egorov et al., 2003]. These
experiments have shown conclusively that there is a critical
initial saturation above which the saturation profile is
monotonic [Lu et al., 1994; Bauters et al., 2000; Shiozawa
and Fujimaki, 2004; DiCarlo, 2004, 2007]. They have also
elucidated the role of the infiltration flow rate: the saturation
overshoot increases with increasing flow rate up to a certain
value, beyond which it decreases until the overshoot dis-
appears completely under fully saturated infiltration con-
ditions [DiCarlo, 2004].

2.2. Pore-Scale Models

[14] Numerical models that implement the fluid-fluid
displacement mechanisms have been successful at reproduc-
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ing the regime transitions among viscous fingering, capil-
lary fingering and stable displacement observed experimen-
tally [Lenormand et al., 1988]. This can be achieved by
means of modified invasion-percolation algorithms that
incorporate the dynamics of fluid displacement [Blunt et
al., 1992; Avraam and Payatakes, 1995; Lee et al., 1996;
Valavanides et al., 1998; Yortsos et al., 1997; Aker et al.,
1998; Dahle and Celia, 1999; Ferer et al., 2004].
[15] The effect of gravity on capillary-dominated dis-

placements can be stabilizing [Birovljev et al., 1991] or
destabilizing [Frette et al., 1992]. Gravity affects the
structures that form in two-phase flow through correlated
buoyancy [Auradou et al., 1999]. Extensions to the modi-
fied invasion-percolation models at the pore scale have,
indeed, permitted simulating unstable gravity flows [Onody
et al., 1995; Glass and Yarrington, 1996, 2003; Zhang et
al., 2000]. They have been used to propose extensions to
Lenormand’s phase diagram [Lenormand et al., 1988] in
order to account for gravity forces [Lee et al., 1996; Ewing
and Berkowitz, 1998; Berkowitz and Ewing, 1998], and
have led to the analysis of the roughening of drainage fronts
under combined viscous, capillary, and gravity forces
[Méheust et al., 2002].

2.3. Continuum Models

[16] Despite the abundant experimental evidence, the
description of unstable gravity-driven unsaturated flow
using macroscopic mathematical models (continuum bal-
ance laws) has remained a formidably challenging task.
[17] Unsaturated flow is traditionally modeled at the

continuum scale using Richards’ equation [Richards,
1931], which we express in several space dimensions as
follows:

f
@S

@t
þr � KskrðSÞ rzþryðSÞð Þ½ � ¼ 0; ð1Þ

where S [�] is the water saturation, f [�] is the porosity, Ks

[LT�1] is the saturated hydraulic conductivity, and z [L] is
depth (coordinate in the direction of gravity). The equation
involves two functions of saturation: the relative perme-
ability to water, kr [�], and the suction head (or capillary
pressure in units of head), y [L]. The relative permeability is
typically a monotonically increasing and convex function of
saturation. The capillary pressure is a monotonically
decreasing function of saturation and often has one
inflection point. Both properties display strong hysteresis
effects [Bear, 1972; Dullien, 1991].
[18] Richards’ equation is a statement of conservation of

mass together with several assumptions, including: the
medium remains unsaturated (S strictly less than 1); the
mobility and compressibility of air are much larger than
those of water; and the water flux is given by an extension
of Darcy’s law to unsaturated conditions [Buckingham,
1907; Richards, 1931; Muskat and Meres, 1936; Muskat
et al., 1937; see also Bear, 1972].
[19] Richards’ equation is unable to reproduce the finger-

ing phenomenon. This was explicitly conjectured, supported
by numerical simulations, by Eliassi and Glass [2001], who
employed typical constitutive relations for kr and y, and
hysteretic effects. The stability of Richards’ equation has
been much debated using theoretical and numerical analysis
[Diment et al., 1982; Diment and Watson, 1983; Kapoor,

1996; Ursino, 2000; Du et al., 2001; Egorov et al., 2003],
until recent papers [van Duijn et al., 2004; Nieber et al.,
2005; Fürst et al., 2009] prove that Richards’ equation is
totally stable, to infinitesimal and finite-size perturbations,
with or without hysteresis, and in a modal (asymptotic) and
nonmodal (transient) sense. The appellative ‘‘totally stable’’
is, in this context, a very negative one: the analogue in fluid
mechanics would be that the Navier-Stokes equations of
fluid motion did not have the ability to produce turbulent
solutions. The relevant pattern-forming physical mecha-
nisms are therefore missing in the classical model of
unsaturated flow in porous media.
[20] Many researchers have proposed extended theories

of multiphase flow that depart from the traditional Darcy-
like formulation. Here, we review some of them, restricting
our attention to those directly related to extended models of
unsaturated flow.
[21] On the basis of volume averaging of the microscopic

equations of conservation of mass and momentum, Hassa-
nizadeh and Gray identified that additional terms should be
present in the macroscopic equations [Hassanizadeh and
Gray, 1990, 1993a, 1993b]. In particular, they introduced
the concept of dynamic capillary pressure, which has been
the subject of intense experimental [Hassanizadeh et al.,
2002; O’Carroll et al., 2005], modeling [Beliaev and
Hassanizadeh, 2001; Dahle et al., 2005; DiCarlo, 2005;
Manthey et al., 2005; Mirzaei and Das, 2006; Helmig et al.,
2007], and theoretical research [Cuesta et al., 2000; Cuesta
and Hulshof, 2003; Egorov et al., 2003; Nieber et al., 2005].
The concept of a ‘‘dynamic’’, rate-dependent, macroscopic
capillary pressure has also been postulated independently by
other authors [see, e.g., Stauffer, 1978; Weitz et al., 1987;
del Rio and de Haro, 1991]. The dynamic capillary pressure
extension leads to a mixed third-order term (second order in
space, first order in time), also known as relaxation term.
[22] Cuesta et al. [2000] analyzed a mathematical model

of infiltration with a relaxation term, establishing existence
of traveling wave solutions which exhibit oscillatory (non-
monotonic) behavior if the effect of dynamic capillary
pressure is sufficiently large. DiCarlo [2005] reached sim-
ilar conclusions; he used the relaxation term to achieve an
analytic nonmonotonic solution by using the traveling wave
properties of the observed infiltrations. The solutions were
only nonmonotonic when the applied flux is above a critical
flux, which depended on the magnitude of the additional
term and the media properties. Nieber et al. [2005] gave a
review of mathematical analyses of Richards’ equation with
static and dynamic capillary pressure-saturation relation-
ships. In addition to a thorough stability analysis of the
equations, nonmonotonic analytical solutions were found
when a relaxation term (due to dynamic capillary pressure)
was included.
[23] Eliassi and Glass [2002] introduced the hold-back–

