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Existing continuum models of multiphase flow in porous media are unable to explain why preferential

flow (fingering) occurs during infiltration into homogeneous, dry soil. Following a phase-field method-

ology, we propose a continuum model that accounts for an apparent surface tension at the wetting front

and does not introduce new independent parameters. The model reproduces the observed features of

fingered flows, in particular, the higher saturation of water at the tip of the fingers, which is believed to be

essential for the formation of fingers. From a linear stability analysis, we predict that finger velocity and

finger width both increase with infiltration rate, and the predictions are in quantitative agreement with

experiments.
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The unstable displacement of a fluid by another fluid in a
porous medium is a fascinating example of pattern forma-
tion in nonlinear dissipative systems [1–3]. The rich variety
of macroscopic invasion patterns stems from a delicate
interaction between capillary, viscous and gravitational
forces at the pore scale. In gravity-driven infiltration into
initially dry, homogeneous soil, the resulting pattern often
takes the form of preferential flow paths (fingers), which
have been consistently observed in laboratory and field
experiments for nearly half a century [4,5]. Fingering leads
to smaller residence times of contaminants in soil, may
play an important role in soil weathering at the time scale
of millennia [6], and it may be crucial to the impact of
water dropout on the operational efficiency of polymer
electrolyte fuel cells [7].

Despite the frequent occurrence of gravity fingers in
unsaturated media, the explanation, modeling and predic-
tion of fingered flows with continuum (macroscopic)
mathematical models has remained elusive. Many authors
have approached the wetting front instability by drawing
an analogy with the two-fluid system in a Hele-Shaw cell
[8], and their analyses have led to kinematic models that
reproduce trends observed in the experiments, such as re-
lations between finger width and finger tip velocity with
the flow rate through the finger [5,9–12]. Simulation of
unstable gravity flows has also been performed with modi-
fied invasion-percolation models at the pore scale [13,14].

By contrast, conservation laws that model the evolution
of water saturation S (that is, the locally averaged fraction
of pore space occupied by water) have been, so far, unable
to model gravity fingering successfully. The traditional
model of unsaturated flow, known as Richards equation
[15], is a mass balance equation in which the water flux is
modeled by a straightforward extension of Darcy’s law to
unsaturated media. It accounts for gravity, capillarity, and
the fact that the permeability to water is reduced because
the porous medium is only partially saturated with water. It
is well known that Richards equation leads to monotonic

saturation profiles and cannot predict or simulate fingering
under any conditions [16].
To remedy this behavior, several extensions to Richards

equation have been proposed. These include a formulation
with dynamic capillary pressure [16,17], designed to ac-
count for additional terms that arise from averaging of the
microscopic multiphase flow equations. A related model
[18] contains a hypodiffusive term, introduced to mimic
the observed hold-back–pile-up effect, which gives rise to
a saturation overshoot at the wetting front—a distinctive
feature of fingered flows. Higher-order terms are required,
however, to regularize the mathematical problem [19].
Here, we propose a physical mechanism and a subsequent
continuum mathematical model that explain why gravity
fingers occur during infiltration, and predict when and how
they will grow.
Consider constant-flux infiltration into a porous medium

(Fig. 1). It is assumed that the initial water saturation S0 is
uniform, and that the infiltration rate RF is uniformly
distributed and constant in time. The z-spatial coordinate
points downwards, in the direction of gravity (acceleration
g). The water density and dynamic viscosity are � and �.
The relevant (macroscopic) parameters concerning the
porous medium are its intrinsic permeability k, and its
porosity �. The permeability of the medium is often ex-
pressed as a saturated hydraulic conductivity, Ks ¼
k�g=�, which equals the gravity-driven flux under full
saturation. Hence, the infiltration rate RF may be expressed
as a flux ratio, Rs ¼ RF=Ks, with Rs 2 ½0; 1�. When this
idealized flow scenario is simulated experimentally, the
stability of the wetting front seems to be controlled by
the flux ratio, initial saturation and material nonlinearity
[18]. A saturation overshoot is observed at the tip of the
fingers, which grow as traveling waves, advancing with
constant velocity [20]. The formation of fingers appears as
a winner-takes-all process, by which the fastest growing
fingers in the initial unstable front channelize most of the
infiltrating fluid and inhibit the growth of other incipient
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fingers [5,20]. The initial moisture content plays a critical
role in the fingering instability: even relatively low satu-
rations lead to a compact, downward-moving wetting front
[21]. Stable fronts are also observed in dry media when the
infiltration rate is either very small or approaches the
saturated conductivity. In general, larger infiltration rates
produce faster, thicker fingers [5].

