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Abstract We propose a discrete-domain model to describe mesoscale (many pore) immiscible
displacements in porous media. We conceptualize the porous medium and fluid system as a set of weakly
connected multistable compartments. The overall properties of the system emerge from the small-scale
compartment dynamics. Our model aims at capturing the rugged energy landscape of multiphase porous
media systems, emphasizing the role of metastability and local equilibria in the origin of hysteresis.
Under two-phase displacements, the system behaves hysteretically, but our description does not rely on
past saturations, turning points, or drainage/imbibition labels. We characterize the connection between
micrometastability and overall system behavior, and elucidate the different nature of pressure-controlled
and rate-controlled immiscible displacements in porous media.

Immiscible flows in porous media involve a complex sequence of pore-scale events, from the smooth,
reversible displacement of interfaces to abrupt interfacial reconfigurations and rapid pore invasion
cascades [Måløy et al., 1992; Furuberg et al., 1996; Aker et al., 2000; Xu et al., 2008; Moebius et al., 2012; Moebius
and Or, 2012; Berg et al., 2013; Moebius and Or, 2014; Pak et al., 2015]. These events are broadly categorized
as isons, or smooth and reversible displacements of one phase by another one under a continuous variation
of pressure or saturation; and rheons, or abrupt displacements associated with the sudden reconfiguration
of unstable interfaces [Morrow, 1970]. Discontinuous changes in pressure or saturation have been referred
to as Haines jumps [Haines, 1930], and they emerge as a key mechanism to understand the origin of
irreversibility, or hysteresis, in porous media flow [Everett and Whitton, 1952; Everett and Smith, 1954; Enderby,
1955; Morrow, 1970]. Hysteresis persists at the many-pore scale (a representative elementary volume, REV):
the water retention or capillary pressure function, Pc ≡ Pc(S), which relates the fluid pressure difference—the
capillary pressure, Pc —to the volumetric fraction of one of the fluids—its saturation, S—during a displace-
ment or sequence of displacements, is hysteretic [Albers, 2014].

The interpretation of hysteresis as a consequence of irreversible transitions and multistability is at the
heart of early hysteresis models [Everett and Whitton, 1952; Everett and Smith, 1954; Enderby, 1955] and
recent experiments [Moebius and Or, 2012], and indicates an inherently nonequilibrium behavior. For a given
volume fraction of fluids occupying the pore space, many stable configurations and interfacial arrangements
are possible [Morrow, 1970]. Multistability also suggests rugged energy landscapes: in the absence of strong
fluctuations, porous media systems may remain pinned at local minima of the free energy [Frauenfelder
et al., 1991; Stillinger, 1995; Debenedetti and Stillinger, 2001; Wales, 2001; Gruebele, 2002; Stillinger and
Debenedetti, 2013].

We propose a mesoscale (REV) description of multiphase porous media flow that inherits fundamental
features of pore-scale displacements—path dependence and “bursty” behavior. In the classical domain
model of hysteresis [Everett and Whitton, 1952; Everett and Smith, 1954; Enderby, 1955], soil pores are bistable
compartments—wet or dry—and the state of a pore is defined by its drying and wetting pressures.
Hysteretic pressure-saturation diagrams are characterized, in the limit of many pores, by a distribution
function quantifying the ratio of transitions from wet to dry over a certain pressure range [Enderby, 1956;
Poulovassillis, 1962; Poulovassillis and Childs, 1971; Topp, 1971; Mualem, 1974]. Our framework shares with
classical domain models the conceptual picture of a porous medium as a set of multistable units, interpreting
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Figure 1. (a) A nonuniform capillary tube exhibits multiple stable configurations and hysteresis in two-phase
displacements. A drainage experiment begins with the tube filled with the wetting fluid. By increasing the pressure of
the nonwetting fluid at the inlet (left boundary), the meniscus separating the two fluids will advance inside the tube.
We assume that the pressure drop across the interface—capillary pressure—can be calculated locally through the
Young-Laplace equation. (b) The regions of decreasing capillary pressure (dashed lines) are unstable. At the end of a
metastable branch, the meniscus advance will be discontinuous.

hysteresis as the result of a cascade of irreversible transitions among metastable states, but depart from the
classical models in that it explicitly characterizes the discrete dynamics of the domains via a thermodynamic
description.