pileup effect, and conjectured it is the mechanism respon-
sible for gravity fingering. They proposed three different
extensions of the traditional Richards’ equation: a hypodif-
fusive model (second order in space), a hyperbolic model
(second order in time), and a mixed model (second order in
space and first order in time). The hypodiffusive model is
equivalent to the use of a nonmonotonic capillary pressure
curve [Eliassi and Glass, 2003; DiCarlo et al., 2008]. The
hyperbolic model is analogous to the Cattaneo extension of
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the heat equation [Cattaneo, 1958; Compte and Metzler,
1997]. The mixed term can be related to the dynamic
capillary pressure concept of Hassanizadeh and Gray
[1993a]. Their numerical simulations [Eliassi and Glass,
2003] showed nonmonotonic behavior in the saturation
profile, if the magnitude of the added terms is sufficiently
large. The hypodiffusive and hyperbolic terms are antidif-
fusive and the resulting mathematical models, in the range
of nonmonotonic solutions, are not well posed (they behave
asymptotically as a backward heat equation). The hypodif-
fusive and hyperbolic extensions of Richards’ equation
proposed by Eliassi and Glass [2002, 2003] were analyzed
by DiCarlo et al. [2008], who obtained traveling wave
solutions that display, indeed, saturation overshoot. The
models require, however, a regularization term to be well
posed (analytical solutions were found with a third-order
regularization term). Other works have included hysteresis
effects in the capillary pressure, in addition to the dynamic
(nonequilibrium) effects [Nieber et al., 2003; Sander et al.,
2008].
[24] Nevertheless, all of these extensions do not address

two important issues. First, they do not provide good
quantitative agreement with experiments of saturation over-
shoot [DiCarlo, 2004]; in most cases the saturation is not
bounded between 0 and 1 [Cuesta et al., 2000; Eliassi and
Glass, 2003; DiCarlo, 2005]. Second, they do not predict
the finger width and finger velocity measured experimen-
tally [Glass et al., 1989b; Selker et al., 1992b].

[25] A model related to the one proposed here was
mentioned in passing by DiCarlo et al. [2008, p. 5] with
reference to Witelski [1996], in which a fourth-order term is
introduced in the formulation. This term, however, appears
simply as a regularization term of strength e ! 0, which
allows for the recovery of well posedness of the equation
when a nonmonotonic capillary pressure is used. Here, we
introduce a fourth-order spatial derivative of finite magni-
tude, responsible for the dynamics of the wetting front
(Figure 1).

3. Flow of Thin Films

[26] An everyday example of fingered flow is that of fluid
down a slope (such as water on a windshield). In fact, the
nature and appearance of this instability is remarkably
similar to the one observed during infiltration in dry
homogeneous sands (Figure 2).
[27] A mathematical model that explains the instability of

the flow of thin films was first presented by Huppert [1982].
The important observation was that the dynamics of the thin
film required a fourth-order derivative in space, a term
associated with surface tension, to explain the instability.
The model of thin films has been subsequently analyzed
thoroughly [see, e.g., Bertozzi and Brenner, 1997], confirm-
ing the critical role of the fourth-order term.
[28] Consider the flow of a fluid film down a plane

(Figure 3). The equation governing the film thickness,
h [L], is [Huppert, 1982]:

@h

@t
þr � rgh3

3m
sinarz� cosarhþ g

rg
rðr2hÞ

� �� �
¼ 0; ð2Þ

where r [ML�3] is the density of the fluid, m [ML�1T�1] is
the fluid dynamic viscosity, g [LT�2] is the gravitational
acceleration, a [�] is the angle of the plane with the
horizontal, z [L] is the coordinate down the gradient of the
inclined plane, and g [MT�2] is the surface tension.
[29] Comparing the thin-film equation (2) with Richards’

equation (1), we can establish a one-to-one correspondence
between the accumulation term, the viscous resistance, the
advection term due to gravity, and the nonlinear diffusion
term because of viscosity in the thin-film equation and
because of microscopic capillarity in Richards’ equation.
The thin-film equation, however, contains an additional
fourth-order term that models the effect of surface tension,
which is missing in Richards’ equation.
[30] Given the similarity in the flow patterns of both

phenomena (Figure 2), it is tempting to add a fourth-order
term to Richards’ equation, and understand the new term as
a macroscopic surface tension that operates at the finger
scale (centimeters to decimeters) rather than the pore scale
[Chuoke et al., 1959; Weitz et al., 1987; DiCarlo and Blunt,
2000]. This is indeed what we will do, and the model will
be cast in the general framework of phase field models,
which will endow the formulation with a rigorous thermo-
dynamic foundation.

4. Phase Field Models of Interface Dynamics

[31] Phase field models have their origin in the mathe-
matical description of phase transitions and solidification
processes [Cahn and Hilliard, 1958; Cahn, 1961]. They are

Figure 1. Schematic of vertical infiltration of water into a
porous medium. Initially, the soil is almost dry (water
saturation S0). A constant and uniformly distributed flux of
water RF (LT�1) is allowed to infiltrate into the soil. The
flux of water is less than the hydraulic conductivity of the
soil, Ks, so that the flux ratio is Rs = RF/Ks < 1.
Macroscopically, a diffuse interface (the wetting front)
moves downward. This interface is often unstable and takes
the form of long and narrow fingers that travel faster than
the base of the wetting front [see, e.g., Glass et al., 1989b,
Figure 2]. Microscopically, a sharp interface between water
and air exists (see inset), which is locally governed by
capillary effects. From Cueto-Felgueroso and Juanes
[2008]. Copyright 2008 by the American Physical Society.
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based on two key ideas: (1) the idea of expressing the
energy of the system accounting for the fact that the system
is not homogeneous and that macroscopic interfaces exist
and (2) the idea that a sharp macroscopic interface is
replaced by a diffuse interface (Figure 4). This is done by
introducing an ‘‘order parameter’’ 8 (the phase field) that
‘‘labels’’ the two macroscopic bulk phases (say, liquid and

gas) and, in the sharp interface limit, recovers the interface
evolution equations [Elder et al., 2001].
[32] Naturally, the energy functional includes nonlocal

terms that involve the gradient (and possibly higher-order
derivatives) of the order parameter 8. In the simplest case,
and because certain terms are ruled out because of symme-

Figure 3. Sketch of the flow of a thin film of fluid down a
plane at a slope (angle a with the horizontal). The thickness
of the fluid film, h, is typically nonmonotonic, showing a
hump near the wetting front and then decaying to an
asymptotic value.

Figure 4. Schematic diagram of the key elements of a
phase field model. The model introduces an order parameter
8 that labels the bulk phases. A macroscopic interface (thick
solid line) is replaced by a diffuse interface of thickness z,
which corresponds to a region of high gradients of 8.