The free energy of the system, which is assumed to be
incompressible, is characterized in dimensionless quanti-
ties by the functional

E ¼
Z �

�Szþ Gr�1c ðSÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
local

þ 1

2
N‘jrSj2

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nonlocal

�
dx; (1)

where Gr andN‘ are two dimensionless groups. The above
functional comprises the gravitational and capillary pres-
sure potentials, as well as a nonlocal energy potential,
which models the extra energetic cost associated with the
displacement of water-air interfaces in areas of large satu-
ration gradients. This last term is formally equivalent to an
apparent surface tension associated to the wetting front.
Mass conservation and gradient flow based on the energy
functional in Eq. (1) lead to the evolution equation for the
water saturation S,

@S

@t
þr � fkrðSÞ½rzþ Gr�1rJðSÞ þ N‘rð�SÞ�g ¼ 0:

(2)

Our model is similar to that describing the flow of thin
films [22,23], and to phase-field models of epitaxial growth
of surfaces and binary transitions [24,25]. The traditional

Richards equation can be recovered by neglecting the non-
local energy term in Eq. (2). We define the saturation-
dependent relative permeability krðSÞ and the dimension-
less capillary pressure JðSÞ ¼ �c 0ðSÞ. The functional
forms of these constitutive relations are chosen to fit ex-
perimental data from quasistatic experiments. In the fol-
lowing, we adopt the van Genuchten–Mualem model [26],

krðSÞ ¼
ffiffiffi
S

p ½1�ð1�S1=mÞm�2; JðSÞ ¼ ðS�1=m� 1Þ1=n;
(3)

where m ¼ 1� 1=n. This model introduces two intrinsic
material parameters: � and n. The dimension of � is L�1,
and ��1 is approximately the capillary rise. The non-
linearity of the material is determined by n, which depends
on how well-sorted the porous medium is. The gravity
number Gr is defined as Gr ¼ �L, where L is an arbitrary
length scale used to nondimensionalize the equations.
The dependence of the capillary rise on the system pa-

rameters is given by the Leverett scaling hcap � ��1 �
� cos�=ð�g ffiffiffiffiffiffiffiffiffi

k=�
p Þ, where � is the surface tension between

the fluids, and � is the contact angle between the air-water
interface and the solid surface [27].
Dimensional analysis leads to the scalings Gr� L and

N‘� L�3, which simply reflect that the solution should be
independent of the choice of the reference length scale L.
In principle, one might postulate the dependence of N‘ on

FIG. 2. Saturation maps from the numerical simulations of
Eq. (2), for different values of the gravity number Gr, flux ratio
Rs, and initial saturation S0. The computational domain is the
square ½�1; 1� � ½�1; 1�. Increasing the gravity number [(a) and
(b)] changes the scale of the problem but not the nonlinear
dynamics of the wetting front. Large initial saturations (c) lead
to a compact invasion, and small flux ratios (d) produce thinner,
slower fingers in sufficiently dry media. The flow dynamics and
the distinctive saturation overshoot at the tip of the fingers,
which behave as traveling waves, agree with experimental ob-
servations.

FIG. 1 (color online). Schematic of vertical infiltration of
water into a porous medium. Initially, the soil is almost dry
(water saturation S0). A constant and uniformly distributed flux
of water RF (LT�1) infiltrates into the soil. The flux of water is
less than the hydraulic conductivity of the soil, Ks, so that the
flux ratio Rs ¼ RF=Ks < 1. Macroscopically, a diffuse interface
(the wetting front) moves downwards. This interface is often
unstable and takes the form of long and narrow fingers that travel
faster than the base of the wetting front (see, e.g., Fig. 2 in [5]).
Microscopically, a sharp interface between water and air exists
(see inset), which is locally governed by capillary effects.
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an additional intrinsic property of the system. Since the
idea of a nonlocal interface is fundamentally a macro-
scopic construct, it is more rigorous to express N‘ in terms
of the already considered basic parameters, and thus arrive
at the scaling N‘� Gr�3. The coefficient linking N‘ and
Gr�3 must be a constant, and simple analysis suggests that
its magnitude is of the order of 1. Therefore, we propose
the relation

N‘ ¼ Gr�3: (4)

As a consequence of Eq. (4), the gravity number Gr sets the
intrinsic scale of the problem, and the proposed model
contains a new term, but not a new independent parameter.

The numerical solutions to Eq. (2) capture the experi-
mentally observed features of preferential flow and wetting
front instability (Fig. 2). The most salient qualitative dis-
crepancy between the numerical simulations and the ex-
perimental visualizations is the absence of meandering of
the fingers, which is due to small heterogeneities and
packing irregularities that always exist in the experiments
and are not considered in the simulations. Our model
permits investigation of the dependence of the flow char-
acteristics with the various system parameters, and predicts
the existence of a saturation ridge along the finger root
front, which should be analyzed in future experiments.

The linear stability analysis of Eq. (2) provides further
insight into the role of the system parameters on the
dynamics of the flow. Stability refers here to the growth
or decay of planar infinitesimal perturbations to the trav-
eling wave solutions to Eq. (2). We distinguish between
asymptotic (modal) and transient (nonmodal) growth be-
havior, the latter arising from the non-normality of the
linearized flow operator [23,28]. For each set of parame-
ters, we determine the frequency!max of the most unstable
mode, as well as its associated asymptotic growth factor
�max and the transient growth behavior. Positive values of
�max or intense transient growth are indicative of an un-
stable wetting front, and their magnitudes correlate with
the severity of fingering.

