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This paper presents the application of adaptive rational spectral methods to the linear sta-
bility analysis of nonlinear fourth-order problems. Our model equation is a phase-field
model of infiltration, but the proposed discretization can be directly extended to similar
equations arising in thin film flows. The sharpness and structure of the wetting front pre-
clude the use of the standard Chebyshev pseudo-spectral method, due to its slow conver-
gence in problems where the solution has steep internal layers. We discuss the
effectiveness and conditioning of the proposed discretization, and show that it allows
the computation of accurate traveling waves and eigenvalues for small values of the initial
water saturation/film precursor, several orders of magnitude smaller than the values con-
sidered previously in analogous stability analyses of thin film flows, using just a few hun-
dred grid points.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Fluid displacement fronts in porous media are often unstable. The rich variety of invasion patterns has been extensively
characterized experimentally, and through simulations at the pore scale [67,23,55,85,56,68,58,43,69]. The classical macro-
scopic (continuum) models of multiphase flow in porous media, based on phase balance equations, generalizations of Darcy’s
law, and constitutive relationships for relative permeability and capillary pressure, are unable to explain these flow patterns
in immiscible flow [38,79,65,1]. New macroscopic theories of flow of mixtures in porous media will emerge in the next few
years, and most likely the mathematical structure of these new models will resemble that of models of phase transitions and
surface growth [24]. One of the salient features of these advanced models is the presence of nonlinear, higher order terms,
which require powerful numerical techniques for their discretization. This paper presents an example of such theoretical
models, and an example of such specialized algorithms.

Gravity-driven infiltration of water into a homogeneous layer of soil is a simple and important case of pattern formation
in multiphase flow in porous media. Rather than a compact infiltration front, the flow is often unstable and the water inva-
sion takes the form of preferential flow paths (fingers). Intense experimental and theoretical work on the wetting front insta-
bility was initiated in the 70s [48,64,62], and has been followed by numerous measurements of finger formation and
unstable gravity-driven infiltration (see, for example, [34,43,69,4,36,72,82,81]).

Despite overwhelming experimental evidence, the description of gravity-driven unsaturated flow using continuum bal-
ance laws has remained elusive. The traditional model, known as Richards’ equation [66], is a mass balance equation in
. All rights reserved.
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which the water flux is modeled by a straightforward extension of Darcy’s law to unsaturated media. It accounts for gravity,
capillarity, and the fact that the permeability to water is reduced because the porous medium is only partially saturated with
water. The inability of the Richards equation to explain fingered flow is well documented [35,33,51,78,36,38,37,79,61].

We have recently proposed a model of unsaturated flow that captures the relevant features of gravity fingering during
infiltration [24]. The Richards model assumes, at least implicitly, that the system is homogeneous—gradients of water sat-
uration are zero everywhere. Under this assumption, the free energy of the system is local, that is, it is a function of satura-
tion only. Our model extends the description to a nonhomogeneous system, and explains the dynamics of unstable wetting
fronts. The free energy is nonlocal (it is a function of water saturation and its gradient), and it leads to an additional term that
is formally equivalent to an apparent surface tension at the wetting front: a nonlinear, fourth-order term. The model predicts
a saturation overshoot at the tips of the fingers, a feature that is believed to be essential for the instability of the infiltration
front [70,42,30,71,31]. The mathematical structure of the model is analogous to that describing the flow of thin films and
driven contact lines [50,77,49,18,86,52,27,26,75,44,53], and to phase-field models of epitaxial growth of surfaces, binary
transitions and solidification [21,22,19,40].

This paper discusses the numerical technology used for the linear stability analysis of our model of infiltration, which can
be extended to perform analogous stability analyses of thin film flows. Fourth-order models arising in dynamic contact lines
are demanding, because of the presence of steep fronts with nontrivial structure, and because the most interesting case cor-
responds to the degenerate limit (vanishing initial water saturation/precursor film thickness).

We argue that pseudo-spectral methods based on adaptive rational approximation are among the best choices for this
type of problem. The first adaptive spectral methods based on parametrized maps include [6,47,7,54]. Rational interpolants
have recently emerged as promising tools for the development of spectral methods for boundary-value problems
[9,10,3,13,14,2,11,17,15,16,74,41,29]. Their success is partly due to their flexibility in the adaptive selection of nodes and
poles [3,10,13–16,74,41,29]. Tee and Trefethen [74] have extended the rational spectral method of [2], which does not re-
quire that the underlying problem be transformed into new coordinates, and takes into account and locates a priori unknown
singularities of the underlying solution. They use conformal mapping to design transformed nodes that improve the Cheby-
shev spectral method. Chebyshev–Padé approximation is used to approximate the locations of the singularities of the solu-
tion in the complex plane. We show that the proposed discretization allows us to compute accurate traveling waves and
eigenvalues for very small values of the initial water saturation/film precursor, several orders of magnitude smaller than
the values considered previously in analogous stability analyses of thin film flows [18,26,44], using just a few hundred grid
points.

The paper is organized as follows: Section 2 presents the mathematical model and its nondimensional form. The base
solutions about which the model equation will be linearized are traveling waves. They are introduced, together with the lin-
earized problem, in Section 3. Section 4 presents a motivation for the adaptive algorithm, through the performance of stan-
dard collocation schemes. Section 5 introduces the adaptive rational approximation, and discusses practical implementation
issues and the conditioning of differentiation matrices based on this type of approximation. Finally, Section 6 presents con-
vergence results and examples of application to infiltration problems, and the main conclusions of our study are summarized
in Section 7.