Figure 2. (left) The instability observed in the flow of a thin film of fluid down a plane [from Huppert,
1982] (reprinted by permission from Macmillan Publishers Ltd: Nature, copyright 1982) is remarkably
similar to (right) that during infiltration in a dry homogeneous sand [from Selker et al., 1992b]. Therefore
we use the well-known equations governing thin-film flow as the basis for our model of unsaturated flow
in porous media.
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try considerations, the free energy per unit volume of the
system takes the form [Bray, 1994]:

E ¼ Ebulk þ Einterf ¼ f ð8Þ þ e
2
jr8j2: ð3Þ

[33] In phase separation problems, the function f is
typically a double-well potential (Figure 5), in which the
local minima correspond to the homogeneous stable states
[Cahn and Hilliard, 1958; Bray, 1994]. The gradient square
term makes the evolution of the inhomogeneous system
well posed. As we will see in section 5.4, however, the bulk
energy function in our model of unsaturated flow is very
different from a double-well potential.
[34] The chemical potential of the system is the varia-

tional derivative of the free energy functional. The phase
field equations of the model can then be obtained by
invoking mass conservation and a gradient-type flux [Bray,
1994; Emmerich, 2008]. In section 5, we will illustrate this
formalism with the development of a phase field model of
unsaturated flow.
[35] This type of models has been used to describe a

variety of physical and biological phenomena, such as
epitaxial growth of surfaces [Langer, 1989; Karma and
Rappel, 1996; Gollub and Langer, 1999], binary transitions
[Lowengrub and Truskinovsky, 1998], and solidification
[Cahn and Hilliard, 1958; Cahn, 1961; Boettinger et al.,
2002; Emmerich, 2008].
[36] The statistical physics community has employed this

type of formulation to describe imbibition into random
media [Dubé et al., 1999, 2000a, 2000b, 2001; Alava et
al., 2004; Dubé et al., 2007] and Hele-Shaw cells with
disorder [Hernández-Machado et al., 2001; Soriano et al.,
2002, 2005]. These models have been used to understand

the roughening of stable imbibition fronts, generalizing the
description of interface dynamics put forward by Kardar-
Parisi-Zhang [Kardar et al., 1986] (see also Horvath et al.
[1991], Buldyrev et al. [1992], He et al. [1992], Horvath
and Stanley [1995], and Lopez [1999] and the review by
Halpin-Healy and Zhang [1995]), in order to satisfy mass
conservation [Sun et al., 1989; Kim and Das Sarma, 1994].
[37] In these models, however, a double-well potential is

assumed and, as a result, the flow physics in the bulk is
overly simplified. The models only capture a ‘‘wet’’ and a
‘‘dry’’ region, without smooth changes in saturation in the
wet region. The models have been designed for the analysis
of stable fronts only (such as upward imbibition with
stabilizing gravity, with or without the stabilizing effect of
evaporation), and cannot model unstable infiltration or
predict the onset of fingering.
[38] A related model was proposed by Papatzacos

[Papatzacos, 2002; Papatzacos and Skjæveland, 2004,
2006] where, assuming a diffuse interface model at the pore
level, a Cahn-Hilliard equation is obtained to describe
macroscopic two-phase flow. The model is developed for
a single-component system with phase change, and the
proposed energy potential is also of double-well type.

5. A Phase Field Model of Unsaturated Flow

5.1. Analogy With Thin Films

[39] Driven by the analogy with the thin-film equation
(2), we propose to add to Richards’ equation (1) a fourth-
order term that is responsible for a macroscopic surface
tension effect:

f
@S

@t
þr � KskrðSÞ rzþryðSÞ þ

G
rg
rðr2SÞ

� �� �
¼ 0; ð4Þ

where G [MT�2] plays the role of such macroscopic surface
tension. The model was first proposed by Cueto-Felgueroso
and Juanes [2008], and its stability characteristics were
subsequently analyzed by Cueto-Felgueroso and Juanes
[2009b]. Far away from the region of high-saturation
gradients (the wetting front), the equation reduces to
Richards’ equation. Near the interface, however, the
fourth-order term becomes dominant. The model is
analogous to the equation describing the flow of thin films
except that the scaling of the various terms is different.
[40] As we will see in section 6, the model is able to

reproduce a nonmonotonic saturation profile, believed to be
an essential feature of fingered flows. In the 2-D simula-
tions, we will show that this is indeed the case, and that the
fourth-order term allows us to explain the formation of
fingers during infiltration.

5.2. Phase Field Framework

[41] The proposed governing equation for infiltration can
be derived from the powerful framework of phase field
models, without any analogy to thin-film flows. Water mass
conservation leads to an evolution equation for the water
saturation S:

@ðrfSÞ
@t

þr � J ¼ 0; ð5Þ

Figure 5. Typical bulk energy double-well potential in
phase field models of binary transitions and solidification.
The function is locally convex around two local minima,
8 = 0, 1, which correspond to thermodynamically stable
states. In general, for asymmetric potentials the stable states
are determined through the classical convex hull construc-
tion [Bray, 1994].

6 of 23

W10409 CUETO-FELGUEROSO AND JUANES: A PHASE FIELD MODEL W10409



where J [ML�2T�1] is the water mass flux. We adopt a
gradient flow formulation [see, e.g., Emmerich, 2008],

J ¼ �rlrF; ð6Þ

where l [M�1L3T] is the water mobility, and F [ML�1T�2]
is the flow potential. The water mobility includes the effect
of reduced permeability to water due to partial saturation,
and takes the form:

l ¼ k

m
krðSÞ: ð7Þ

[42] Under unsaturated conditions (water saturation strict-
ly less than one), it is well justified to make two assump-
tions [Bear, 1972; Philip, 1969]. First, air is infinitely
mobile compared to water and, as a result, the air pressure
remains constant and equal to atmospheric pressure. The
water pressure is then equal to the negative suction (or
capillary pressure):

pwater ¼ pair|{z}
¼0

�PcðSÞ: ð8Þ

The capillary pressure is a monotonically decreasing but
often nonconvex function of water saturation [Bear, 1972].
The second assumption is that the compressibility of water
and rock is negligible compared to that of air, and therefore
the water density r and the porosity f are constant.
[43] Under these conditions, we write the free energy per

unit volume of the system as:

E ¼ Egr þ Ecap þ Enl ¼ �rgSzþ YðSÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
local

þ 1

2
GjrSj2|fflfflfflfflffl{zfflfflfflfflffl}
nonlocal

; ð9Þ

which comprises the gravitational (Egr) and capillary
pressure (Ecap) energy potentials, as well as a nonlocal
energy potential (Enl). The capillary pressure function is
derived from the capillary potential:

PcðSÞ ¼ �
dY
dS

; ð10Þ

which we can further express in head units [L]:

yðSÞ ¼ 1

rg
PcðSÞ: ð11Þ

The nonlocal term models the extra energetic cost
associated with the displacement of water-air interfaces in
areas of large saturation gradients. The coefficient G plays
the role of an apparent surface tension associated with the
wetting front [Huppert, 1982; Weitz et al., 1987; DiCarlo
and Blunt, 2000].
[44] The flow potential F is the variational derivative of

the free energy:

F ¼ dE
dS
¼ @E
@S
�r � @E

@rS

� �
¼ �rgz� rgyðSÞ � Gr2S: ð12Þ

Combining equations (5), (6), and (12), and the unsaturated
flow assumptions of constant water density and porosity, we
arrive at the proposed model equation (4):

f
@S

@t
þr � krg

m
krðSÞ rzþryðSÞ þ

G
rg
rðr2SÞ

� �� �
¼ 0;

ð13Þ

where we identify the saturated hydraulic conductivity, Ks =
krg/m. The traditional Richards equation (1) can be
recovered by neglecting the nonlocal energy term in
equation (13).