The study of hysteresis as a nonequilibrium process has allowed in recent years to understand a wide range
of physical and chemical systems, including adsorption [Kierlik et al., 2001; Bazant and Bazant, 2012; Bousquet
et al., 2012], batteries [Dreyer et al., 2010; Bazant, 2013], supercooled liquids and glass transitions [Stillinger,
1995; Debenedetti and Stillinger, 2001; Stillinger and Debenedetti, 2013; Charbonneau et al., 2013], protein
folding [Frauenfelder et al., 1991; Wales, 2001; Gruebele, 2002; Wales, 2010], and epitaxial growth [Chui and
Weeks, 1978; Huse, 1984; Otto et al., 2004]. Our mathematical description builds on recent work characteriz-
ing the collective behavior of discrete sets of interconnected bistable units, from elastic chains [Puglisi and
Truskinovsky, 2000, 2002], rate-independent plasticity [Puglisi and Truskinovsky, 2005], and carbon nanotube
foams [Fraternali et al., 2011], to hysteresis in insertion batteries [Dreyer et al., 2010, 2011; Sasaki et al., 2013],
force-extension curves of modular biomolecules [Prados et al., 2013; Bonilla et al., 2015], and interconnected
rubber balloons [Moskon et al., 2013].

Multistability in immiscible displacements can be understood from a capillary tube whose diameter varies
with axial position (Figure 1). The tube is connected on the left side to a reservoir containing nonwetting
phase (n) and on the right to a reservoir containing wetting phase (w). The capillary pressure, Pc = pn − pw ,
determines the position of the meniscus, in accordance with the Young-Laplace equation. The state variable
is the nonwetting-phase saturation Sn, which is the fraction of the tube volume filled with the nonwetting
fluid. A sequence of increasing Pc will push the interface through locations of decreasing radius, until a section
is reached where the tube radius increases again. Any further increase in Pc shifts the interface to a location
compatible with the imposed pressure: intermediate positions are unstable. These interface jumps due to
unstable configurations—Haines jumps—lead to abrupt changes in saturation and to hysteresis.

This conceptual picture of a capillary tube with nonmonotonic pressure-saturation relationship is the basis
for our model. We describe a representative volume of porous medium as a discrete set of compartments or
domains, i = 1,… ,N, and analyze fluid displacements as the collective process of filling and drying of these
compartments. The pressure-saturation relationships for the individual compartments exhibit multistability,
much like that of a nonuniform capillary tube with variable radius. The state of each compartment i is deter-
mined by its degree of saturation, si , and the total volume of wetting fluid in the system, Vw , is given by the
averaged compartment volumes, Vw = VSw =

∑N
i=1 Visi, where Sw is the total wetting-phase saturation of the

porous sample, V the total volume of pore space, and Vi the individual compartment volumes. We assume
that the domains are weakly coupled, through a common imposed external field—the capillary pressure—or
through a fixed saturation or injection rate constraint. We thus consider two distinct displacement protocols:
either pressure-controlled or saturation-controlled conditions. In the former, the porous sample is subject to
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prescribed pressures of the wetting and nonwetting phases, and the corresponding saturation is measured
once the system has relaxed to an apparent equilibrium. In the latter, the wetting/nonwetting fluid is injected
or withdrawn at a constant rate.

We characterize the multicompartment model dynamics through energy minimization arguments.
Under prescribed pressure conditions, the relevant potential is a Gibbs-like free energy, while for
saturation-controlled experiments, the evolution to equilibrium is driven by the minimization of a
Helmholtz-like free energy. In the latter, the capillary pressure is no longer a given function of time but a
Lagrange multiplier that is calculated by imposing the volume constraint. We assume that the free energy
density of each compartment, fi , depends only on its degree of saturation, fi ≡ fi(si) [Enderby, 1955; Puglisi
and Truskinovsky, 2000, 2002; Dreyer et al., 2011; Bonilla et al., 2015] and write the total free energy density of
the system, F, as the sum of the individual ones, F =

∑N
i=1 Vifi(si). Under isothermal conditions, and assuming

incompressible fluids, this function models contributions from interfacial energies. If we interpret this energy
as a Helmholtz free energy, then it must hold that the capillary pressure is minus the derivative of the free
energy with respect to water volume, Pc = − 𝜕F

𝜕Vw
[Enderby, 1955; Morrow, 1970; Hassanizadeh and Gray, 1993].