2. Mathematical model of gravity-driven infiltration

Consider constant-flux infiltration into a porous medium (Fig. 1). The evolution of the system is characterized in terms of
the water saturation S 2 ½0;1�, that is, the locally-averaged fraction of the pore space occupied by water. It is assumed that
the initial water saturation S0 is uniform, and that the infiltration rate RF is uniformly distributed and constant in time. The
x-spatial coordinate points downwards, in the direction of gravity (acceleration g). The water density and dynamic viscosity
are q and l. The relevant macroscopic parameters concerning the porous medium are its intrinsic permeability k, and its
porosity /. The permeability of the medium is often expressed as a saturated hydraulic conductivity, Ks ¼ kqg=l, which
equals the gravity-driven flux under full saturation. Hence, the infiltration rate RF may be expressed as a flux ratio,
Rs ¼ RF=Ks, with Rs 2 ½0;1�. When this idealized flow scenario is simulated experimentally, the stability of the wetting front
seems to be controlled by the flux ratio, initial saturation and material nonlinearity [39]. A saturation overshoot is observed
at the tip of the fingers, which grow as traveling waves, advancing with constant velocity [70]. The formation of fingers ap-
pears as a winner-takes-all process, by which the fastest growing fingers in the initial unstable front channelize most of the
infiltrating fluid and inhibit the growth of other incipient fingers [43,70]. The initial moisture content plays a critical role in
the fingering instability: even relatively low saturations lead to a compact, downward-moving wetting front [59]. Stable
fronts are also observed in dry media when the infiltration rate is either very small or approaches the saturated conductivity.
In general, larger infiltration rates produce faster, thicker fingers [43].

2.1. Phase-field model of unsaturated flow

Under unsaturated conditions (water saturation S strictly less than one), it is well justified to make two assumptions
[8,63]. First, air is infinitely mobile compared to water and, as a result, the air pressure remains constant and equal to the
atmospheric pressure. Second, the compressibility of water and rock are negligible compared to that of air and, therefore,
the water density q and the porosity / are constant. Our model for the evolution of water saturation is [24,25]



Fig. 1. Schematic of vertical infiltration of water into a porous medium. Initially, the soil is almost dry (water saturation S0). A constant and uniformly
distributed flux of water RF ðL T�1Þ is allowed to infiltrate into the soil. The flux of water is less than the hydraulic conductivity of the soil, Ks , so that the flux
ratio Rs ¼ RF=Ks < 1. Macroscopically, a diffuse interface (the wetting front) moves downwards. This interface is often unstable and takes the form of long
and narrow fingers that travel faster than the base of the wetting front (see, e.g. Fig. 2 in [43]). Microscopically, a sharp interface between water and air
exists (see inset), which is locally governed by capillary effects. From [24]. Copyright American Physical Society.
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@S
@t
þr � kqg

l
krðSÞ rxþ 1

qg
rPcðSÞ þ

C
qg
rðDSÞ

� �� �
¼ 0: ð1Þ
The relative permeability kr is an increasing and typically convex function of water saturation [66,8]. The capillary pressure
PcðSÞ is a monotonically decreasing but nonconvex function of water saturation [8]. The coefficient C plays the role of an
apparent surface tension associated with the wetting front [50,85,32]. Our model is an extension of the Richards equation;
it deviates from the classical model through the introduction of a fourth-order term, which arises from honoring the inho-
mogeneity of the water–air–solid system in the definition of its free energy [24,25].

We nondimensionalize equation (1) by selecting a characteristic length scale, L, and a characteristic time,
T ¼ /Ll=ðqgkÞ ¼ /L=Ks. The capillary pressure is expressed as:
PcðSÞ ¼ qghcapJðSÞ; ð2Þ
where JðSÞ is a dimensionless capillary pressure function, and hcap is the capillary rise, whose dependence on the system
parameters is given by the Leverett scaling [57]:
hcap �
c cos h

qg
ffiffiffiffiffiffiffiffiffi
k=/

p ; ð3Þ
where c is the surface tension between the fluids, and h is the contact angle between the air–water interface and the solid
surface [28].

We define the following two nondimensional groups:
Ngr ¼
L

hcap
ðgravity numberÞ; ð4Þ

Nn‘ ¼
C

qgL3 ðnonlocal or Cahn numberÞ: ð5Þ
With these definitions, and understanding the space and time coordinates ðx; tÞ as their dimensionless counterparts, the
model reads:
@u
@t
þr � krðuÞðrxþ N�1

gr rJðuÞ þ Nn‘rðDuÞÞ
h i

¼ 0; ð6Þ
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where we have used u � S to emphasize that the problem is expressed in nondimensional form. The relative permeability
and capillary pressure functions are chosen to fit experimental data from quasi-static experiments. In the following, we
adopt the van Genuchten–Mualem model [60,80],
krðuÞ ¼
ffiffiffi
u
p

1� ð1� u1=mÞm
� �2

; ð7Þ
JðuÞ ¼ ðu�1=m � 1Þ1=n

; ð8Þ
where m ¼ 1� 1=n. This model introduces the material parameter n, which depends on how well-sorted the porous medium
is [80].