5.3. Scaling of the Fourth-Order Term

[45] The question arises: what is the value of the coeffi-
cient G that scales the fourth-order term? To address this
question, we consider the vertical volumetric flux at a point
in the transition region of the wetting front, of thickness z
(Figure 4):

qv ¼ KskrðSÞ 1þ @y
@z
þ L

@r2S

@z

� �
; ð14Þ

where L = G/(rg). The suction head is expressed as:

yðSÞ ¼ hcapJðSÞ; ð15Þ

where J(S) [�] is a dimensionless capillary pressure
function, and hcap [L] is the capillary rise, whose
dependence on the system parameters is given by the
classical Leverett scaling [Leverett, 1941]:

hcap �
g cos q

rg
ffiffiffiffiffiffiffiffi
k=f

p ; ð16Þ

where g is the surface tension between the fluids, and q [�]
is an effective contact angle. It is well known [see, e.g.,
Selker and Schroth, 1998] that this effective contact angle
is, in general, different from the microscopic contact angle
between the air-water interface and the solid surface [de
Gennes, 1985]. Indeed, pore-scale modeling studies show
that a relatively wide range of contact angles must be used
to reproduce imbibition capillary pressure and relative
permeability curves, even in water-wet media [Valvatne and
Blunt, 2004]. In any case, the relevant quantity, and the only
one that is used in our theory, is the capillary height hcap
(which incorporates the surface tension of the pair of fluids,
the characteristic microscopic length scale of the medium,
and the wetting characteristics).
[46] The parameter L has dimensions of L3. One possi-

bility is to understand it as a (new) free parameter. We find
this choice unattractive, for several reasons. First, one can
argue that by introducing a new parameter, it is ‘‘easy’’ to
reproduce experimental data. Second, one should then
provide a methodology to determine the new parameter
experimentally. And third, it is unclear what would be the
new physical property (not present in Richards’ equation)
that gives rise to an independent parameter in the system.
We argue, instead, that the system can be described with the
physical properties already present: gravity, viscous resis-
tance, and microscopic surface tension.

W10409 CUETO-FELGUEROSO AND JUANES: A PHASE FIELD MODEL
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[47] We analyze the scaling of the capillary and nonlocal
terms at the wetting front. The capillary term scales like
hcap/z. Therefore gravity and capillarity are both important
at the wetting front if z � hcap, and their relative strength
can be measured by the nondimensional group Grz = z/hcap.
The nonlocal term resembles a curvature-driven flux, where
the Laplacian can be expressed as [Weatherburn, 1927; Lei,
1988]:

r2S ¼ @
2S

@n2
þ kH jrSj; ð17Þ

where n is the space coordinate perpendicular to the front,
and kH is the in-plane curvature of the front. Therefore we
have the scaling:

L
@r2S

@z
� L

1

z3
: ð18Þ

To have an O (1) term, we must have L � z3 and, from the
scaling of the capillary term, L � hcap

3 . The relative strength
of gravity to macroscopic surface tension effects is
measured by the nondimensional group:

N‘z ¼
L
z3
�

h3cap

z3
¼ Gr�3z : ð19Þ

This scaling is not coincidental: it is required to retain the
balance among the different terms in the sharp interface
limit z ! 0 [Elder et al., 2001]. If one chooses N‘z = Grz

�a

with a < 3, the sharp interface limit corresponds to
Richards’ equation. If a > 3, imbibition is governed in the
sharp interface limit purely by curvature-driven flow, an
unphysical model.
[48] In general, the coefficient of proportionality relating

N‘z and Grz
�3 will depend on the rest of the properties of the

system, such as initial saturation S0, flux ratio Rs, and

relative permeability and capillary pressure characteristics.
For simplicity, here we take

N‘z ¼ Gr�3z : ð20Þ

[49] As a summary, we express the mathematical model
(13) in dimensionless form, by rescaling x ! x/L, where L
is an arbitrary length, and t ! t/T, where T = Lf/Ks. We
define the following two nondimensional groups:

Gr ¼ L

hcap
ðgravity numberÞ; ð21Þ

N‘ ¼ L
L3

ðnonlocal numberÞ: ð22Þ

With the proposed scaling of equation (20), and understand-
ing the space and time coordinates (x, t) as their dimen-
sionless counterparts, the model reads:

@S

@t
þr � krðSÞ rzþ Gr�1rJðSÞ þ Gr�3r r2S

� 	� 	
 �
¼ 0: ð23Þ

5.4. Refinement of the Model: Bounded Saturation
Overshoot

[50] In the model as presented, the saturation overshoot is
not bounded. That is, the solution to equation (13) may take
values larger than one, clearly an unphysical situation. This is
the case for most continuum extensions of Richards’ equation
[Cuesta et al., 2000; Cuesta and Hulshof, 2003; Eliassi and
Glass, 2002, 2003; DiCarlo, 2005]. Nieber et al. [2005]
avoid overshoots above 1 in their dynamic relaxation model
by the use of a relaxation term of the form t � dPc/dS and
a van Genuchten capillary pressure function Pc(S); over-
shoots above 1 appear if a Brooks-Corey capillary pressure
function is used. DiCarlo et al. [2008] also guarantee
saturations below 1, but in their case the high-order term
is a regularization term of infinitesimal strength.
[51] The thermodynamic framework of phase field mod-

els indicates why saturations above 1 occur, and permits
rectifying the model to yield a water saturation that is
bounded between 0 and 1. When the medium approaches
full saturation (S � 1), the two assumptions of infinite
mobility and infinity compressibility of air cease to be valid.
Just behind the wetting front, the water pressure is no longer
the negative capillary suction [Bauters et al., 1998]. There-
fore the energy of the system must include an extra term
because of the water pressure. From the point of view of
phase field models, the saturation overshoot occurs because
the bulk energy potential in equation (9), unlike the double-
well potential, does not an have a preferred ‘‘stable’’ state.
The capillary potential is given by

fcapðSÞ ¼
Z 1

S

yðsÞ ds: ð24Þ

Typically, this potential function is monotonically decreas-
ing (Figure 6). Therefore the equations do not prevent the
saturation from achieving unboundedly large values.

Figure 6. The dashed line is a typical capillary energy
potential in our phase field model of unsaturated flow. The
function is monotonically decreasing, and values of water
saturation above one are favored. The solid line is the
combined energy potential when a compressibility term is
added to the formulation. The new function has a minimum
near S = 1, which serves as an attractor for the phase field
variable. Saturation values above one are disallowed.
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[52] Consider now an additional ‘‘compressibility’’ term
in the bulk energy potential that introduces a boundary
layer, such that the combined capillary-compressibility
potential has a minimum near S = 1 (Figure 6). This
minimum acts as an attractor for the phase-ordering param-
eter, and values of water saturation above one do not occur.
We will see the effect clearly in the simulations of section 6.