When the dimensionless groups Gr and N‘ are consid-
ered independent, there is a narrow region in the parameter
space Gr–N‘ where !max [Fig. 3(a)] and �max [Fig. 3(b)]
decay exponentially. This region of abrupt decay marks the
effective transition from a compact infiltration front to fin-
gering instability, and follows a straight line (in logarith-
mic scale) of slope �3. The specific location of the tran-
sition (not its slope) is determined by the system pa-
rameters Rs, S0 and n. This critical region cannot be
crossed when Gr moves along N‘ ¼ Gr�3, and therefore
changes in the gravity number do not induce regime
transition.

The stability analysis also reveals that, under the scaling
N‘ ¼ Gr�3, !max and �max are linear functions of Gr. The
scale-invariant frequencies and growth factors, !max=Gr
[Fig. 3(c)] and �max=Gr [Fig. 3(d)], are indicative of the
early dynamics of the perturbed flow and the properties of

the emerging fingers. The onset of preferential flow paths
in the unstable wetting front is more intense for larger flux
ratios and smaller initial saturations. For very dry media
the size of the incipient fingers decreases with the flux
ratio. In general, however, for each value of the initial
saturation there is a critical flux ratio beyond which smaller
fluxes lead to larger finger sizes [Fig. 3(c)]. This nontrivial
result shows that it is possible to observe both decrease and
increase in finger size with decreasingRs, depending on the
particular values of Rs and S0. The growth factor and
frequency of the most unstable mode decay exponentially
as the initial saturation is increased. This abrupt decay
agrees with experimental observations, which have sug-
gested the existence of critical values of S0 for the sup-
pression of the instability [21].
A linear stability analysis has applicability, strictly

speaking, to incipient perturbation growth. The dominant
role of the fastest growing fingers suggests, however, that
the results of a modal analysis may correlate with the
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FIG. 3. Results of the linear stability analysis of Eq. (2). (a)–
(b) Contours of the logarithm of the frequency !max of the most
unstable mode and its associated growth factor �max, as func-
tions of the dimensionless groups Gr and N‘. We set Rs ¼
0:217, S0 ¼ 0:01 and n ¼ 10. A narrow region of exponential
decay, along a straight line of slope �3, marks the effective
transition from stable to unstable flow. The position of this
transition region, not its slope, is determined by Rs, S0 and n.
Under the proposed scaling N‘ ¼ Gr�3, the transition region
cannot be crossed by modifying Gr alone. (c) Exponential decay
of the scale-invariant frequencies !max=Gr with the initial satu-
ration S0. For a given S0, the frequencies increase with decreas-
ing Rs, up to a critical flux beyond which !max=Gr decreases
again. (d) Exponential decay of the scale-invariant growth factor
�max=Gr with the initial saturation S0. Within the unsaturated
regime, the growth factors increase monotonically with Rs.
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characteristics of the fully developed fingers. Using dimen-
sional analysis, and assuming that the finger properties can
be determined from the basic system parameters and the
dimensionless groups �max, !max and Gr, we arrive at the
following expressions for finger tip velocity v and finger
width d:

v ¼ Cv
Ks

�

�max

Gr
; d ¼ Cd��1

�
!max

Gr

��1
; (5)

where Cv and Cd are experimental constants. For initially
dry media, the flux ratio has a relatively modest influence
on !max [Fig. 3(c)], and therefore Eq. (5) predicts that the
finger width roughly scales like d� hcap, which is consis-

tent with experimental observations and scaling theories in
porous media [29].

To test these predictions, we compare the finger proper-
ties given by Eq. (5) with measurements from the experi-
ments by Glass et al. [5]. They report experiments of
infiltration into homogeneous, initially dry, coarse sands,
for different flux ratios. Constant infiltration rates are
achieved through the use of a two-layer configuration,
with a tall, coarse-sand layer at the bottom of the chamber,
and a thinner, less conductive, fine-sand layer on top.
Comparison of the experimental and predicted finger char-
acteristics (Fig. 4) suggests the choices Cv ¼ 6:8 and Cd ¼
0:9. The results from the linear stability analysis, together
with Eq. (5), not only reproduce the observed trends in
finger velocity [Fig. 4(a)] and finger width [Fig. 4(b)], but
also show good quantitative agreement with the experi-
mental measurements.

The present study shows that gravity fingering in un-
saturated flow can be explained, described and modeled by
means of continuum balance laws. The success of this
simple model to explain infiltration fingers suggests that

similar continuum models, derived using the framework of
phase-field modeling, may improve our ability to predict
unstable multiphase flow in porous media.
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FIG. 4. Average finger tip velocity (a) and finger width
(b) versus flux ratio Rs. The circles are the experimental mea-
surements of Glass et al. [5]. The crosses (joined by straight
solid lines) are the values predicted by the linear stability
analysis, together with Eq. (5). We set S0 ¼ 0:0003, n ¼ 10,
and a gravity number Gr ¼ 50 based on the height of the
experimental chamber. The constants in Eq. (5) are estimated
as Cv ¼ 6:8 and Cd ¼ 0:9. The predictions based on the linear
stability analysis reproduce the observed increase of finger
velocity and finger size with the flux ratio.
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