2.2. Related models in fluid mechanics

Fourth-order spatial terms arise naturally in phase-field models with conserved order parameters [22,21,40]. Our model
is also analogous to that describing the flow of thin fluid films sliding down an inclined plane. Adopting the lubrication
approximation [46,50,77,49,18], the evolution equation of the film height h can be written as
3l @h
@t
þr � ½h3ðqg sinðaÞrx� qg cosðaÞrhþ crðDhÞÞ� ¼ 0; ð9Þ
where l is the viscosity of the fluid, q its density, c the fluid–air surface tension, and a the inclination angle of the plane (a
vertical wall corresponds to a ¼ p=2). Gravity acts along the direction x. In dimensionless variables, the above equation reads
[44]
@h
@t
þr � ½h3ðGkrx� G?rhþrðDhÞÞ� ¼ 0: ð10Þ
The dimensionless parameters Gk and G? are defined as
Gk ¼
L3qg sinðaÞ

hcc
; G? ¼

L2qg cosðaÞ
c

: ð11Þ
In the above expressions, L is an arbitrary reference length, and hc is a reference height of the film. Note that the lubrication
approximation yields an expression for the fluid velocity that resembles Darcy’s law:
v ¼ �h2

l
rpþ h2qg sinðaÞrx; ð12Þ
where the pressure is given by
p ¼ �cDhþ qg cosðaÞh: ð13Þ
For completely wetting fluids, Troian et al. [77] proposed to model the contact line dynamics by assuming a precursor film of
(small) thickness b downstream of the front. In our context, this precursor film corresponds to the initial water saturation.

The thin film Eq. (9) considers surface tension effects, and therefore gradient terms enter naturally in the free energy of
the system. Note that surface tension has been identified as a fundamental physical mechanism to explain gravitational
instabilities in thin film flows [50]. Conversely, by considering gradient terms in the free energy of the fluid–air–solid system,
our model of infiltration (1) includes a new term that resembles an apparent (macroscopic) surface tension. Note that this
apparent surface tension stems from the nonhomogeneity of the system, rather than from a sharp interface. Hence, we pos-
tulate [24] that the nondimensional group N‘ should be expressed in terms of the physical parameters already considered in
the Richards model. We arrive at the scaling Nn‘ � N�3

gr . More precisely, we propose
Nn‘ ¼ N�3
gr : ð14Þ
As a consequence, the gravity number Ngr sets the scale of the problem, and our model does not introduce new independent
parameters with respect to the classical Richards equation.

3. Linear stability analysis

3.1. Traveling wave solutions

The basic states for the stability analysis of constant-flux infiltration are traveling wave solutions to (6), of the form
uðx; y; z; tÞ ¼ uðnÞ ¼ uðx� ctÞ; ð15Þ
whose mere existence we conjecture, subject to the conditions at infinity
ujn!�1 ¼ u�; ujn!þ1 ¼ uþ: ð16Þ



6540 L. Cueto-Felgueroso, R. Juanes / Journal of Computational Physics 228 (2009) 6536–6552
The wave speed c is given by
c ¼ krðu�Þ � krðuþÞ
u� � uþ

: ð17Þ
Let us assume that all the derivatives of the traveling waves vanish as n! �1. With gravity acting along the x-axis, the trav-
eling wave solutions satisfy the ODE
�c
du
dn
þ d

dn
krðuÞ þ N�1

gr krðuÞJ0
du
dn
þ Nn‘krðuÞ

d3u

dn3

 !
¼ 0: ð18Þ
Integrating once, and imposing the necessary conditions at infinity, we arrive at
�cðu� u�Þ þ krðuÞ � krðu�Þ þ N�1
gr krðuÞJ0

du
dn
þ Nn‘krðuÞ

d3u

dn3 ¼ 0; ð19Þ
with boundary conditions
ujn!�1 ¼ u�; ujn!þ1 ¼ uþ;
du
dn

				
n!�1

¼ 0: ð20Þ
In practical applications, the asymptotic left state u� is expressed as a flux ratio, Rs ¼ krðu�Þ, and the asymptotic right state uþ

denotes an initial water saturation of the porous medium, S0.

3.2. Linearized flow equation

Consider perturbations of the base traveling wave solutions u0 developed in the previous section, of the form
uðx; y; tÞ ¼ u0 þ �gðx; y; tÞ; ð21Þ
where gðx; y; tÞ is a generic two-dimensional perturbation of order Oð1Þ and �� 1. Introducing the above perturbed solution
in (6), and retaining terms that are at most Oð�Þ, the evolution equation for the perturbation is, to first order in �,
@g
@t
þ @

@x
ðk0rgÞ þ N�1

gr $ � krJ
0$g þ krJ

00g$u0 þ k0rJ
0g$u0

� �
þ Nn‘$ � kr$Dg þ k0rg$Du0

� �
¼ 0 ð22Þ
where it is understood that kr ¼ krðu0Þ; k0r ¼ k0rðu0Þ; J0 ¼ J0ðu0Þ, and J00 ¼ J00ðu0Þ. For convenience, let us use the notation
T1 ¼ N�1
gr $ � ½krJ

0$g þ krJ
00g$u0 þ k0rJ

0g$u0�;
T2 ¼ Nn‘$ � ½kr$Dg þ k0rg$Du0�:

ð23Þ
The above expressions can be rearranged as
T1 ¼ N�1
gr g$ � ðkrJ

00$u0 þ k0rJ
0$u0Þ þ ð$ðkrJ

0Þ þ krJ
00$u0 þ k0rJ

0$u0Þ � rg þ krJ
0Dg

� �
; ð24Þ
and
T2 ¼ Nn‘ g$ � ðk0r$Du0Þ þ ðk0r$Du0Þ � $g þ ð$krÞ � ð$DgÞ þ krr � ð$DgÞ
� �

: ð25Þ
Note that the base solution is constant along the y axis; i.e. u0 ¼ u0ðnÞ, where n ¼ x� ct. Therefore u0 ¼ u0ðxÞ in a reference
frame moving with the speed c, and (24) and (25) can be rearranged as
T1 ¼ N�1
gr g

d
dx

krJ
00 du0

dx
þ k0rJ

0 du0

dx

� �
þ d

dx
ðkrJ

0Þ þ krJ
00 du0

dx
þ k0rJ

0 du0

dx

� �
@g
@x
þ krJ

0Dg
� �

; ð26Þ
and
T2 ¼ Nn‘ g
d
dx

k0r
d3u0

dx3

 !
þ k0r

d3u0

dx3

 !
@g
@x
þ dkr

dx
@3g
@x3 þ

@3g
@x@y2

 !
þ kr

@4g
@x4 þ 2

@4g
@x2@y2 þ

@4g
@y4

 !" #
: ð27Þ
Within the aforementioned reference frame, and transforming to Fourier space in the y direction, the evolution equation for
the y-transformed perturbation Gðx;x; tÞ is given by
@G
@t
þ G

dk0r
dx
þ @G
@x
ðk0r � cÞ þcT1 þcT2 ¼ 0; ð28Þ
where
cT1 ¼ N�1
gr G

d
dx

krJ
00 du0

dx
þ k0rJ

0 du0

dx

� �
þ d

dx
ðkrJ

0Þ þ krJ
00 du0

dx
þ k0rJ

0 du0

dx

� �
@G
@x
þ krJ

0 @
2G
@x2 �x2krJ

0G

" #
; ð29Þ
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and
cT2 ¼ Nn‘ G
d
dx

k0r
d3u0

dx3

 !
þ k0r

d3u0

dx3

 !
@G
@x
þ dkr

dx
@3G
@x3 �x2 @G

@x

 !
þ kr

@4G
@x4 � 2x2 @

2G
@x2 þx4G

 !" #
: ð30Þ
Rearranging (28), we finally arrive at the linear evolution problem
@G
@t
þ A4

@4G
@x4 þ A3

@3G
@x3 þ A2

@2G
@x2 þ A1

@G
@x
þ A0G ¼ 0; ð31Þ
where
A0 ¼
d
dx

k0r þ N�1
gr krJ

00 du0

dx
þ k0rJ

0 du0

dx

� �
þ Nn‘k

0
r

d3u0

dx3

" #
� N�1

gr x2krJ
0 þ Nn‘x4kr ; ð32Þ

A1 ¼ ðk0r � cÞ þ N�1
gr

d
dx
ðkrJ

0Þ þ krJ
00 du0

dx
þ k0rJ

0 du0

dx

� �
þ Nn‘ k0r

d3u0

dx3 �x2 dkr

dx

 !
; ð33Þ

A2 ¼ N�1
gr krJ

0 � 2Nn‘x2kr; ð34Þ

A3 ¼ Nn‘
dkr

dx
; ð35Þ

A4 ¼ Nn‘kr : ð36Þ
3.3. Discrete operators

The properties of the linear operator in Eq. (31) determine the evolution of infinitesimal perturbations of the base trav-
eling wave solutions u0. The evolution Eq. (31) can be discretized in the coordinate direction x, and the stability of the lin-
earized perturbed flow can be studied in terms of the resulting discrete linear problem. We adopt a collocation approach,
which reduces to the construction of discrete differential operators (matrices) D1; D2; D3 and D4, such that
G1 ¼ D1G;
G2 ¼ D2G;
G3 ¼ D3G;
G4 ¼ D4G;

ð37Þ
where the grid functions fGaj; j ¼ 0; . . . ;Ng are to be understood in the sense of
Gaj 	
@aG
@xa

				
x¼xj

: ð38Þ
The semi-discrete linearized flow problem reads
dG
dt
¼MG; ð39Þ
in terms of the linear, autonomous operator
M ¼ �ðA4D4 þ A3D3 þ A2D2 þ A1D1 þ A0Þ: ð40Þ
In the above expression, the matrices Ak; k ¼ 0; . . . ;4, are diagonal, and their entries result from the evaluation of the coef-
ficients (32)–(36) at the grid points. It follows from (39) that, given a perturbation Gðx;x;0Þ ¼ G0ðx;xÞ, i.e. given the grid
function fG0j; j ¼ 0; . . . ;Ng, the evolution of this perturbation can be compactly written as
GðtÞ ¼ etMG0; etM ¼
X1
k¼0

tkMk

k!
: ð41Þ
We are interested in the growth/decay of solutions GðtÞ to the linear time-dependent problem (39)–(41). Asymptotically,
the behavior of the system is driven by the eigenvalues of M. More precisely
lim
t!1

t�1 log ketMk ¼ bðMÞ; ð42Þ
where bðMÞ is the spectral abscissa of M.