6. Simulation Results

[53] The mathematical model is given by equation (23),
together with appropriate initial and boundary conditions,
and constitutive relations. It is assumed that the initial water
saturation S0 is uniform, and that the infiltration rate RF

[LT�1] is uniformly distributed and constant in time (see
Figure 1). The infiltration rate RF may be expressed as a
flux ratio, Rs = RF/Ks, with Rs 2 [0, 1].
[54] We adopt a power law relative permeability of the

form

kvðSÞ ¼ Sb; ð25Þ

and a Brooks-Corey capillary pressure function [Brooks and
Corey, 1966],

JðSÞ ¼ S�1=l; ð26Þ

which yields a capillary potential

fcapðSÞ ¼ �
l

l� 1
S1�1=l: ð27Þ

We adopt an exponential compressibility potential of the
form

fcompðSÞ ¼ expð�kð1� SÞÞfcapðSÞ: ð28Þ

Hence, the total bulk free energy is given by

f ðSÞ ¼ fcapðSÞ þ fcompðSÞ ¼ �
l

l� 1
S1�1=l 1� expð�kð1� SÞÞ½ �:

ð29Þ

6.1. Traveling Waves

[55] We present traveling wave solutions to equation (23),
which represent 1-D infiltration fronts. Although we
addressed their practical computation elsewhere [Cueto-
Felgueroso and Juanes, 2009a], we include some examples
here in order to set the framework for the analysis of the
saturation overshoot and wetting front stability.
[56] The traveling wave solutions are computed using an

adaptive rational spectral method with adaptively trans-
formed Chebyshev nodes, which does not require that the
underlying problem is transformed into new coordinates
[Tee and Trefethen, 2006; Cueto-Felgueroso and Juanes,
2009a]. The method takes into account, and locates, a priori
unknown singularities of the underlying solution. We use
conformal mapping to design transformed nodes that
improve the Chebyshev spectral method. Chebyshev-Padé
approximation is used to determine the locations of the
singularities of the solution in the complex plane. This type

of discretization has allowed us to compute accurate trav-
eling waves and eigenvalues for very small values of the
initial water saturation, using just a few hundred grid points.
[57] Traveling wave solutions to our model display a

nonmonotonic saturation profile, with a sharp wetting front,
a saturation overshoot at the tip, and a decay to an
asymptotic saturation value S� (Figure 7). Changes in the
gravity number Gr induce changes in the scale of the
solution, and thus the length scale of the bump increases
like Gr�1 (Figure 7a). Stronger capillary dissipation, given
in terms of the Brooks-Corey parameter l, results in a
stabilization of the wetting front, and a smaller saturation
overshoot (Figure 7b). Even slight increases in the initial
saturation S0 have a strong influence on the saturation
overshoot: the magnitude of the overshoot decreases as
the initial saturation increases (Figure 7c). The flux ratio
Rs also plays a critical role in the structure and stability of
the front. The overshoot increases with the flux ratio, until
the tip reaches saturations close to one (Figure 7d). The
behavior near S = 1 is fundamentally influenced by the
compressibility model, through the parameter k.
[58] To elucidate the influence of the compressibility

model, we compute traveling waves for the same flux ratio
and water relative permeability function, but changing the
compressibility parameter k. As the minimum of the bulk
free energy moves toward 1 (increasing k), the maximum
saturation attained also approaches 1 (Figure 8a). This
maximum saturation depends not only on the position of
the minimum in the bulk free energy, but also on the
nonlinearity of the relative permeability curve. Highly
nonlinear conductivities, corresponding to larger values of
the exponent b, result in larger saturation overshoots
(Figure 8b). Indeed, one of the important insights of the
present study is the dominant role of the relative perme-
ability on the behavior of the saturation overshoot and
subsequent fingering instability.

6.2. Comparison With Quasi-1-D Experiments
of Infiltration

[59] In this section we compare the model predictions of
saturation overshoot with laboratory measurements from
quasi-1-D experiments of infiltration into homogeneous
sands [DiCarlo, 2004].
[60] We first fit the unsaturated water conductivity mea-

sured experimentally to a piecewise polynomial:

krðSÞ �
P1ðSÞ ¼ Sa if S < S�;
P2ðSÞ ¼ Sb if S > S�; :

�
ð30Þ

where S� is the crossover saturation. Such crossover in the
power law behavior from low water saturation to high water
saturation is observed experimentally [DiCarlo, 2004,
2007]. A smooth curve is obtained using a blending
function, such that:

krðSÞ ¼ P1ðSÞgðSÞ þ P2ðSÞð1� gðSÞÞ; ð31Þ

where

gðSÞ ¼ 1

2
1� tanhðcðS � S�ÞÞð Þ: ð32Þ
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The parameters a, b, c and S� determined to fit the
experimental curves of DiCarlo [2004] are given in Table 1,
and the relative permeability functions are plotted in
Figure 9.
[61] For the bulk free energies, we use generic Brooks-

Corey capillary pressure functions, equation (26), with a
parameter l. The compressibility potentials (equation (28)),
introduce the compressibility parameter k. The values taken
for DiCarlo’s experiments are given in Table 1. The result-
ing bulk free energies and their derivatives with respect to
saturation are plotted in Figure 10.
6.2.1. Saturation Overshoot
[62] We investigate the influence of the model parameters

on the saturation overshoot by plotting the difference
between the tip saturation Stip and the tail saturation S�
against the flux ratio Rs (Figure 11). The most influential
parameters are the initial saturation and the relative perme-
ability function (Figures 11a and 11b, respectively). Large
saturation overshoots are indicative of dry soils, with

conductivities that behave like power laws with a large
exponent, for which large water saturations are compatible
with small fluxes. The form of the compressibility function
has a mild influence in smoothing the overshoot for large
flux ratios (Figure 11c), while the Brooks-Corey parameter
l has a relatively uniform effect over the whole range of
flux ratios (Figure 11d).
[63] We compare the model predictions with the experi-

mental measurements of DiCarlo [2004]. We have not
intended to achieve a perfect fit of the experimental results
by tuning the model parameters, but rather to show that the
observed trends can be easily explained by the proposed
theory. Nevertheless, we have fitted the experimental con-
ductivity curves as closely as possible, as this appears to be
the most critical constitutive relation, and the trends in
saturation overshoot cannot be understood without captur-
ing the highly nonlinear behavior of the measured conduc-
tivity curves. The initial saturation for all the dry sands is
taken as S0 = 0.01. This value was chosen by us; experi-