We also define a Gibbs-like energy potential,

G = F + PcVw =
N∑

i=1

Vifi(si) + PcVw , (1)

whose minimization determines the route to equilibrium under constant-pressure experimental condi-
tions [Morrow, 1970; Bonilla et al., 2015]. The above total Gibbs free energy can be expressed in terms of the
compartment free energy densities, gi, as G =

∑N
i=1 Vigi , where gi = fi + Pcsi . For simplicity, we assume in

the following that all compartments represent equal pore volumes, Vi = Vj,∀i, j = 1,… ,N, and therefore,
the global saturation is just the arithmetic mean, Sw = 1

N

∑
si. To incorporate multistability at the compart-

ment level, we consider free energies fi that have several disjoint convex regions, and therefore multiple local
minima in gi as Pc changes. Stable and metastable states are defined by the convexity of the free energy,
𝜕2fi

𝜕s2
i
> 0, while unstable regions are those intervals where fi is concave. Stable and metastable equilibria

become a local minimum of the Gibbs free energy for some value of the capillary pressure. Unstable states
are unphysical: crossing an inflection point triggers a saturation jump toward another region of metastabil-
ity in fixed-pressure displacements. Simple Leverett scaling [Leverett, 1941] of the compartment free energy
densities suggests fi = 𝛾 cos 𝜃

r
f ∗i (si), where 𝛾 is the fluid-fluid surface tension, 𝜃 is the static contact angle,

and r =
√

k∕𝜙 is a macroscopic estimate of the domain pore radius, where k is the permeability of the medium
and 𝜙 its porosity.

Given the current conditions (capillary pressure Pc and the set of compartment saturations {s1,… , sN}), an
imposed change in capillary pressure or saturation drives the system out of equilibrium, and the compartment
saturations and/or pressures will change accordingly. We assume that the microscopic dynamics is a gradient
flow, where compartment saturations evolve with steepest descent toward the minimization of the relevant
energy potential. For the fixed pressure experiment, such potential is the total Gibbs free energy, G, and the
dynamics reduces to the evolution equations

𝜂
𝜕si

𝜕t
= −𝜕G

𝜕si
, ∀i = 1,… ,N. (2)

Since compartment energies depend on the local saturation alone, so that 𝜕gi

𝜕sj
= 0, ∀j ≠ i, the above system

can be written as

𝜂

Vi

𝜕si

𝜕t
= −

𝜕gi

𝜕si
= −

𝜕fi

𝜕si
− Pc, ∀i = 1,… ,N. (3)

In the present study we focus on deterministic dynamics and steady state saturations, and thus, the char-
acteristic relaxation parameter 𝜂 does not play any role. Compartment saturations si may relax toward local
minima of gi , fully sweeping metastable regions. This maximum delay strategy [Puglisi and Truskinovsky,
2005] provides the strongest hysteretic behavior and assumes that fluctuations and time scales are such that
the system is unable to overcome energy barriers. Haines jumps are interpreted in this model as switch-
ing events among adjacent minima in a complex energy landscape [Puglisi and Truskinovsky, 2002, 2005;
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Figure 2. Hysteresis in pressure-controlled displacements. (a) Metastable branches for a two-compartment, three-well
system. (b) We simulate two cycles of drainage and imbibition, illustrating the hysteretic behavior of the system. As we
increase or decrease the capillary pressure, the Pc-Sw state follows reversible paths along metastable branches and
jumps irreversibly among neighbor branches (blue line). (inset) For a given capillary pressure, compartment saturations
relax toward minima of equation (3). A point in the Pc-Sw diagram is a combination of local equilibria at the
compartments.

Dreyer et al., 2010, 2011]. The above Langevin equations (3) are also valid in the fixed saturation case, but in that
case the capillary pressure is a Lagrange multiplier that enforces the constraint, 1

N

∑N
i=1 si = Sw . This global

coupling leads to long-range correlations and fluid redistribution among compartments.