4. Motivation for adaptive discretizations

4.1. Sample traveling waves and structure of the wetting front

The linear stability analysis of the model Eq. (6) can be summarized in two steps:
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1. For a given set of parameters (u�; uþ; n; Ngr and Nn‘), compute the traveling wave solution to (6), u0, by solving the
boundary-value problem (19) and(20).

2. Construct the discrete linear operator M (given by Eqs. (40), (31)–(35) and (36)), and determine its spectral
properties.

Computing accurate eigenvalues of M requires that the traveling waves are very well resolved, which is difficult due to the
sharpness and structure of the wetting front. This is illustrated in Fig. 2, where we show a typical traveling wave ðAÞ, display-
ing the saturation overshoot and steep wetting front. The initial water saturation is relatively low ðuþ ¼ 10�3Þ. The other
parameters are u� ¼ 0:6; Ngr ¼ 1; Nn‘ ¼ 1 and n ¼ 10. The challenge is to resolve the front and the small-scale feature down-
stream of the apparent wetting front ðBÞ. The extent of this feature, hf , roughly scales like hf � uþ, which makes the problem
stiff in the degenerate limit uþ ! 0. Once the traveling wave has been computed, we may construct the discrete operator M
for different wave numbers x, and their associated spectral abscissae (growth factors), b ¼ bðxÞ. This leads to dispersion
curves like the one shown in Fig. 2C. Consistency of the computed traveling waves with the linearized problem requires
bð0Þ ¼ 0. This requirement can be used as a measure of the accuracy of the discretization. Fig. 2D shows some eigenvalues
and �-pseudo-spectra of M, for x ¼ 0:54. We plot the contours � ¼ 10�1:5;10�2; . . . ;10�8.

4.2. Performance of standard collocation methods

We attempt to compute the traveling waves (step 1) and linear operators (step 2) in the above problem using standard
discretization techniques. The Chebyshev pseudo-spectral method approximates functions uðxÞ by truncated Chebyshev
expansions,
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Fig. 2. (A) Sample traveling wave solution to (6). The model parameters are u� ¼ 0:6; uþ ¼ 0:001; Ngr ¼ 1; Nn‘ ¼ 1 and n ¼ 10. (B) Close-up view of the
small-scale feature at the wetting front. (C) Dispersion curve, plotting frequency x against spectral abscissa (growth factor) b of matrix M (40). (D)
Eigenvalues and �-pseudospectra of M, for x ¼ 0:54 (close-up view near the origin). We plot the contours � ¼ 10�1:5;10�2; . . . ;10�8.
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uðxÞ 	
XN

j¼0

ajTjðxÞ; TjðxÞ ¼ cosðj cos�1ðxÞÞ; ð43Þ
interpolating at the so-called Chebyshev nodes xj ¼ cosðjp=NÞ; j ¼ 0; . . . ;N. The expansion coefficients in (43), fajg, are given
by
a0 ¼
1
p

Z 1

�1
ð1� x2Þ�1=2f ðxÞdx; ð44Þ

aj ¼
2
p

Z 1

�1
ð1� x2Þ�1=2TjðxÞf ðxÞdx; j ¼ 1; . . . ;N: ð45Þ
With rows and columns indexed from 0 to N, the ðN þ 1Þ 
 ðN þ 1Þ Chebyshev differentiation matrix DCh has entries [76]
DCh
jk ¼

cj

ck

ð�1Þjþk

ðxj�xkÞ
; if j – k;

�
PN

l¼0;l – k
DCh

jl ; if j ¼ k;

8>><>>: ð46Þ
where
cj ¼
2; j ¼ 0 or N;

1; otherwise:



ð47Þ
For sufficiently smooth solutions, the approximation error in collocation schemes based on this discrete operator decays
exponentially fast as N !1. More precisely, if the solution can be continued as an analytic function in a closed ellipse with
foci �1, semimajor axis length B, and semiminor axis length b, then the error behaves like ðBþ bÞ�N [76]. It follows from this
result that, if the solution has singularities in the complex plane close to ½�1;1�, so that Bþ b 	 1, then the convergence of
the Chebyshev collocation method will be rather slow.

In the present context, this convergence behavior is illustrated in Fig. 3. We compute the traveling wave solutions to Eq.
(6), obtained by solving the problem (19) and (20). The model parameters are u� ¼ 0:6;Ngr ¼ 1;Nn‘ ¼ 1 and n ¼ 10. We com-
pute solutions for various initial saturations, u� ¼ 0:01;0:04;0:1 and 0.2. As the initial water saturation is reduced, the
Chebyshev collocation method becomes impractical (Fig. 3A), since very large values of N are required in order to resolve
the sharp wetting front. The convergence of the spectrum of M for different values of uþ reflects this trend (Fig. 3C). The slow
convergence of Chebyshev expansions as uþ ! 0 may be explained by looking at the singularities of the solution (Fig. 3B),
which approach the real interval ½�1;1� as uþ ! 0 (only half of the singularities are shown; the others are symmetric with
respect to the real line). Classical finite difference schemes also exhibit slow convergence when the degenerate limit is ap-
proached, as is shown in Fig. 3D for a centered, fourth-order finite difference discretization.