Figure 7. Influence of the model parameters on the traveling wave solutions to the proposed model. The
default parameters are kr = S3, l = 4, k = 20, S� = 0.5, and S0 = 0.01. (a) Influence of the gravity number
Gr. (b) Influence of the Brooks-Corey parameter l. (c) Influence of the initial water saturation S0.
(d) Influence of the flux ratio Rs = kr(S�).
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mentally, the initial saturation was small enough that a
numeric value was not reported by DiCarlo [2004].
[64] The 30/40 sand shows the ‘‘canonical’’ overshoot

behavior, with compressibility effects restricted to the high-
est flux ratios (Figure 12a). For the coarser 20/30 sand, the
transition to almost fully saturated tips is smoother, which is
partially due to the structure of the conductivity curve, but
also to the form of the bulk free energy (Figure 12b). We
test the ability of our model to reproduce the saturation
overshoot under different conditions, without changes in
any of the parameters. Simulations using higher initial
saturation show a reduced saturation overshoot, in agree-
ment with experimental measurements (Figures 12c and
12d).
[65] DiCarlo [2004] presents as a paradox the fact that,

while having similar capillary pressure–saturation proper-
ties, the 12/20 and grey sands exhibit radically different
overshoot behavior. Our theory renders a simple explana-
tion to their overshoot behavior: the relative permeability
curves are very different. While this difference may be
inconsequential within the classical theory, in our context
this difference in essential. The 12/20 sand behaves as a
very nonlinear power law until the medium reaches a certain
saturation, whereas the grey sand behaves like a cubic
function for most of the saturation range. This fact alone
suffices to explain the observed differences (Figure 13).
[66] The accuracy of our predictions is notable, particu-

larly taking into account that our only effort to reproduce
the experimental conditions concerns the unsaturated con-
ductivity curves. This fact also implies that the shape of the
conductivity curve is critical in the behavior of the wetting
front. It also implies that generic definitions usually
employed in the literature, which give unsaturated conduc-
tivities that are quadratic or cubic, are not representative of
sands that display large overshoots and wetting front
instability.
6.2.2. Saturation Profiles
[67] According to classical interpretations of unsaturated

flow, our model would have, at best, the ability to predict

the saturation overshoot at the wetting front (as that
involves primary imbibition alone) but should miss the
shape of the saturation profile behind the wetting front
[Eliassi and Glass, 2002; DiCarlo, 2007; DiCarlo et al.,
2008]. While it is true that the system undergoes drainage
behind the front tip, and that the constitutive relations will
in general be different from those in imbibition, our model
predictions, without any hysteretic effects, are in good
quantitative agreement with the saturation profiles measured
experimentally (Figure 14). The far end of the profiles
match the experimental curves because we fit the unsatu-
rated conductivity. However, the transition behind the
wetting front is also captured well with our model. We
conclude that the characteristics and length scale of the
saturation overshoot can be explained with a continuum
model, using macroscopic concepts, and without intro-
ducing rate-dependent or history-dependent constitutive
relations.

6.3. Two-Dimensional Simulations

[68] We present 2-D simulations of gravity fingering
during constant-flux infiltration in heterogeneous soils.
Results for homogeneous media were presented by Cueto-
Felgueroso and Juanes [2008], where we showed the
development of fingering instability, and analyzed the

Table 1. Parameters Chosen to Fit the Relative Permeability and

Capillary Pressure Functions Measured Experimentally by DiCarlo

[2004]a

Sand a b c S� l k

30/40 11 2.0 10 0.35 4.0 20
20/30 (dry) 11 3.0 10 0.22 4.0 10
20/30 (wet) 11 2.7 10 0.22 4.0 10
12/20 11 2.7 20 0.22 1.5 10
Grey 11 3.0 20 0.12 1.5 10

aSee text for the definition and explanation of each parameter.

Figure 8. Influence of the compressibility term of the bulk free energy on the traveling wave solutions
of the model. The default parameters are kr = S3, l = 4, k = 20, S� = 0.5, and S0 = 0.01. (a) Influence of
the compressibility parameter k. (b) Influence of the relative permeability function. We set kr = Sb and
plot the traveling waves for different values of the exponent b.
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Figure 10. Bulk free energies f and their derivatives with respect to water saturation, J = df/dS. The
(a) capillary free energies fcap are constructed from (c) classical Brooks-Corey capillary pressure
functions J = dfcap/dS. Adding the compressibility free energies, we obtain (b) the total bulk free energies
f = fcap + fcomp, whose derivative with respect to water saturation gives (d) the bulk flow potential,
~J = df/dS.

Figure 9. Relative permeability functions that fit the experimental results of DiCarlo [2004]: (a) 30/40
and 20/30 sands and (b) 12/20 and grey sands.
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influence of the various system parameters on the fingered
flow. The objective of the present simulations is to demon-
strate the effect of mild heterogeneity in the finger evolu-
tion, and the critical role played by the nonlinearity of the
relative permeability function. We consider heterogeneity in
the absolute permeability, but assume that it does not affect
the form of the relative permeability or capillary pressure
functions.
[69] The computational domain is the rectangle [�2, 2] �

[�1, 1], and the gravity number is set to Gr = 20. For the
capillary pressure function we use a standard van Gen-
uchten-Mualem model [Mualem, 1976; van Genuchten,
1980] with n = 10 and m = 1 � 1/n. The relative
permeability is a simple polynomial function, kr = S9. We
use two permeability fields. The first has a short correlation
length, with range r � 0.08. The permeability follows a
lognormal distribution with mild heterogeneity: kmax/kmin �
25, and slnk

2 � 0.16 (Figure 15a). The second permeability
field is generated by filtering the fine-scale one to obtain a
finger-scale correlation length (range r � 0.16), while
keeping the ratio kmax/kmin � 25 (Figure 15c).

[70] The domain is periodic in the horizontal direction.
The initial saturation is S0 = 0.01. The saturation at the
top boundary is S� = 0.4, corresponding to a flux ratio Rs =
2.62 � 10�4. The flow is initialized assuming a perturbed,
flat front near the top of the domain.
[71] The numerical simulation of the proposed model in

multiple dimensions is significantly more demanding than
similar computations with Richards’ equation. Moreover,
the field of numerical methods for higher-order equations is
still in its infancy. In the present context, the reference point
is previous work on numerical simulation of the Cahn-
Hilliard equation [see, e.g., Cueto-Felgueroso and Peraire,
2008; Gomez et al., 2008], and thin-film flows [Kondic,
2003].
[72] Our simulations use eighth-order finite differences in

the vertical direction, and Fourier expansions in the hori-
zontal direction (which is assumed to be periodic). For the
convective term, the stencil is slightly upwinded in order to
avoid the spurious growth of unresolved high frequencies
near the wetting front. The time integration is based on the
semiimplicit method presented by Zhu et al. [1999], which

Figure 11. Influence of the model parameters on the saturation overshoot. The default properties are
those of the 30/40 sand. (a) Initial saturation S0. (b) Relative permeability power law exponent b.
(c) Compressibility parameter k. (d) Brooks-Corey parameter l.
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Figure 12. Comparison of the saturation overshoot predictions from our model with the quasi-1-D
experiments of DiCarlo [2004]: (a) 30/40 dry sand, S0 = 0.01, (b) 20/30 dry sand, S0 = 0.01, (c) 20/30
sand, S0 = 0.03, and (d) 20/30 sand, S0 = 0.06.