In the examples presented hereafter, we adopt the following heuristic specification for the compartment
specific free energies:

f ∗i = si log(si) + (1 − si) log(1 − si) − 𝜔isi − ci cos(K𝜋si), (4)

where the first three terms yield a biased mixing rule describing a reversible wetting process. The coeffi-
cients 𝜔i can be identified as the strength of the wetting bias in the system and are proportional to the
fluid-solid interfacial energy difference for a given compartment. In the present study, we assume for simplic-
ity that they are constant, 𝜔i = 𝜔0, ∀i = 1,… ,N. The oscillatory term is a straightforward way to introduce
energy barriers and break the energy function into disjoint convex regions. The coefficients c = {c1, c2,… , cN}
define the characteristic height of the energy barriers, while K is the frequency of the oscillations (roughly the
number of basins in the Gibbs-like energy). The overall model behavior can be illustrated with the simple case
of a two-compartment system in the pressure-controlled setting (Figure 2). We set N = 2, 𝜔0 = 5 and K = 4,
and the coefficients defining the energy barriers are c1 = 0.2 and c2 = 0.5. Hence, both domains have three
convex regions (Figure 2a, inset). Assuming that the two compartments represent the same pore volume, the
total saturation is Sw = 1

2
(s1 + s2).

We begin by reconstructing the equilibrium locus (Figure 2a). Compartment saturations must satisfy Pc = − 𝜕fi

𝜕si
.

Each of these equilibrium equations has up to three solutions, which lie inside convex regions of the free
energy densities (Figure 2a, inset, plotted with solid lines). Taken individually, the compartment Pc-si diagrams
comprise three disjoint metastable branches. Taken jointly, the full system Pc-Sw diagram (Figure 2a) com-
prises all possible combinations of compartment branches and is the locus of the states at which the system
can be observed. We classify these branches with the pairs (m1,m2), indicating that the first compartment is
in its m1 region of metastability, while the second domain is in its m2 region. Each point on a given branch
represents a combination of local equilibria at the different compartments. Metastable branches are isons:
they are reversible paths along which the system evolves continuously in the Pc-Sw space. Jumps among
branches—rheons—occur when the current branch terminates, and the switching strategy determines the
overall system dynamics. In the present maximum-delay paths, switching takes place among branches that
differ by the state of one compartment. This one-by-one phase switching behavior is also observed in other
physical systems composed of multistable units, such as elastic chains [Puglisi and Truskinovsky, 2000, 2002,
2005], insertion batteries [Dreyer et al., 2010, 2011; Sasaki et al., 2013], biomolecules [Prados et al., 2013;
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Figure 3. Pressure-saturation hysteresis diagram of a large system with N = 17 compartments and K = 256, with 𝜔0 = 5
and barrier coefficients equally spaced between c1 = 10−4 and c17 = 0.005. (a) Primary drainage and main hysteresis
loop with drainage scanning curves. (b) Primary drainage and main hysteresis loop with imbibition scanning curves.
(c) Closed hysteresis loops. (d) Nested hysteresis cycles, illustrating the dense nature of the hysteresis diagram.

Bonilla et al., 2015], carbon nanotube foams [Fraternali et al., 2011], or interconnected rubber balloons [Dreyer
et al., 2011; Moskon et al., 2013].

In a constant-pressure experiment, we increase or decrease Pc according to a given protocol, letting satura-
tions reach steady state after each pressure step. To simulate this type of cycles with our model (Figure 2b),
we proceed as follows:

1. Initialize the system for a capillary pressure, e.g., Pc = 0: starting from initial compartment saturations near
full saturation, s1 = s2 = 0.99, we relax the compartment saturations according to equation (3), to obtain,
at t → ∞, the equilibrium values that correspond to Pc = 0, s1(0), and s2(0). The overall water saturation is
the average, Sw = (s1 + s2)∕2.

2. Drainage/Imbibition cycles are simulated by repeating this equilibrium calculation for increasing/
decreasing values of Pc, with pressure increments 𝛿Pc = 0.01. At each pressure step, the initial saturations
are the steady state ones corresponding to the previous capillary pressure. When system fluctuations are
neglected, individual compartment states can be trapped at the local minima of the Gibbs-like free energy,
unable to overcome the energy barrier and cross toward the global minimum (Figure 2b, inset). At the end
of the current branch, saturations jump to neighboring branches. At the microlevel, this event corresponds
to the transition of one of the compartments to a neighbor basin (Figure 2b, inset).