5. Adaptive rational collocation method

5.1. Rational approximation

Rational interpolants have recently emerged as promising tools for the development of spectral methods for boundary-
value problems [2,11,16,74]. Their success is partly due to their flexibility in the adaptive selection of nodes and poles
[3,10,13–16,74,41,29]. It is common to write the approximants in barycentric form [12,17], which provides a quite general
framework that includes both polynomial and rational approximations. Thus, a rational function which interpolates a grid
function u0;u1; . . . ;uN at points x0; x1; . . . ; xN can be expressed as
uðxÞ 	 rðxÞ ¼
PN

k¼0
wk

x�xk
ukPN

k¼0
wk

x�xk

; ð48Þ
where w0;w1; . . . ;wN are called barycentric weights. In particular [17], the above expression is a polynomial that interpolates
at the Chebyshev points fxk ¼ cosðkp=NÞ; k ¼ 0; . . . ;Ng for
w0 ¼
1
2
; ð49Þ

wk ¼ ð�1Þk; k ¼ 1; . . . ;N � 1; ð50Þ

wN ¼
ð�1ÞN

2
: ð51Þ
The pth derivative of r evaluated at xj can be expressed as
rðpÞðxjÞ ¼
XN

k¼0

DðpÞjk uk; ð52Þ
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u� ¼ 0:01;0:04; 0:1 and 0.2. The other parameters are u� ¼ 0:5; Ngr ¼ 1; Nn‘ ¼ 1 and n ¼ 10. (B) Location of the singularities of the traveling waves. Only
half of them are shown; the others are symmetric with respect to the real line. As the initial saturation is decreased, the singularities approach the real
interval ½�1;1�, and the convergence of the Chebyshev spectral method is degraded, as shown in the convergence curves (C). (D) Same as (C), but using
fourth-order centered differences.
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in terms of the differentiation matrices DðpÞjk . The first and second order differentiation matrices are [3]
Dð1Þjk ¼

wk=wj

xj�xk
; if j – k;

�
PN

l¼0;l – k
Dð1Þjl ; if j ¼ k;

8>><>>: ð53Þ

Dð2Þjk ¼
2Dð1Þjk Dð1Þjj � 1

xj�xk

� �
; if j – k;

�
PN

l¼0;l – k
Dð2Þjl ; if j ¼ k:

8>><>>: ð54Þ
Tee [73] has proposed the following formula to compute the entries of the nth order differentiation matrix,
DðnÞjk ¼

n
ðxj�xkÞ

wk
wj

Dðn�1Þ
jj � Dðn�1Þ

jk

� �
; if j – k;

�
PN

l¼0;l – k
DðnÞjl ; if j ¼ k;

8>><>>: ð55Þ
where Dð0Þ is the identity matrix.

5.2. Adaptive procedure

In [74], Tee and Trefethen present an elegant spectral collocation method that uses adaptively transformed Chebyshev
nodes. Extending the method of [2], they use ideas proposed in [83] for the approximate location of singularities in the
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complex plane, and conformal mapping in order to transform the Chebyshev grid into one that adaptively clusters points
near steep gradients of the solution (singular lines). They successfully apply the algorithm to two evolution problems: a
thermal blow-up problem (reaction–diffusion), and the viscous Burgers equation (a moving viscous shock). In both
examples the sharp features of the solution evolve in time, and the explicit time marching allows for a smooth tracking
of the singularities.

The basis of their method is the exponential convergence of rational approximations that interpolate at transformed
Chebyshev nodes [3], i.e. rational approximations of the form
uNðxÞ ¼
PN

k¼00
ð�1Þk
x�xk

ukPN
k¼00

ð�1Þk
x�xk

; xk ¼ gðcosðkp=NÞÞ; ð56Þ
where the prime indicates that the first and last terms are halved, and the conformal map is denoted by g. Tee and Trefethen
consider in [74] solutions with one relevant front to be resolved, and thus construct g using two singularities of the solution,
d� �i, that are symmetric with respect to the real line. The proposed conformal map is
gðzÞ ¼ dþ � sinh sinh�1 1� d
�

� �
þ sinh�1 1þ d

�

� �� �
z� 1

2
þ sinh�1 1� d

�

� �� �
: ð57Þ
In general, the singularities d� �i are not known a priori, and have to be approximated numerically. Once the grid has been
adapted as xk ¼ gðcosðkp=NÞÞ, the rational interpolant (56) is used, following [2], as the basis for a collocation scheme, with
differentiation matrices given by Eq. (55). Note that similar maps for solutions with multiple fronts have also been presented
in [73].

5.3. Practical implementation issues

There are two critical aspects of the proposed adaptive strategy which may compromise its success in the present context
(steady state, fourth-order nonlinear problem). Firstly, the grid adaptation is driven by the location of the singularities of the
solution, which is not known a priori. Secondly, the presence of fourth-order derivatives raises the question about the con-
ditioning of the discrete problem, and the possible relevance of finite precision effects. Also, in a more general context, New-
ton iterations have been identified as potentially unstable for the computation of traveling waves [20].

Finding the singularities of the numerical solution is a technical problem that soon becomes a practical one. The technical
side is addressed in [74], following ideas from [83]: the singularities can be approximated by the poles of Chebyshev–Padé
approximants. The practical problem is that, for the method to be effective, these approximants have to be representative of
the solution at the sharp front themselves. As soon as the front has a nontrivial structure, as in our case of an equation with
fourth-order terms, the location of the true singularity is easily missed and the adaptive scheme fails. Hence, until the front is
not reasonably well resolved, there is much uncertainty about the real part of the singularities, d (about the point around
which the grid has to be refined). Note that we refer loosely to the singularities of the solution as d� �i, but no a priori
knowledge of the singularity structure is required by the adaptive algorithm.