Figure 13. Comparison of the saturation overshoot predictions from our model with the quasi-1-D
experiments of DiCarlo [2004]: (a) 12/20 dry sand and (b) grey sand.
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is very efficient for spectral discretizations. We acknowl-
edge that the wetting front is not fully resolved in our
simulations, and therefore the full extent of the saturation
overshoots at the finger tips is not converged in the
computations presented here. From simulations on coarser

grids, finger width and the range of finger velocities are not
greatly affected. However, simulations with a finer grid will
lead to a sharper wetting front and larger saturation over-
shoot at the finger tips.
[73] Snapshots of the saturation field corresponding to the

two permeability fields are shown in Figure 15. The most
significant feature of the simulated saturation field is the
development and growth of gravity fingers that follow the
pattern observed in visual laboratory experiments (compare
Figures 15b and 15d with, e.g., Glass et al. [1989b] and
Selker et al. [1992b]). Our model also predicts the observed
saturation overshoot at the tip of the fingers, and the
existence of a saturation ridge along the finger root front
(also known as distribution layer), which should be ana-
lyzed in future experiments.
[74] In Figure 16, we show eight snapshots with the

evolution of the fingered flow for the case with finger-scale
correlation length heterogeneity. This sequence illustrates
the process of finger formation from the initial condition,
and finger persistence once the fingers form: finger width is
constant along the length of the finger, and also essentially
constant in time. The presence of mild heterogeneity indu-
ces slight meandering of the fingers, which show ‘‘slabs’’ of
alternate high and low saturation. Their predominant
straight shape is, however, preserved. Compared to the case
of a homogeneous system, heterogeneity also results in a
wider distribution of finger velocities.
[75] Additional insight into the behavior of the system is

obtained by analyzing the capillary pressure term and the
fourth-order term, which contribute, along with gravity, to

Figure 14. Simulated saturation profiles for the 20/30 dry
sand with different flux ratios (dashed lines) and compar-
ison with the experimental measurements of DiCarlo [2004]
(solid lines). We set a gravity number of Gr = 1/3. The
reference length is 1 cm, and therefore we are assuming a
capillary rise of 3 cm.

Figure 15. Two-dimensional simulations of wetting front instability in heterogeneous media. (a) Natural
logarithm of the permeability field for the case with short correlation length. (b) Corresponding saturation
field at t = 174. (c) Natural logarithm of the permeability field for the case with finger-scale correlation
length. (d) Corresponding saturation field at t = 174.
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the flow potential (see equation (12)). In Figure 17 we
plot the dimensionless capillary pressure head, Gr�1J(S),
and the dimensionless fourth-order term, Gr�3r2S, for the
case with finger-scale correlation length heterogeneity at
t = 174 (Figure 15d).
[76] The distribution of capillary pressure reflects the

fingered pattern. Average horizontal gradients of capillary
pressure between the finger core and the space between

fingers are of the order of Gr�1dJ/dx � 0.2. Although we
have not made any attempt to reproduce them quantitatively,
horizontal matric potential gradients of this magnitude are
observed in the experiments of Selker et al. [1992a]. Figure
17b shows the contribution to the potential from the fourth-
order term. This term takes highest values on a fringe
immediately outside of the fingered wetting front, where
the saturation field is ‘‘convex,’’ and lowest values along

Figure 16. Two-dimensional simulations of fingered flow for the case with finger-scale correlation
length heterogeneity (Figure 15d). Shown are the snapshots at different simulation times, illustrating the
details of the initial condition, finger formation at early time, and finger persistence at late time.

16 of 23

W10409 CUETO-FELGUEROSO AND JUANES: A PHASE FIELD MODEL W10409



the finger core and, especially, at the finger tip, where the
saturation field is ‘‘concave.’’ The flow induced by this term
is toward the fringe of high values, which explains finger
persistence without hysteresis effects, and the interpretation
of this fourth-order term as an effective surface tension
along the wetting front.
[77] When we compute the average saturation S as a

function of depth, we obtain a rather dispersed infiltration
profile (Figure 18a). The solution is completely different
from the compact front that would be predicted from the
one-dimensional Richards equation. The average saturation
is approximately self-similar: the saturation profiles at
different times collapse onto a single curve S (x) under
the scaling x = z/t (Figure 18b).
[78] A critical aspect of the impact of fingering on

transport mechanisms is the relative velocities of the fingers

with respect to the root front they emerge from. The larger
the ratio of finger/root velocities, the more relevant finger-
ing is; this ratio is indicative of the fraction of the flow that
is channelized through the fingers. The key parameters
governing finger-to-root velocity ratio are the initial satura-
tion and the form of the relative permeability function. As
an example, we repeat the simulation for the permeability
field in Figure 15c, but now with different relative perme-
ability functions. We analyze the role of the power law
exponent in the range of small water saturations. In partic-
ular, we compare simulation results obtained with kr = S5

(Figure 19a) and kr = S3 (Figure 19b). It is apparent that the
fingering instability becomes much milder as the power law
exponent decreases. This behavior is consistent with the
dependence of the saturation overshoot on the relative
permeability exponent, hinting at a direct relation between

Figure 17. (a) Dimensionless capillary pressure head, Gr�1J(S), and (b) dimensionless nonlocal term,
Gr�3r2S, for the case with finger-scale correlation length heterogeneity at t = 174 (Figure 15d). The
distribution of capillary pressure reflects the fingered pattern. The nonlocal term takes highest values on a
fringe immediately outside of the fingered wetting front, where the saturation field is convex.

Figure 18. (a) Evolution of the average saturation as a function of depth for the 2-D simulation with
short correlation length. The saturation profile is completely different from what would be predicted by a
1-D simulation of Richards’ equation. (b) Average saturation, at different simulation times, as a function
of the similarity variable x = z/t. The curves at different times collapse onto each other, suggesting that the
infiltration process is self-similar.
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saturation overshoot and gravity fingering. This link is
explored next.