Increasing the number of compartments and metastable branches per compartment leads to smaller-scale
jumps and to smoother pressure-saturation curves (Figure 3). Many small Haines jumps do not imply, however,
that hysteresis is negligible; on the contrary, a wide hysteresis region remains, as evidenced in Figure 3.
The number of potential branches in the equilibrium locus increases very quickly with the number of
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Figure 4. Overlapping branches and pressure jumps in saturation-controlled displacements. (a) The metastable
branches overlap as the number of compartments increases. We model a system with N = 12 identical, bistable
compartments, with 𝜔0 = 5, K = 2, and ci = 0.6, ∀i = 1,… ,N. (b) Sawtooth Pc-Sw behavior in a drainage-imbibition
hysteresis loop (blue line). (c) A cycle of primary drainage and main imbibition, comparing the pressure-saturation
diagrams for the pressure-controlled (black) and saturation-controlled (blue) conditions. The system comprises N = 17
compartments with K = 8, 𝜔0 = 5, and barrier coefficients equally spaced between c1 = 0.005 and c17 = 0.155.

compartments and local minima per compartment, resulting in a highly dense metastable region. This dense
structure turns into smoothness of the scanning curves and to the commonly observed high-order scanning
curves after many turning points and nested cycles [Morrow and Harris, 1965; Morrow, 1970] (Figure 3d).

One of the main features of our discrete-compartment model is the recognition of the difference between
pressure-controlled and saturation-controlled conditions in multiphase displacements. The fundamental dif-
ference stems from the long-range interaction induced by the volume constraint. To illustrate this behavior,
we begin with the simple case of a porous medium comprising N = 12 identical bistable compartments
(Figure 4). The equilibrium locus of the overall system exhibits significant overlap (Figure 4a). We then sim-
ulate a full cycle of drainage and imbibition by imposing a decreasing saturation until Sw = 0.01 and then
increasing the saturation until Sw = 0.99 (Figure 4b). The pressure-saturation diagram shows a characteristic
sawtooth structure: the system evolves reversibly following individual branches, until the end of the branch
triggers a jump toward a neighboring one. Pressure jumps are accompanied by fluid redistributions due to the
global coupling. This phenomenon of pressure jumps and fluid redistribution has been characterized in exper-
iments [Crawford and Hoover, 1966; Furuberg et al., 1996; Aker et al., 2000; Xu et al., 2008; Moebius and Or, 2012;
Berg et al., 2013]. Finally, we compare the Pc-Sw diagrams for the pressure-controlled and saturation-controlled
conditions for a system comprising N = 17 domains with K = 8, simulating a cycle of primary drainage and
main imbibition (Figure 4c). The analysis based on the reconstruction of the equilibrium locus (Figure 4a)

CUETO-FELGUEROSO AND JUANES DISCRETE DOMAIN MODEL OF HYSTERESIS 6



Geophysical Research Letters 10.1002/2015GL067015

explains why the system is still path dependent: the “bursty” behavior is associated with jumps among nearby
metastable branches, but the density of branches is such that the amplitude of the hysteresis loop persists
upon refinement.

The mechanistic description of mutiphase flow proposed here captures the nonequilibrium nature of
pore-scale displacements. As a hysteresis model, our description has the remarkable property of being based
on a unique characterization of the porous medium and fluid system, avoiding an explicit dependence on
past saturations or drainage/imbibition labels. Being a thermodynamic model, it elucidates the different
nature of fixed pressure and fixed volume—or fixed injection rate—displacements, potentially providing a
link between pore-scale observations and large-scale processes. In this study we explored the fundamental
idea that hysteresis in porous media flow is due to metastability, that is, to the fact that for given capillary
pressure and saturation, many interfacial configurations are possible due to the complex structure of the pore
space. Multistability suggests a rugged interfacial energy landscape. Our results suggest that even a simple
characterization of such energy landscape can describe the complex behavior observed in hysteretic capillary
equilibrium in porous media.
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