As a consequence of the initial uncertainty in d, we use a continuation approach that progressively increases the level of
clustering around the front; that is, we impose a restriction on the minimum value of � that is allowed at each grid adapta-
tion step. The condition numbers of the differentiation matrices grow very quickly with the node clustering, which imposes
an absolute minimum value of � that can be used in practice, �min. This minimum value of � is due to conditioning rather than
accuracy in resolving the front, which implies that the maximum accuracy that can be attained by the algorithm is reduced,
due to conditioning problems, as the front becomes very sharp.

Following [74], the singularity location requires the definition of a local approximation of the solution, which is used to
approximate the poles using the Chebyshev–Padé procedure. This is done by selecting an interval around the previously
computed poles d� �i, as I ¼ ½d� n; dþ n�, with n ¼minð10�;1� jdjÞ. The solution is interpolated to the M þ 1 Chebyshev
points in I, and the singularity locator provides the new poles. The new value of � is multiplied by a safety factor of 0.75.
Following the continuation approach described above, we limit the minimum value of � as � ¼maxð�0; ��; �minÞ, where �0

is the value provided by the Chebyshev–Padé singularity locator, �� is a reference value that is progressively decreased in
the continuation process, and �min is a minimum limit value due to the explosive growth of the condition number of the dif-
ferentiation matrices for small values of �.

Taking into account the scaling of the characteristic length of the small-scale feature downstream of the wetting front, we
have used the rule �min ¼ Nuþ=500 in the examples shown in this study. This formula should be modified to account for large
changes in the flux ratio ðu�Þ.

5.4. Conditioning of the differentiation matrices. finite precision effects

A known drawback on spectral methods is the fast growth of the condition number of differentiation matrices. More pre-
cisely, the condition number of Chebyshev differentiation matrices scales like N2k, where k is the order of differentiation
[84,5].
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The conditioning of the differentiation matrices is approximately determined by how closely the grid points cluster. The
scaling of the grid spacing near the boundaries is responsible for the fast growth of the condition number of the Chebyshev
differentiation matrices. Decreasing the value of �, the clustering parameter of the conformal map (57), alleviates the effects
of clustering near the boundaries, thus improving the conditioning, but in turn clusters points around the front. Quite often,
the grid size required to resolve the solution at the front is small enough to dominate the behavior of the condition number,
which is larger than that of the un-mapped Chebyshev discretization.

Fig. 4 presents the normalized condition number of the first, second, third and fourth-order differentiation matrices (after
imposing boundary conditions). The condition numbers are normalized with respect to those of the corresponding Cheby-
shev differentiation matrices. As � is reduced, the conditioning improves with respect to Chebyshev approximation, until the
clustering is actually more aggressive than that of Chebyshev grids, which results into an fast growth of the condition num-
ber as � is reduced further. Note that these results apply to the conformal map (57), but may vary for different maps.

The practical consequence of this behavior is that � cannot be arbitrarily small or, equivalently, that the maximum attain-
able accuracy decreases as the fronts become sharper. In the present context, the loss of accuracy is obvious as the initial
saturation uþ is reduced, as will be shown in Section 6.2 below.

6. Results

6.1. Convergence study

We present convergence results of standard collocation schemes (Chebyshev and finite differences), and of the adaptive
rational spectral method, on the model problem
Fig. 4.
conditi
�cðu� u�Þ þ krðuÞ � krðu�Þ þ krðuÞJ0ðuÞ
du
dx
þ krðuÞ

d3u

dx3 ¼ SðxÞ: ð58Þ
We set u� ¼ 1, and the constitutive relations
krðuÞ ¼ u3; JðuÞ ¼ u�1=4: ð59Þ
The source term SðxÞ is such that the exact solution is
uðxÞ ¼ 1
2þ a

½1þ a� tanhðbðx� xdÞÞ�; ð60Þ
which has an internal layer around xd. The asymptotic behavior of uðxÞ is uð�1Þ ¼ 1 and uðþ1Þ ¼ a=ð2þ aÞ. In the present
example we adopt a ¼ 0:01. The parameter b, which is set as b ¼ 100, controls the characteristic thickness of the internal
layer, which scales like b�1, and xb ¼ 0:2. We impose the boundary conditions
ujn!�1 ¼ u�; ujn!þ1 ¼ uþ;
du
dn

				
n!�1

¼ 0: ð61Þ
The problem is solved in ½�1;1� using three collocation schemes: centered, fourth-order finite differences, the Chebyshev
pseudo-spectral method, and the above adaptive rational scheme. The different schemes are characterized by the grid
fxjg and differentiation matrices, such that the discrete problem reads
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RðuÞ ¼ 0; ð62Þ
where
Rj ¼ �cðuj � u�Þ þ krðujÞ � krðu�Þ þ krðujÞJ0ðujÞ
XN

k¼0

Dð1Þjk uk þ krðujÞ
XN

k¼0

Dð3Þjk uk � SðxjÞ; j ¼ 0; . . . ;N:
We solve the nonlinear system of Eq. (62) using Newton iterations
upþ1 ¼ up þ Dup; JðupÞDup ¼ �RðupÞ: ð63Þ
Denoting K ¼ krðuÞJ0ðuÞ; dK ¼ K 0ðuÞ and dkr ¼ k0rðuÞ, where the prime denotes differentiation with respect to u, the Jacobian
matrix JðuÞ can be compactly given using Matlab pseudo-code
>> J ¼ diagð�cþ dkr� dK: � ðD1 � uÞ þ dkr: � ðD3 � uÞÞ . . .