7. Saturation Overshoot and the Onset of
Fingering

[79] It has been hypothesized that saturation overshoot at
the wetting front is the mechanism responsible for the
formation of gravity fingers during infiltration [Geiger
and Durnford, 2000; Eliassi and Glass, 2001; Egorov et
al., 2003]. Experimental evidence seemed to confirm these
intuitions [DiCarlo, 2004]. The link between saturation
overshoot and instability, by means of a linear stability
analysis, has been investigated by Nieber et al. [2005] for an
extended model with a relaxation dynamic term. They
showed that the magnitude of the instability is related to
the magnitude of the overshoot. For a very slight overshoot
the flow is still basically stable; once past a critical value the
flow becomes unstable.
[80] Here, we show that such a relationship between

overshoot and instability of the wetting front can be
naturally understood within the proposed theory. We estab-
lish the link between saturation overshoot and finger for-
mation by performing a linear stability analysis of our
model [Cueto-Felgueroso and Juanes, 2009b]. Stability
refers here to the growth or decay of planar infinitesimal
perturbations to the traveling wave solutions to equation
(23). For a given set of parameters (gravity number, initial
saturation, flux ratio, and constitutive relations) we compute
the dispersion relation: a curve of the asymptotic growth
factor b associated with each frequency w of the initial
perturbation. A positive value of b indicates asymptotic
exponential growth of the perturbation. Negative values are
indicative of asymptotic exponential decay. From the dis-
persion curve, we determine the frequency wmax of the most
unstable mode, as well as its associated asymptotic growth
factor bmax.
[81] The dependency of the stability properties on the

various parameters is shown in Figure 20. The growth factor
and frequency of the most unstable mode both increase
linearly with the gravity number Gr (Figure 20a). This
reflects the stabilizing effect of capillary diffusion. From
the perspective of characterizing the incipient fingers, this

can be interpreted as the formation of thicker, slower fingers
as Gr! 0. For a fixed gravity number, capillary effects are
smaller for higher values of the Brooks-Corey parameter l
(recall equation (26)). As a result, bmax increases with
increasing l. The most unstable mode, however, is rather
insensitive to l (Figure 20b). Consistent with experimental
observations, the initial water saturation has a critical effect
on the instability: even small values of S0 result in a drastic
reduction of bmax, effectively suppressing the instability
(Figure 20c). Of particular importance is the dependence of
asymptotic exponential growth on the flux ratio Rs. For very
low values of Rs, the corresponding value of bmax is also
very small. Then, the growth rate increases with increasing
values of Rs, while the frequency of the most unstable mode
remains fairly constant. One of the key results of the
stability analysis is that there is a critical flux ratio beyond
which bmax starts to decrease, along with a decrease in wmax.
This trend means that for a sufficiently large flux ratio,
close to saturated conditions, the instability is suppressed
(Figure 20d).
[82] We now analyze the relation between saturation

overshoot and flow instability. We compute traveling wave
solutions to equation (23) for increasing flux ratios Rs 2
[0, 1]. Through a linear stability analysis [Cueto-Felgueroso
and Juanes, 2009b], we determine the maximum growth
factor bmax and the corresponding wave number wmax of the
perturbation. We adopt Gr = 1, S0 = 0.01 and the constitutive
relations

krðSÞ ¼ S3; JðSÞ ¼ S�1=5: ð33Þ

The compressibility parameter is k = 100.
[83] Sample traveling waves for different flux ratios are

shown in Figure 21a. As the flux ratio increases, the
overshoot at the tip also increases. Eventually, the tip
saturates and the traveling waves exhibit a relatively flat
plateau near the wetting front. Figure 21b shows the
‘‘instability path’’ in bmax � wmax space, for increasing flux
ratios between 0 and 1. Initially, as the flux ratio increases,
the system becomes more unstable but with a relatively
constant unstable frequency. Beyond a critical flux ratio,

Figure 19. Two-dimensional simulations of wetting front instability in heterogeneous media. Influence
of the nonlinearity of the relative permeability. (a) Saturation map for kr = S5 at t = 7.2. (b) Saturation map
for kr = S3 at t = 1.56.
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Figure 20. Influence of the model parameters on the stability properties of the traveling wave solutions
to equation (23). These results correspond to the traveling waves in Figure 7. (a) Influence of the gravity
number Gr. (b) Influence of the Brooks-Corey parameter l. (c) Influence of the initial water saturation S0.
(d) Influence of the flux ratio Rs = kr(S�).

Figure 21. Relationship between saturation overshoot and stability. (a) Sample traveling waves for
various flux ratios. (b) Locus of the pairs (wmax, bmax), for the range Rs 2 [0, 0.925].
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however, there is a transition back to stability, in the form of
slower (decreasing bmax), thicker fingers (decreasing wmax).
[84] A powerful, quantitative analysis of this general

picture is provided by Figure 22a. We plot the saturation
overshoot and maximum growth factor bmax, against flux
ratio. The two curves are essentially on top of each other,
strongly suggesting a direct relation between the magni-
tude of the pileup effect and the instability of the front.
Both the saturation overshoot and bmax are monotonically
increasing functions of the flux ratio, until the tip saturates
(Figure 22b). After saturation, bmax shows a fast decay,
and eventually the system is stable for Rs = 1. Near-
saturated conditions lead to more stable fronts than unsat-
urated flows.

8. Conclusions and Outlook

[85] We have presented a phase field model of infiltration
that explains gravity fingering during water infiltration in
soil [Cueto-Felgueroso and Juanes, 2008]. The model is
an extension of the traditional Richards equation, and it
introduces a new term, a fourth-order derivative in space,
but not a new parameter. We propose a scaling that links the
magnitude of the new term to the relative strength of
gravity-to-capillary forces already present in Richards’
equation. We motivated the new model by analogy with
the thin-film equations, which describe a similar phenom-
enon: the instability of a liquid film down a plane. The
model is formulated, however, in the framework of phase
field models. This allowed us to endow the model with a
sound thermodynamical basis, and to refine it to constrain
the saturation field between its physical values (0 and 1).
[86] The comparison with experiments is very favorable.

In 1-D, the model reproduces the trends of saturation
overshoot versus infiltration rate observed experimentally
for different sands and different initial saturations. It also
reproduces the saturation profile behind the wetting front. In
2-D, numerical simulations show the formation of gravity
fingers with the appearance and characteristics (finger
width, finger velocity, and oversaturation at the tip) ob-

served in the experiments [Cueto-Felgueroso and Juanes,
2008]. Our simulations also show the pervasive nature of
the fingers, even in the presence of heterogeneity, and they
elucidate the critical role of the initial saturation and the
nonlinearity of the unsaturated conductivity in the develop-
ment of the fingering instability.
[87] The linear stability analysis of the model [Cueto-

Felgueroso and Juanes, 2009b, 2009a] allowed us to
establish a direct relationship between the saturation over-
shoot and the strength of the wetting front instability,
supporting the view that saturation overshoot is a prerequi-
site for gravity fingering [Geiger and Durnford, 2000;
Eliassi and Glass, 2001; Nieber et al., 2005].
[88] It may seem counterintuitive that by adding a highly

dissipative fourth-order derivative to a model that is totally
stable, Richards’ equation, a conditionally stable model
emerges. The physical explanation is that the fourth-order
term introduces a macroscopic surface tension at the wetting
front, responsible for a hold-back–pileup effect [Eliassi and
Glass, 2002]. The model predicts an accumulation of water
at the front, which then has sufficient ‘‘energy’’ to trigger
the instability.
[89] The phase field model of unsaturated flow presented

here is a first step toward the explanation and quantitative
prediction of the dynamics of unstable multiphase flow
through porous media using continuum models.
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