� diagðKÞ � D1þ diagðkrÞ � D3;
The convergence results for the three discretization methods are shown in Fig. 5. We plot a discrete L2 norm of the error in
the approximate solution against number of grid points, N. The performance of the Chebyshev spectral method is quite poor
for this abrupt solution, while the adaptive scheme reaches a relative error around 10�9 already with 200 grid points. The
numerical singularities of the solution have real part d ¼ xd and the imaginary parts, ��, scale like � � b�1, which is consis-
tent with the scaling properties of the front.

In the context of a linear stability analysis, it is crucial to check the accuracy of the derivatives of the computed solutions,
as they are required in the construction of the linearized operator. Fig. 6 shows the convergence history for the first (A), sec-
ond (B), third (C) and fourth (D) order derivatives of the solution. The convergence plots illustrate one of the challenges of
solving PDEs with higher order derivatives using differentiation: numerical differentiation is an unstable operation, and the
onset of finite precision effects may pollute the computed derivatives. In our case the accuracy is still sufficient for our com-
putations, but if higher accuracy is required, other techniques such as spectral integration should be pursued [45].

6.2. Results for the model of infiltration

Fig. 7 presents the convergence towards zero of the spectral abscissa associated with x ¼ 0. As the initial saturation is
reduced, the grid spacing required to resolve the wetting front decreases, and the maximum attainable accuracy also re-
duces. Note, however, that reasonably accurate results can be obtained with a few hundred grid points for saturations as
low as uþ ¼ 10�4, which is two orders of magnitude smaller than the typical precursor size used in the thin films literature
for analogous stability analyses [26,44]. The effect of conditioning on the accuracy of the scheme is shown in Fig. 8. We plot
the condition number of the first-order differentiation matrix, against the error in the spectral abscissa, jbj. The model
parameters and number of grid points coincide with those used in the convergence curves of Fig. 7.

The comparison with standard discretization schemes (Fig. 9) illustrates the power of the proposed adaptive algorithm.
The difference between the standard and adaptive algorithms obviously increases as the initial saturation is decreased.

Fig. 10 presents the scaling of the minimum grid spacing, hmin, given by the adaptive algorithm, in terms of the initial sat-
uration and flux ratio. We have plotted several realizations with various u� and uþ. The minimum grid spacing required by
the adaptive algorithm seems to behave like hmin � uþðu�Þ�1:1, which is similar to the natural scaling of the small-scale fea-
ture downstream of the wetting front.
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Fig. 11 presents some results of the stability analysis using the adaptive rational scheme. Fig. 11A compares the traveling
wave solutions for several values of the initial water saturation, which illustrates the importance of this parameter on the
saturation overshoot. The location of the singularities of the traveling wave solutions of Fig. 11A is depicted in Fig. 11C.
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The movement of the real part as uþ decreases reflects the increased sharpness of the front, while the scaling of the imag-
inary parts ð� � uþÞ is consistent with the scaling of the wetting front features.

The impact of the initial saturation on the size of the overshoot is also a measure of its impact on the stability of the wet-
ting front, as shown in Fig. 11B. The dispersion curves reveal a fast decay of the growth factors as the initial saturation is
increased. Note also that, for sufficiently dry media, the frequency of the most unstable mode (� d�1

f , where df is the finger
width) is almost insensitive to changes in uþ. For larger values of the initial saturation the finger width increases, until the
front is stabilized. The stabilization of the wetting front for larger values of uþ also correlates with milder transient growth,
as shown in Fig. 11D. Complete details of the conclusions of a linear stability analysis of the proposed model of infiltration
are given in [25].

7. Conclusions

We present an adaptive rational spectral method for nonlinear, fourth-order equations, and apply it to the linear stability
analysis of a newly proposed model of infiltration into soil [24,25], which explains the formation of ‘‘gravity fingers”, as ob-
served in the experiments. One of the key components of the linear stability analysis is the accurate computation of the base
state (a traveling wave). For small values of the initial water saturation, which are precisely the interesting cases, the sharp-
ness and complex structure of the wetting front preclude the use of the standard Chebyshev pseudo-spectral method, which
exhibits very slow convergence rates. In addition, the presence of fourth-order derivatives renders the numerical treatment
of the model quite challenging, due to the explosive growth of the condition number of the Chebyshev differentiation matri-
ces, and the associated finite precision effects. We discuss the effectiveness and conditioning of the proposed adaptive dis-
cretization, and show that it allows the computation of accurate traveling waves and eigenvalues for small values of the
initial water saturation/film precursor, outperforming existing approaches for the linear stability analysis of similar equa-
tions [18,26,44].
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The linear stability analysis reveals the fundamental role of the saturation overshoot in the onset of the wetting front
instability [25], in accordance with experiments. Also consistent with experimental measurements is the critical role of
the initial water saturation: larger initial saturations lead to smaller growth factors and transient growth, correlating with
the stabilization of the wetting front for increasing initial water content.

The numerical formulation presented here has direct applicability to the flow of thin films, and we anticipate that it will
prove instrumental for the stability analysis of other phase-field models of multiphase flow in porous media we are currently
developing.
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